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Abstract: In the realm of Cyber–Physical System (CPS), accurately identifying attacks without detailed knowledge of
the system’s parameters remains a major challenge. When it comes to Advanced Driver Assistance Systems
(ADAS), identifying the parameters of vehicle dynamics could be impractical or prohibitively costly. To tackle
this challenge, we propose a novel framework for attack detection in vehicles that effectively addresses the
uncertainty in their dynamics. Our method integrates the widely used Unscented Kalman Filter (UKF), a well-
known technique for nonlinear state estimation in dynamic systems, with machine learning algorithms. This
combination eliminates the requirement for precise vehicle modeling in the detection process, enhancing the
system’s adaptability and accuracy. To validate the efficacy and practicality of our proposed framework, we
conducted extensive comparative simulations by introducing Denial of Service (DoS) attacks on the vehicle
systems’ sensors and actuators.

1 INTRODUCTION

Cyber–Physical System (CPS) refers to the integra-
tion of computation with physical processes. There-
fore, cyber attacks on these systems can cause se-
vere consequences. The reliable operation of Ad-
vanced Driver Assistance Systems (ADAS) depends
on the accurate functioning of various sensors and
power management systems. If these elements are
targeted by malicious attackers, passengers, pedestri-
ans and drivers could be exposed to significant safety
risks, potentially endangering their lives. This situa-
tion underscores the critical necessity for attack detec-
tion methods within autonomous driving systems. By
identifying potential threats as they occur, the system
can initiate appropriate protective actions to safeguard
passengers, pedestrians and drivers.

Denial of Service (DoS) attack is one of the most
well-known cyber attacks, and it has become more
prevalent since 2004 (Mirkovic and Reiher, 2004).
These attacks purposefully flood networks with too
much traffic, overwhelming systems and compromis-
ing service availability. DoS attacks can cause sig-
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nificant operational disruptions in Autonomous Ve-
hicles (AVs) and Connected Autonomous Vehicles
(CAVs), which rely heavily on continuous and secure
communication channels for services such as naviga-
tion, real-time traffic updates, and vehicle-to-vehicle
(V2V) communication. The absence of connectivity
not only affects the safety elements essential to AV
operations but also degrades the system’s ability to
make intelligent decisions on the road. Multiple re-
cent studies can be found in the literature, providing
insight into the different classes of attacks and defense
mechanisms developed, such as (Naqvi et al., 2022;
Marcillo et al., 2022; Al-Jarrah et al., 2019; Banaf-
shehvaragh and Rahmani, 2023; Farsi. et al., 2023).

Concerning vehicle security, there exist various
applications of machine learning techniques in the lit-
erature for detecting anomalies in different networks.
One group of approaches considers the possibility of
attacks on communications between vehicles them-
selves and between vehicles and roadside infrastruc-
ture. (Canh and HoangVan, 2023) seeks to build and
evaluate a particular attack detection system that em-
ploys four specific discriminating features. A col-
lected dataset is then utilized to train and evaluate sev-
eral machine learning and statistical models, allowing
for a comparative examination of their efficacy. The
suggested strategy focuses on early detection, allow-
ing for timely and effective countermeasures.
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Another class of intrusion detection has focused
on in-vehicle communications used for exchang-
ing data between different control units of vehicles.
(Berger et al., 2018) evaluates various machine learn-
ing methods, including deep learning, for in-vehicle
intrusion detection systems. In a more recent tech-
nique, (Aldhyani and Alkahtani, 2022) implemented
deep learning approaches like Convolutional Neural
Network (CNN)s and CNN-Long Short-Term Mem-
ory (LSTM) hybrid models to detect attacks such as
spoofing, flooding, and replay attacks on the Con-
troller Area Network (CAN) bus. Other similar tech-
niques can be found in (Pawar et al., 2022). A com-
prehensive survey of the techniques presented, in the
literature, can be found in (Rajapaksha et al., 2023).

