Automated Hybrid Ransomware Family Classification

George Raul Michael Dunca®? and Ioan Bid#rinza®P

Department of Computer Science, Babes-Bolyai University, Str. M. Kogalniceanu, Cluj-Napoca, Romania

Keywords:

Abstract:

Ransomware, Windows Portable Executables, Random Forest, Hybrid Analysis, Features.

Ransomware is one of the most destructive forms of malware that exists today, posing a continuous and evolv-
ing threat to everyone from a regular user to a large corporation. Mainly ransomware can be analyzed in three
ways: statically which involves extracting information without execution, dynamically which implies running
the program in a controlled environment and observing its behavior, and hybrid which addresses the limitation
of the previously specified two approaches by combining them. The aim of this study is to maximize the num-
ber of features extracted from Windows portable executables (PE) utilizing a hybrid approach and find what
are the most useful attributes for differentiating between various ransomware families. A total of 707 samples
across 99 families were successfully examined, from which 783 features were identified as the most informa-
tive. This data was then used to train a Random Forest model, which conducts the classification. RansoGuard
was also developed. This is a graphical user interface Windows application that extracts hybrid attributes from
a specified portable executable file. Then it uses the Random Forest model to output a prediction about the
ransomware family to which the file belongs and finally generates a detailed report. The results obtained are
promising, with the model achieving an accuracy of 71.83%, along with a precision of 0.79 and recall of 0.72.

1 INTRODUCTION

The number of devices has increased in recent years,
making the Internet an essential part of daily life for
almost every member of society (Aslan and Samet,
2020). This broad connectivity, while offering conve-
nience and accessibility, has also led to a growth in cy-
berattacks and raised various security concerns. One
of the most popular threats in this context is malware,
or malicious software, which can compromise per-
sonal information or cause damage to services. Mal-
ware can be categorized into multiple classes, with
the most dangerous being ransomware. This type is
installed on the victim’s system without their knowl-
edge, and then encrypts valuable information and
files, making them inaccessible. The attacker then re-
quests a ransom payment in return for the decryption
key. This "’business model” is favored by cybercrimi-
nals, as evidenced by the fact that last year 72.7% of
all organizations fell prey to a ransomware attack (sta,
2024b).

This expansion of ransomware incidents makes
malware analysts perform some repetitive tasks when
attempting to identify patterns or characteristics of a

https://orcid.org/0009-0005-3236-5666
5@ nttps://orcid.org/0000-0001-8233-8264

Dunca, G. and Badarinza, 1.

Automated Hybrid Ransomware Family Classification.
DOI: 10.5220/0013065400003825

Paper published under CC license (CC BY-NC-ND 4.0)

sample. In case of an incident response, these tasks
need to be performed quickly as time is of the essence.
Additionally, anti-malware solutions generally rely
on signature-based detection as their initial layer of
defense, which can be easily bypassed. For instance,
malware authors can insert random prints or assign-
ments that will change the sample’s signature. Fur-
thermore, many antivirus scanners concentrate more
on distinguishing malicious files from benign ones,
or on classifying general malware types, rather than
focusing specifically on ransomware families.

This study aims to automate the process of iden-
tifying the ransomware family of a malicious file. To
do so, we first need to extract as much information
as possible from various instances. Out of this in-
formation, only the most useful attributes will be re-
tained to form the training data for a Random Forest
model, which will be used for labeling. To the best
of our knowledge, no prior research on ransomware
family classification has considered the combination
of these multiple features: Strings, Metadata, PE sec-
tions, PE headers, MITRE ATT&CK techniques, be-
havioral signatures, and network activity.

The problems discussed have led to the explo-
ration of the following research questions:

i. What tool combination is the most effective for

409

In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 409-416

ISBN: 978-989-758-718-4; ISSN: 2184-3252

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

extracting the maximum amount of information from
portable executables?

ii. Which static and dynamic features are essential for
accurate ransomware classification?

This paper will specifically focus on Windows
portable executable files since it is the most used oper-
ating system (sta, 2024a) and as a result, the primary
target for malware authors and cybercriminals.