The majority of these approaches focus on net-
work traffic and data package analysis to discover re-
curring patterns in normal operation during the train-
ing stage, and then use them to detect anomalies dur-
ing the exploitation stage. Therefore, the dynamic as-
pects of different subsystems in the vehicles receive
less attention. On the other hand, dynamic models
are the foundation of vehicle design, allowing engi-
neers to predict and optimize the performance of nu-
merous vehicle systems under a variety of operating
situations. Exploiting such models for intrusion de-
tection allows us to identify anomalies by continu-
ously comparing real-time data against the predicted
normal behavior. Through this proactive strategy, in-
trusions can be detected early and promptly addressed
to reduce potential damage. (Ju et al., 2022) provides
a review of such techniques from a control perspec-
tive. In line with these approaches, in this study, we
employ a rather system dynamics model-based tech-
nique as a defense mechanism. Moreover, since the
parameters of the vehicle, such as weight, tire con-
ditions, and engine characteristics, can change over
time or under different conditions, we have found ma-
chine learning techniques particularly advantageous
as they offer high adaptability.

The Unscented Kalman Filter (UKF) has been em-
ployed successfully in various fields of applications,
such as power and automotive systems. In power sys-
tems, the UKF contributes to stability and operational
integrity by accurately evaluating the state of electri-
cal grids and identifying potential interruptions (Du
et al., 2022; Rashed et al., 2022). The UKF has played
an important role in improving cyber threat detection
in-vehicle systems (Zhang et al., 2021), particularly
AVs and CAVs. The UKF improves the system’s ro-
bustness against DoS attacks by enabling real-time,
precise anomaly detection, preventing possible threats
from causing harm. In (Živković and Sarić, 2018),
the authors employed the UKF to predict and update

state variables from a previously known state to de-
tect False Data Injection (FDI) attacks. They com-
pared the results to those obtained using a common
weighted least squares-based state estimation tech-
nique. They observed that the state variables under
attack significantly deviated between them, which can
be used to detect the attack.

In this paper, we describe a novel approach for de-
veloping an attack detection system tailored to vehi-
cles. Our proposed approach integrates the UKF with
a learning-based module to obtain a resilient adaptive
framework. This feature eliminates the requirement
for detailed vehicle modeling in the attack detection
process, simplifying implementation while retaining
accuracy. The framework’s effectiveness is strength-
ened by the use of a Cumulative Sum (CUSUM) algo-
rithm with a sliding window for responsive anomaly
detection, and by incorporating the learned dynam-
ics to predict and compare real-time data against ex-
pected behavior. By leveraging the UKF’s capabilities
in handling non-linear dynamics, our proposed algo-
rithm significantly improves the robustness and accu-
racy of intrusion detection in cyber-physical systems,
particularly in ADAS. We conducted extensive sim-
ulations using CARLA, a simulation platform com-
monly used in autonomous driving research, to eval-
uate the efficacy and feasibility of our system. This
made it possible for us thoroughly to test our struc-
ture in practical settings and make sure it can operate
dependably in actual situations.

The rest of the paper is organized in the follow-
ing order: In Section 2, we formulate the problem
by assuming a DoS attack on the actuator. Section 3
presents the attack detection framework, introducing
the main algorithm. In the following Section 4, we
discuss the detailed simulation results.

2 PROBLEM FORMULATION

The system model is described by the following equa-
tions

xk+1 = f (xk,uk),

yk = h(xk),
(1)

where xk ∈ Rn, represents the state space of the vehi-
cle, and uk ∈Rp, denotes the control input. yk ∈Rm is
the measurement vector. Moreover, f : Rn×Rp→Rn

represents the state transition function that defines the
next state xk+1 based on the current state xk and the
control input uk. The function h : Rn → Rm denotes
the measurement function that maps the current state
xk to the measurement vector yk. k gives the time step.
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Next, we will model the DoS attack on various
elements of the control loop.

2.1 Attack Model

Considering that the attacks are implemented in the
cyber layer, we construct the cyber attack in a discrete
space, as shown below.

2.1.1 Actuator Attack

To model the effect of the attack, the dynamics in (1)
are modified as

xk+1 =

{
f (xk,ak), k ∈ α,

f (xk,uk), k /∈ α,
(2)

where we denote the set of time steps during which
the attack is active using α. Moreover, we assume
that DoS can arbitrarily affect a subset of components
of uk. This can be further described by

ak[i] =

{
0, i ∈ Γa,

uk[i], otherwise,
(3)

where Γa denotes the set of indices corresponding to
the actuators that are affected by the attack, and i
ranges over the set Γa ⊆ {1,2, . . . , p}. Accordingly, a
particular attack strategy can be represented by choos-
ing nonempty sets α and Γa, which specify the time
of the attack and the indices of targeted actuators, re-
spectively.