2 RELATED WORK

Different approaches have been proposed to detect
and classify ransomware or malware. The authors of
(Rizvi et al., 2022) presented PROUD-MAL, a novel
static analysis-based approach for malware detection
in portable executables. The dataset used in the study
is collected from real-time sources by deploying low
and high-interaction honeypots on an organization
network, gathering over 15,000 portable executable
samples of both malicious and benign samples. Be-
cause most of the data was unlabeled, this framework
utilizes cascading blocks of unsupervised clustering
to create pseudo labels, which are later fed to the Fea-
ture Attention-based Neural Network (FANN). This
method prioritizes the significant features and finds
patterns within a dataset. The framework was com-
pared with some supervised machine learning algo-
rithms and the results show that PROUD-MAL out-
performs these algorithms, having an accuracy over
98%.

The study from (Abbasi, 2023) concentrated on
automating the process of detecting and classifying
ransomware into families, using a dynamic approach.
Initially, it suggested a way to choose the appropriate
features without the need for expert input, by utilizing
Particle Swarm Optimization (PSO). This approach
consists of two phases: Stage 1, which employs the
Mutual Information Criterion to pick an equal number
of top-ranked features, and Stage 2, where addition-
ally an optimal number of features is selected from
each family. The procedure was evaluated by using
five machine learning algorithms, demonstrating re-
sults comparable with other state-of-the-art methods
that do not require human intervention and showing
the lowest number of features. Furthermore, the study
introduced both a Genetic Programming Malice Scor-
ing Method and a Genetic Programming Multi-Model
Malice Scorer. Although interesting, it’s important to
note that these techniques lie outside the scope of this
study. Finally, an early detection approach that uses
API call sequences is presented. This novelty com-
bines call names with specific call arguments, particu-
larly from system-type API calls, leading to a notable

410

improvement in early ransomware detection perfor-
mance.

In (Aurangzeb, 2018) the authors focused on the
binary classification of ransomware while introduc-
ing two hybrid methodologies. The novelty lies in
using hardware performance counters for the fea-
ture vector. The initial approach, called Hybrid
Hierarchy-based Ransomware Classification (HHRC)
begins with signature-based analysis and if a match
is not found it continues with static evaluation. Fur-
thermore, if the sample is not classified as ran-
somware, it proceeds to dynamic examination. To
address the high dimensionality problem of feature
vectors, the authors employed the Information Gain
method. The second approach, Hybrid-Combined
Ransomware Classification (HCRC), merges static
and dynamic attributes into a single feature vector for
training a machine-learning model. Testing reveals
that HCRC outperforms HHRC by approximately 3%
regarding Area Under the ROC Curve (AUC). How-
ever, overall performance shows a negligible differ-
ence, only 0.01%, but HHRC demonstrates lower
computing costs.

3 METHODOLOGY

3.1 Lab Analysis Setup

Before starting the ransomware analysis using a hy-
brid approach, a safe and controlled environment was
needed to proceed. A self-hosted laboratory was fa-
vored, choosing an Ubuntu machine for the setup,
with Oracle VM VirtualBox installed. As for the vir-
tual machine, Windows 10 Enterprise was used, de-
spite it only offering a 90-day free trial. This configu-
ration was preferred because utilizing different oper-
ating systems for the host and guest can enhance se-
curity. On the host machine Flare VM was installed,
which is a popular collection of software deployment
scrips designed for malware analysis. As part of the
setup process, it is necessary to disable Windows De-
fender and Windows Firewall to prevent interference
when detonating common malware samples within
the environment. Detailed installation steps and ad-
ditional information about Flare VM are described at
(fla, 2024b). To make sure that the host can’t commu-
nicate with the internet or other devices a Host-only
Adapter was employed, which restricts the commu-
nication solely between the VM and the computer it
runs on. Additionally, a Bridged Adapter was utilized
when internet access was required for tasks such as in-
stalling dependencies, and packages, or making API
calls.

3.2 Dataset Selection

For this study, the samples were obtained from
VirusShare (vir, 2024a), a repository containing mal-
ware instances from various families. It was created
to offer security researchers and forensic analysts ac-
cess to samples of active malicious code. Specifi-
cally, the study utilized the ”Special Request” section
within the Torrents tab, which includes a Crypto Ran-
somware entry. There, a zip file was available con-
taining approximately 8GB of ransomware samples,
totaling around 38,000 instances. The signatures of
these entities were checked to determine if the dataset
contained any duplicates, and the result was nega-
tive. Some important notes here are the fact that not
all the samples were necessarily portable executable
files, and they were not labeled with the correspond-
ing family.

3.3 Labeling

Before starting the analysis process, the samples were
classified by a script that created a dictionary, with
each sample’s name as a key and its corresponding
family name as the value. The goal was to achieve
an evenly distributed dataset, allowing a maximum of
120 entries per label. However, only an upper limit
was imposed, resulting in a database with many fam-
ilies, some containing just a few instances. AVClass
(ave, 2024), an open-source command line tool, was
utilized to classify the data. It processes a VirusTotal
(vir, 2024b) JSON report and outputs the most likely
family name for the sample. With a free VirusTo-
tal account, only 500 API requests per day are al-
lowed and since submitting a file and retrieving the
JSON report requires two calls, 250 entries can be
classified daily. During the labeling process, a prob-
lem was identified: some samples were not catego-
rized as ransomware families but as various Trojan
or Spyware types. Initially, AVCLass was suspected
to be the source of the problem, especially because
some instances were incorrectly categorized as be-
nign, thus showing false positive results. However,
after manually investigating and relabeling some ran-
dom samples, it was observed that the issue was the
VirusShare dataset, which although claiming to con-
tain only crypto-ransomware, does not. Despite these
challenges, the decision was to proceed with all the
analyzed samples. The final dataset consists of 707
entries, distributed across 99 labels, and the top 5
most populated ones are shown in Figure 1, with a
short description below:

The most common family in the dataset is zbot,
also known as Zeus Trojan. Despite its name, it ac-

Automated Hybrid Ransomware Family Classification

tually combines multiple malware behaviors. Firstly,
it makes the infected local machine part of a botnet,
while also granting attackers access to the machine’s
data. Additionally, it installs a keylogger on the in-
fected system. Some variants include a “web inject”
component that adds malicious JavaScript code to a
bank page, tricking users into leaking sensitive in-
formation (pro, 2024). There is also a variant called
Game Over Zeus which in addition to the bank ac-
count stealing component it installs ransomware, and
it is very possible that the zbot label returned by AV-
Class refers to this specific family.

Xorist is a ransomware family created using En-
coder Builder. This tool allows cybercriminals to cus-
tomize the ransomware by choosing the file encryp-
tion algorithm (XOR or Tiny Encryption Algorithm),
the ransom-demand message, or the file types to be
encrypted and can be considered one of the first steps
of ransomware as a service (RaaS).

Reveton is a form of ransomware that differs from
Xorist in the sense that it uses intimidation tactics to
pressure the victims to pay the ransom (Kara and Ay-
dos, 2022). It usually displays a notice that claims
that the user has committed a crime, and can also hi-
jack their webcams, making the victim believe they
are being recorded by the police.

Onlinegames is a Trojan variant designed to steal
confidential information from players of popular on-
line games. It achieves this by reading the process
memory of certain game executables or by access-
ing variables from the game’s configuration files (fse,
2024).

Wapomi is commonly detected as a Worm or Tro-
jan and infects machines by exploiting a Windows
feature called “autorun”, in which a program is au-
tomatically executed when a USB stick or removable
driver is plugged to a machine (bad, 2024).

120

% 100

e

80

60

Number of sampl

10

20

zbot xorist

reveton onlinegames wapomi

Figure 1: Database family distribution.

3.4 Static Extraction

The objective of the study at this stage was to extract
as much information as possible from a given file.
To achieve this, multiple tools that could cover fea-

411

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

tures from different areas of a file were needed. After
thorough research, a final selection of four tools was
made:

1. Pefile (pef, 2024) is a Python library used for pars-
ing and analyzing portable executable files. This tool
can extract information like PE headers, PE sections,
and imported and exported symbols and can be con-
sidered the base of the four.

2. Flare-Floss (fla, 2024a) is designed to automat-
ically extract and deobfuscate strings from malware
binaries utilizing advanced static analysis techniques.
It is similar to the traditional Linux ”strings” com-
mand but additionally can handle obfuscation, an ap-
proach commonly used by ransomware authors to
hide the true intentions and functionality of their pro-
gram.