2.1.2 Sensor Attack

In this section, we define the sensor attack in a similar
fashion. We modify the measurements relation given
in equation (1) to reflect the DoS attack on some spe-
cific set of sensors. The equation

yk =

{
yk

a, k ∈ β,

h(xk), k /∈ β,
(4)

switches the measurements to yk
a that may be manipu-

lated by the anomaly, at different time steps specified
by set β. Moreover, based on a particular attack pat-
tern, a list of targeted sensors is given by Γs, with the
attacked components being set to zero. This is shown
below

yk
a[i] =

{
0, i ∈ Γs,

yk[i], otherwise,
(5)

where Γs ⊆ {1,2, . . . ,m} denotes the set of indices
corresponding to the components of yk that are
blocked by the attacker. Here, m refers to the dimen-
sion of the measurement vector.

2.2 Vehicle Model

In order to demonstrate the performance of the devel-
oped approach, we use the Kalman filter as a base-
line approach for comparison in Section 4. It should
be noted that we aim to obtain a sample-based tech-
nique, meaning that we treat the dynamics as a black
box without using the analytical model. However,
since the dynamic model are essential for running the
Kalman Filter, we concisely present the equations of
the vehicle in what follows.

According to (Takahama and Akasaka, 2018), a
vehicle dynamics model can be obtained as below.
The longitudinal dynamics of the vehicle is given by

Mvehiclev̇h = Mvehiclea f − rtravel , (6)

where Mvehicle is the mass of the vehicle, a f is the
traction force converted to acceleration and rtravel is
the travel resistance. The model of the rtravel can be
described as

rtravel = rair(v2
h)+ rroll(vh)+ raccel(v̇h)+ rgrad(θ),

(7)
where rair =

1
2 ρCdAv2

h is the air drag, ρ is the air den-
sity, Cd is the drag coefficient, A is the frontal area of
the vehicle, and vh is the vehicle speed. The rolling
resistance is given by rroll = CrMvehiclegvh, where Cr
and g denote the rolling resistance coefficient and the
acceleration due to gravity, respectively.

Then, the acceleration resistance is raccel =
Mvehiclev̇h, where v̇h is the acceleration of the vehicle.
Finally, rgrad = Mvehiclegsin(θ), where θ is the slope
angle of the road.

3 ATTACK DETECTION
FRAMEWORK

In this section, we present the required components to
construct the attack detection framework.

3.1 Unscented Kalman Filter

In the UKF, it is not necessary to know the detailed
model. The UKF uses sigma points to sample the
input and obtain the corresponding output. It is a
method similar to the Monte Carlo approach but re-
quires only a small number of sigma points. Next, we
will provide a detailed introduction to the UKF.

3.1.1 Unscented Transformation (UT)

As described by (Wan and Van Der Merwe, 2000),
the UT is a technique developed for the generation of
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Figure 1: The flow chart of the algorithm.

sigma points that are capable of undergoing nonlinear
transformations expressed as f (xk,uk). This approach
is particularly valuable when dealing with a multitude
of random vectors, each residing in an n-dimensional
space (xk ∈Rn), characterized by a mean x̄k and a co-
variance matrix Pk.
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Figure 2: CARLA Environment.

3.1.2 Select Sigma Points

The sigma points χk
i are chosen such that they capture

the true mean and covariance of the random variable
xk, enabling an accurate propagation through the non-
linear function f (xk,uk). This selection ensures that
the mean and covariance of the sigma points match
x̄k and Pk, respectively, providing an effective mech-
anism for estimating the statistical properties of xk+1.
The sigma points are selected according to

χk
0 = x̄k,

χk
i = x̄k +(

√
(n+λ)Pk)i i = 1, ...,n,

χk
i = x̄k− (

√
(n+λ)Pk)i i = n+1, ...,2n,

W (m)
0 = λ

n+λ
,

W (c)
0 = λ

n+λ
+(1−φ2 +β),

W (m)
i =W (c)

i = 1
2(n+λ) i = 1, ...,2n.

(8)
According to (Wang et al., 2023), λ is a key pa-

rameter calculated using λ = φ2(n+ κ)− n, φ deter-

mines the dispersion degree of σ points, and κ is typi-
cally 3−n. β is for integrating prior knowledge about
x’s distribution.

3.1.3 Predict

The predicted state and covariance are

x̄k+1|k =
2n

∑
i=0

W (m)
i χ

k+1|k
i ,

Pk+1|k =
2n

∑
i=0

W (c)
i

(
χ

k+1|k
i − x̄k+1|k

)(
χ

k+1|k
i − x̄k+1|k

)T
,

ȳk+1|k =
2n

∑
i=0

W (m)
i Y k+1|k

i ,

Pk+1
yy =

2n

∑
i=0

W (c)
i

(
Y k+1|k

i − ȳk+1|k
)(

Y k+1|k
i − ȳk+1|k

)T
,

Pk+1
xy =

2n

∑
i=0

W (c)
i

(
χ

k+1|k
i − x̄k+1|k

)(
Y k+1|k

i − ȳk+1|k
)T

,

(9)
where χ

k+1|k
i = f (χk

i ,u
k), Y k+1|k

i = h(χk
i ,u

k), for i =
0, ...,2n.

3.1.4 Update

The update step can be defined as

Kk+1 = Pk+1
xy

(
Pk+1

yy

)−1
,

rk+1 = yk+1− ȳk+1|k,

xk+1 = x̄k+1|k +Kk+1rk+1,

Pk+1 = Pk+1|k−Kk+1Pk+1
xy

T
,

(10)

where K is the Kalman gain, r is the residual. These
values are updated when sensors provide new mea-
surements.
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Data: Sensor signal, Input signal
Result: Attack State: fad (0 for no attack, 1

for attack detected)
Initialisation: ;
Initialize the cumulative sum, s1,s2← 0 ;
Initialize the attack detection flag, fad ← 0;
Initialize the threshold value, threshold ;
Define the window size N ;
Initialize an empty list Q, to store the last N
residuals ;

Detection Loop: ;
while each new sensor signal input y do

Perform the selecting sigma points step;
Perform the prediction step of UKF to
estimate the next state ;

Perform the update step of UKF with
signal y to obtain residual r ;

Append r to Q ;
Update the UKF model // using
equation (11) ;

if Size of Q > N then
Remove the oldest residual from Q ;

end
Update cumulative sum using residuals
within Q: s1← ∑Q // using
equation (12) ;

Update standard error using residuals
within Q: s2← std(Q) // using
equation (13) ;

if abs(s1)> threshold1 and
s2 > threshold2 then

fad ← 1 // attack detected
immediately upon detection ;

else
fad ← 0;
Continue monitoring ;

end
end

Algorithm 1: CUSUM Algorithm with Sliding Window for
Attack Detection.

3.2 Machine Learning (ML)

Obtaining the parameters of a vehicle might often be
infeasible or economically prohibitive. In the update
phase of the UKF, we employ ML techniques to pre-
dict the vehicle’s subsequent state.

For this purpose, we selected the multi-layer per-
ceptron (MLP) network. This neural network receives
control commands (u) — encompassing the throttle-
brake and steering angle — as well as the vehicle’s
current state, which includes velocity, angular veloc-
ity, and acceleration, as its input. The network is de-
signed to output the vehicle’s acceleration for the next

time step. Designed to predict the vehicle’s accelera-
tion at the next time step, it was necessary to account
for the delay between the input commands and the re-
sultant state changes. To address this, according to
(Xu et al., 2019), we selected a model output that re-
flects the vehicle’s acceleration 50 milliseconds after
the input, ensuring the training data adequately cap-
tures the dynamics of the system.

The MLP is structured with three distinct layers:
an input layer comprising 5 units, a hidden layer con-
taining 20 units, and a single-unit output layer. The
activation function utilized within the hidden layer is
the Rectified Linear Unit (ReLU).

With this predicted acceleration, we can determine
the vehicle’s upcoming velocity using Newton’s sec-
ond law, thereby integrating ML predictions seam-
lessly into the UKF’s update mechanism for enhanced
estimation accuracy.