3. Exiftool (exi, 2024) is a command-line utility used
to get meta information about a file. Unlike the other
three tools, which specialize in portable executables,
this one accepts files of any type. This command was
used together with ”-n”” option to output numeric val-
ues without formatting, facilitating smoother parsing.
4. Dependencies (dep, 2024) is a modern and faster
rewrite of Dependency Walker, available as open-
source software. This tool focuses on the extraction
of all Dynamic Link Libraries (DLLs) that a program
depends on.

To optimize the static analysis process, a script was
developed to concurrently execute four threads. For
every file in a dictionary, each thread executes one of
the tools specified, parses its output and saves the in-
formation to a global dictionary. Depending on the
tool, the value can indicate various aspects such as
the number of times the key appears in the program,
as in the case of floss output, the presence, with a
value of 1 or an actual integer or float value. Fur-
thermore, the script generates a single CSV file with
exactly one row for each sample, writing the keys of
the dictionary as columns and the values are placed
in the corresponding first row. This approach ensures
that no information is lost for already analyzed sam-
ples in case of an error. Given that Floss and Depen-
dencies tools may require longer computational time
to correctly analyze a file, a timeout mechanism was
implemented. The script will wait a maximum of four
minutes for the Floss process to complete and eight
minutes for Dependencies, meaning that samples that
take longer will be dropped.

3.5 Dynamic Extraction
An approach that is straightforward, always available,

and easy for users to install was desired for the dy-
namic analysis. For these reasons, Cuckoo Sandbox,

412

a popular open-source automated malware analysis
system that executes samples in a controlled environ-
ment, was excluded. Moreover, Cuckoo can be con-
sidered outdated nowadays, as it only supports Python
2 and Ubuntu 18.04. Subsequently, API approaches
were researched because such a solution would meet
the proposed requirements. Among the limited op-
tions, the two best candidates were selected: VirusTo-
tal and Hybrid-Analysis, from which only one should
be chosen. Both alternatives have similar functional-
ities, providing endpoints to submit a file and get its
behavioral report. The API calls can be utilized in a
script to extract the dynamic features of a sample.

VirusTotal is primarily known for aggregating
multiple antivirus engines to scan a given file con-
currently, with each engine determining whether it
is malicious or safe. The documentation states that
the submitted samples are automatically executed in a
sandboxed environment with their behavior recorded.
However, the dynamic report is available instantly af-
ter submitting a sample, which raises suspicions that
the sample may not actually be run in a controller
environment. Additionally, the reports show incon-
sistency in the information provided, with some sam-
ples executing in multiple sandboxes and thus offer-
ing more details while others executing in only one.
No documentation was found regarding how Virus-
Total decides which sandboxes to run the sample in,
or how the dynamic report is available instantly. For
these reasons, Hybrid-Analysis was chosen.

Hybrid-Analysis (hyb, 2024) offers a Falcon
Sandbox public API with various endpoints, though
a free account has restricted access to them. Per-
missions are granted for the essential ones, allowing
the upload of files for analysis and fetching the re-
port summary of a sample. Other endpoints, such as
those retrieving the extracted binaries files or memory
dumps, which would’ve provided additional informa-
tion, could not be used. Another notable limitation is
that the API only permits 100 daily file submissions,
thus slowing down the analysis process.

Instead of submitting one sample at a time and
waiting for the behavior analysis to be completed, a
script was employed to submit 100 samples simulta-
neously, taking advantage of Hybrid-Analysis’s abil-
ity to process submissions in parallel. The scrip
makes API calls to the ’/submit/file’ endpoint with
the following supplementary input parameters: en-
vironment_id was set to 160, specifying the operat-
ing system of the sandbox, in this case meaning Win-
dows 10 64 bit; experimental_anti_evasion was set
to true, this applies experimental techniques to pre-
vent malware evasion tactics that detect sandbox en-
vironment and avoid execution; script_logging was

enabled to capture more details regarding any scripts
run by the sample; network_settings was set to ’sim-
ulated’ to simulate network traffic during the analy-
sis; input_sample_tampering was set to true to al-
low manipulation of samples in a way that disrupts
or reveals evasion attempts. After waiting about an
hour for all the samples to complete successfully, an-
other script was run to retrieve the summary reports,
parse the JSON response, and store the output in a
dictionary, similar to the approach used in static anal-
ysis. The JSON response does not provide popular
dynamic analysis information such as API calls or
registry activities. Instead, it offers details about net-
work activity, file operations conducted by the sam-
ple, MITRE ATT&CK techniques present in the pro-
gram’s behavior, and signatures, which provide more
specific behavioral features observed during analysis.
Finally, a single CSV file per sample is generated,
which only contains the extracted dynamic features.