3.3 Model Update Methods

In order to make the detector adaptive, we deployed
an algorithm that can make the detector update auto-
matically. In the proposed detector, we updated the
model of the vehicle when it got new sensor signals.
To make sure the model is not updated when the at-
tacker implements the DoS attack on the car model
and is updated when the car is running normally, we
update the learning rate according to

l = 1− 1
1+ e−Srate∥r∥2

. (11)

Here, l denotes the learning rate, r represents the
residual of the car, Srate is the scale of the residual,
and ∥ · ∥2 denotes the L2 norm of a vector.

3.4 Attack Detection Method

As a widely used attack detector in many literature
(Liu et al., 2019), CUSUM is selected as the detec-
tor. In (Van Eykeren et al., 2012), they also calculated
a moving window average for the residual. In prac-
tice, there is often a gap between theoretical models
and engineering applications. Therefore, we intro-
duce Wr1 and Wr2 to fine-tune the target parameters.
Additionally, we used two tests to detect whether the
target is under attack.

Test 1 is shown by

sk
1 =

k

∑
i=k−N+1

Wr1ri, (12)

where r is the residual updated by the UKF, W T
r1 ∈Rm,

N is the length of the sliding window.
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Test 2 is described as

sk
2 =

k

∑
i=k−N+1

(ri− r̄)Wr2(ri− r̄)T , (13)

where r̄ is the average of the sliding window for the
residuals, Wr2 ∈ Rm×m is the weight of the residual.

Then s1 and s2 will be compared with two thresh-
olds, t1 and t2, respectively. Then the alarm is trig-
gered according to

A =

{
Sp, s1 > t1 and s2 > t2,
Sn, s1 ≤ t1 or s2 ≤ t2.

(14)

As illustrated in Figure 1, the trained model de-
rived from historical data is subsequently integrated
into the UKF. The mechanism of the detector is de-
tailed in Algorithm 1.

4 SIMULATION RESULTS

To demonstrate the efficacy of the proposed approach
under DoS attacks, we chose CARLA (Dosovitskiy
et al., 2017) as our simulator, which can simulate real-
world dynamics and generate sensor signals in real-
time. This allows for accurate and timely responses
in the simulation environment. Moreover, to highlight
the superiority of the proposed method, we compare
it with the traditional Kalman filter.

All neural network training was conducted in
Python on the Ubuntu operating system. The hard-
ware configuration used included an AMD Ryzen 9
processor with 16 cores, clocked at 3.40 GHz, and
64GB of RAM. The Kalman filter and UKF were im-
plemented using the FilterPy library (Labbe, 2024),
while the neural network was developed with PyTorch
(Paszke et al., 2019).

In the following subsection, we detail the data
preprocessing methods, the implementation of attack
scenarios, the simulation parameters and the resulting
simulation outcomes.

4.1 Data Preprocessing

Both manual driving data and autonomous driving
data generate command signals (throttle, brake, and
steering angle), which can be used as training data.
To obtain representative data, we used manual con-
trol to generate data in the CARLA environment, as
shown in Figure 2.

In order to achieve better training results, we need
to ensure that the data are valid by removing all out-
liers.

The brake and throttle inputs are combined and
normalized into a unified control signal ranging from
0 to 1 according to

u =
T −B+1

2
, (15)

where u is the unified control signal, T ∈ [0,1] is the
throttle input, B ∈ [0,1] is the brake input, Tmax is
the maximum throttle value and Bmin is the minimum
brake value. When u = 0, it represents full braking,
and when u = 1, it represents full throttle.

4.2 Attack Implementation

We implemented the attack at 20 seconds in the sim-
ulation. To validate the algorithm, we chose a DoS
attack signal in the form of a Pulse Width Modulation
(PWM) structure. When the signal is 1, it indicates
that the monitor is blocked.

4.3 Parameters

To have a comparison we chose a typical Kalman fil-
ter. The parameters of equation (7) is shown as ta-
ble 1.

Table 1: Parameters of Kalman filter.

Name Value
rair 68.9 N
rroll 271.6 N
rgrad 0 N

If there is no slope, rgrad = 0. Therefore, the to-
tal travel resistance rtravel is given by rtravel = rair +
rroll + rgrad = 340.5N. In order to make the detec-
tor more accurate, we have Wr1 =

[
1 0.01 0

]T ,

Wr2 =

1 0 0
0 0.01 0
0 0 0

 and we focus on the acceler-

ation residual to detect the attack.
The learning parameters are detailed in Table 2.