At this point, all the necessary information about
a sample was available: the malware family it belongs
to, stored in a dictionary and two CSV files, one con-
taining the static features and the other containing dy-
namic features. To generate the final database, a script
that combines two CSV files into a single one was
employed, basically merging the static and dynamic
features for each sample. Then the add_label program
was used to write a label column in all of the previ-
ously generated files, utilizing the information from
the dictionary. Finally, a script to merge all the CSVs
into one database was needed. It works by creating a
set of all the unique column names from the files and
then writing this set to the final database. For each
sample, a row is created in the table and because it
is possible for a column from the set to not appear in
a file, a value of 0 is assigned to that column in the
corresponding sample row.

3.6 Feature Selection

The final database consists of approximately 1.3
million static features and around 6,000 dynamic
features. This discrepancy comes from the num-
ber of tools used and their methodology. For in-
stance, Hybrid-Analysis follows a consistent algo-
rithm, while tools like Floss extract all the strings
from a sample and as a result, even if only one en-
try has a unique string, it will be counted as a new
static feature. The aim of this step was to reduce
computational cost while also maintaining the accu-
racy of the classification model. Given the large num-
ber of attributes in the dataset, WEKA (wek, 2024)
was used to identify the most valuable features and
drop the redundant ones. WEKA is a collection of

Automated Hybrid Ransomware Family Classification

machine learning and data mining algorithms that
can be used through a graphical user interface. As
seen in (Aurangzeb, 2018) the InfoGainAttributeEval
method from WEKA was used for the attribute selec-
tion. This function evaluates the worth of an attribute
by measuring the information gained with respect to
the class. The information gain of an attribute A with
respect to a class C is calculated as:

InfoGain(C,A) = H(C) — H(C|A) (D

where H is the entropy function. In this case, the class
is the label column from the database.

An issue encountered when using WEKA was the
fact that special characters were not supported in the
column name of the database. To address this prob-
lem, a program was developed that deletes all the re-
stricted characters from these names. Additionally, if
duplicate column names are generated as a result, the
program keeps only the first occurrence of each col-
umn in the database. Unfortunately, after this process,
only around 800,000 total features remained. Another
obstacle faced was not having enough heap memory
when loading the dataset in WEKA. After adjusting
some settings and using nearly all of the system’s
RAM, the database eventually loaded successfully.
However, the same error occurred when attempting
to perform InfoGainAttributeEval, and since no more
system resources were available, the decision to split
the database in two batches was made. The optimal
approach would have involved applying the informa-
tion gain method on the entire dataset. This would
have led to a more accurate identification of the most
informative features, ensuring maximum discrimina-
tory power.

For splitting the data in the two batches the fi-
nal CSV files used to create the initial database were
utilized. Each ransomware family’s samples were
evenly split between the batches, except for the ones
having just one sample, where the assignment was
randomly determined. Then the merge_csv script
was used to create the two databases on which the
WEKA'’s InfoGainAttributeEval method was applied.
The algorithm yielded 523 features with a score above
zero from the first batch and 632 from the second
batch. Only these features were considered because
having a score greater than zero means they provide
useful information to some degree. Before combin-
ing the features, both groups of scores were normal-
ized to fit within the [0,1] range, ensuring easier com-
parability. The two dictionaries containing top fea-
tures and score pairs can have common keys, so when
combining them into the final output, the higher score
for each common feature was considered. The fi-
nal dictionary contains 783 features and the best 20

413

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

ranked ones are shown in Figure 2. In total 233 fea-
tures were produced by dynamic analysis, while static
analysis yielded 550 features. An interesting observa-
tion is that none of the 783 selected features originate
from the Dependencies tool, being the only compo-
nent used that did not contribute with any useful in-
formation.

Features

Figure 2: Best ranked features by information gain method.

3.7 AI Model

The final dataset used to train the model contains only
the best features found in the previous step. By select-
ing only the most useful attributes, the database was
reduced from 1 GB to 1 MB, thus decreasing the com-
putational cost while at the same time improving the
accuracy of the classification model. The scope of this
paper was not to find the best-supervised learning al-
gorithm for classifying ransomware/malware because
several studies cover this aspect (Aurangzeb, 2018)
(Yoo et al., 2021) (Poudyal et al., 2018) (Singh and
Singh, 2022). These papers also show that the best
overall performing algorithm in this context is Ran-
dom Forest, so this was the selected choice. Ran-
dom Forest is a classifier that uses multiple decision
trees, each one having a random subset of data and
features. This randomness brings variability to the in-
dividual trees, reducing the risk of overfitting and im-
proving overall prediction performance. In the final
prediction, the algorithm uses a voting mechanism to
aggregate the results of all the trees. The Random-
ForestClassifier from the ’sklearn.ensemble’ python
library was used to create the model. Default parame-
ters were utilized, besides n_estimators, which repre-
sents the number of decision trees in the forest. After
conducting manual testing, it was observed that the
best accuracy was returned when setting the number
of decision trees to 86. Finally, 80% of the data was
allocated for training the model and the rest for test-
ing.

414

3.8 RansoGuard

Following the work described so far, RansoGuard,
a Windows desktop application, was created. The
app implementation and the scripts discussed can be
found at (ran, 2024). For an easy integration of the
Random Forest model in the application, PyQt5 was
used for its development. While other frameworks
can integrate Python machine learning models, doing
so typically involves more complexity and might re-
quire additional wrappers. The software offers a user-
friendly graphical user interface (GUI) through which
users can upload one file at a time. The file must be a
portable executable since the tools used to extract its
features have this requirement. Following the upload,
three static tools and one dynamic tool ran in parallel
and extracted the 783 selected features identified as
the most valuable. If one fails to execute successfully
on the uploaded file, any already running processes
are allowed to finish operating. However, the applica-
tion will not proceed to the next step and instead will
notify the user of the error and its originating source.

Initially, static analysis employed four tools, but
”Dependencies” was excluded since it doesn’t con-
tribute with any useful information. The static tools
used are: Floss for extracting the strings from a
file, Exiftool for obtaining metadata, and the pe-
file Python library for retrieving PE-specific infor-
mation. Dynamic analysis is performed using the
Hybrid-Analysis API. The application initiates a re-
quest to submit the file for examination in a sand-
box environment and then waits for completion be-
fore making a final API call to retrieve a summary re-
port. From this report details about network activity,
MITRE ATT&CK techniques present in the program,
and signatures that indicate specific behavioral char-
acteristics are extracted. With a Hybrid-Analysis free
account, users are limited to a maximum of 100 sand-
box submissions per day, meaning they can utilize the
application for up to 100 files daily. Once both the
static and dynamic analysis are completed, the Ran-
dom Forest machine learning model predicts in what
ransomware family the file belongs to based on the
extracted features.

Finally, a report window appears on the user’s
screen, allowing them to upload a file again, while
at the same time having the option to review a gener-
ated report containing the model’s prediction and the
783 features with the extracted values. The applica-
tion offers a history tab, where users can see a list of
their previously analyzed file names and the family
prediction. Clicking on an item in the list opens the
report window for that file, allowing users to revise
the information. Additionally, they can visit the help

tab for an explanation of the application’s functional-
ity.

4 RESULTS

The aim of this chapter is to evaluate the Random
Forest model. The dataset used for both testing and
training contains 707 samples from 99 different mal-
ware families and for each instance, 783 features were
extracted signifying the most useful attributes as ex-
plained in 3. The goal was to achieve an evenly dis-
tributed dataset with a maximum of 120 entries per
family. However, only an upper limit was imposed,
resulting in a database with many families relative to
the number of samples, some containing just a few
instances. This will potentially affect the model by
lowering its accuracy, especially for underpopulated
families, and by making it prone to bias towards the
majority classes.