The optimizer used is Adam (Kingma and Ba, 2014).

Table 2: Parameters of Machine Learning.

Name Value
Learning rate 0.001

Train size/Total 0.8
Epochs 1000

MLP batch size 64
MLP epochs 1000

To improve the clarity of the results, we simplified
the model, the value of t2 is based on t1, maintaining
a fixed proportional relationship as shown by

t2 = γt1, (16)
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Figure 3: The results of the attack detector are as follows: for the Kalman filter, a1 represents the residual and CUSUM of
residuals in the sliding window, a2 denotes the standard error of residuals in the sliding window, and a3 indicates the attack
state; for the proposed method, b1 signifies the residual and CUSUM of residuals in the sliding window, b2 refers to the
standard error of residuals in the sliding window, and b3 denotes the attack state of the UKF.
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where γ is a tuning parameter. In this simulation, γ is
set to 0.04.

4.4 Results

In this study, the performance of the Kalman filter
and UKF for detecting attacks in autonomous vehi-
cles was evaluated. The experiments were conducted
under two scenarios: actuator attack and sensor at-
tack.

4.4.1 Actuator Attack

To validate the detector, we use four metrics to mea-
sure the performance: false positive alarm rate, true
positive alarm rate, false negative alarm rate and true
negative alarm rate.

As shown in Figure 4, despite the threshold
changes from 10 to 25, the true positive alarm rate
and true negative alarm rate of the proposed method
are significantly higher than those of the Kalman filter
when using the same threshold.

Figure 4: The metrics of different detectors are defined as
follows: the true positive rate (TP), the true negative rate
(TN), the false positive rate (FP), and the false negative rate
(FN).

To achieve a more precise quantification of the
research data, we utilized the F1-score (Bishop and
Nasrabadi, 2006). As shown in Figure 5, the F1-score
of the Kalman filter shows a decreasing trend, while
the F1-score of the UKF first increases and then de-
creases. Based on this pattern, we selected the ap-
propriate thresholds for the Kalman filter and the pro-
posed method. The thresholds are 10 for the Kalman
filter and 13.33 for the proposed method.

Table 3 presents the optimal thresholds and cor-
responding values for the Kalman filter and the pro-
posed method. In this table, all metrics of the pro-
posed method significantly outperform those of the
Kalman filter.

Figure 5: F1 Score of Kalman Filter and the Proposed
Method.

Table 3: Optimal Thresholds and Confusion Matrix Values
for Kalman Filter and the Proposed Method.

Metric Kalman filter Ours
Optimal Threshold 10.0 13.33

F1-Score 0.4784 0.8826
True Positives (TP) 42.88% 93.58%
False Positives (FP) 36.41% 18.48%
True Negatives (TN) 63.59% 81.52%
False Negatives (FN) 57.12% 6.42%

4.4.2 Sensor Attack

Figure 6: The metrics of different detectors are defined as
follows: the true positive rate (TP), the true negative rate
(TN), the false positive rate (FP), and the false negative rate
(FN).

We obtained similar results for Attack Detection (AD)
on the sensor, as shown in Figure 6. Both the true
positive and true negative rates of the proposed UKF
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method are significantly higher than those of the
Kalman filter when choosing the best F1-Score.

5 CONCLUSION

In conclusion, we proposed a novel framework for at-
tack detection in vehicles with unknown systems. We
exploited a learning-based model to predict and com-
pare observations against expected behavior. There-
fore, compared to the Kalman filter, the proposed ap-
proach based on the UKF is capable of detecting DoS
attacks from the sensor and actuator without prior
knowledge of the system parameters. Accordingly,
by exploiting UKF’s capabilities in handling nonlin-
earity, our proposed algorithm demonstrated a signif-
icant advantage over the traditional Kalman filter for
detecting DoS attacks on sensors and actuators. In
detail, through extensive simulations of our proposed
algorithm, we observed that our method outperforms
the Kalman filter by demonstrating substantial results
in both true positive alarm rate and true negative alarm
rate. Enhancing the filtering design for vehicle in-
cursion detection can be the primary focus of future
research. By precisely simulating intricate dynam-
ics, investigating robust particle filters may improve
anomaly identification even further and strengthen ve-
hicle security. Moreover, the presented framework
can be extended to other types of attacks such as FDI.
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