To evaluate the performance of the Random Forest
model on the obtained database, the following metrics
were used:

Correct predictions
A = 2
ceuracy All predictions @

TP
Precision = —— 3)
TP +FP
TP
Recall = ——— 4
T TPrEN @
Fl score — 2% Prc.ac.ision * Recall 5)
Precision 4 Recall

The model accuracy is 71.83% and the other met-
rics presented were calculated using a weighted ap-
proach. In this way, each class’ contribution to the
overall metric is proportional to the number of true
instances of that label in the dataset. This was pre-
ferred over a normal average because the database is
imbalanced. The model demonstrates an overall pre-
cision of 0.79, recall of 0.72, and f1 score of 0.66.
Table 1 shows the metrics for the five most popu-
lated families in the database. In this context, sup-
port represents the number of instances of each class
present in the testing data. It can be observed that
for these five families, recall is higher than precision,
whereas overall the opposite is true. This is proba-
bly due to the high difference between the samples in
certain classes. The reduced precision says that the al-
gorithm often predicts these five families for instance
belongings to something else, showing that the model
is biased towards the majority classes.

Additionally, the data presented in Table 2 illus-
trates the metrics for five randomly selected classes,

Automated Hybrid Ransomware Family Classification

Table 1: Metrics for top 5 most populated malware families.

Class Precision | Recall | F1-Score | Support
zbot 0.69 0.83 0.75 29
xorist 0.84 0.94 0.89 17
reveton 0.64 0.93 0.76 15
onlinegames 0.57 0.80 0.67 5
wapomi 0.50 1.00 0.67 2

since the database contains 99 families it is not fea-
sible to include all of them. It was noticed that the
same trend persists, classes having recall higher than
precision. Furthermore, it was observed that multiple
minority labels like msil have a maximum precision
and minimal recall. This indicates that these classes
were never predicted by the model and would explain
the trend present in the more populated families.

Table 2: Metrics for 5 randomly selected ransomware fam-
ilies.

Class Precision | Recall | F1-Score | Support
dalexis 0.80 1.00 0.89 4
poison 0.57 0.67 0.62 6
urausy 0.80 1.00 0.89 4

winwebsec 0.50 0.33 0.40 3
msil 1.00 0.00 0.00 2

The confusion matrix is presented as the final eval-
uation method for the model. This matrix was cre-
ated including only the ten families for which the met-
rics were provided earlier. This evaluation technique
shows how many instances were correctly classified
and, for those that were misclassified, reveals the fam-
ily they were predicted as. For example, in Figure 3
it can be seen that four zbot instances were wrongly
identified as xorist and that the two msil samples were
incorrectly predicted as poison. The main diagonal
of the confusion matrix represents the number of cor-
rectly classified instanced for that family.

Confusion Matrix

zbot

xorist 4

reveton -

onlinegames -
wapomi
dalexis{ 0 0 0 0 0 4 0 0 0 0

Actual label

poison -
urausy 1
winwebsec{ © 0 0 0 0 0 0 1 1 0

msi{0 0 0 0 0 0 2 0 0 0

o QO N N
0& \\?}o @((@Qo& O @3) 275
T & E L @
& {;\(‘
&

Predicted label

Figure 3: Database family distribution.

415

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

S CONCLUSION & FUTURE
WORK

This article focuses on analyzing Windows portable
executable files to identify key features that help clas-
sify samples into ransomware families. We have ex-
tracted extensive data using four static analysis tools
and the Hybrid-Analysis API for behavioral analysis
in a sandbox environment. We have examined 707
samples with a hybrid approach and used Weka to
manage the high-dimensionality of the feature vector,
and selecting 783 useful attributes to train a Random
Forest classification model. The resulting application,
RansoGuard, extracts these features from files and
predicts ransomware families, generating a report on
the predictions and feature values. The model demon-
strated promising results, achieving an accuracy of
71.83%, precision of 0.79, and recall of 0.72.

The research faced several limitations. It was hard
to find a good database of ransomware samples due
to a lack of options, and the chosen dataset, initially
claimed to contain only crypto-ransomware, turned
out to be mislabeled. Although AVClass was used for
labeling, its accuracy was questionable. Additionally,
the APIs (VirusTotal and Hybrid-Analysis) imposed
submission rate limits that slowed down the analysis.
Besides these, we also had to split the data into two
batches because Weka required substantial RAM due
to the large number of attributes.

For future work, we plan to include benign pro-
grams in the dataset, thus making the model able
to distinguish between malicious and non-malicious
software. There is also the intention to validate
the framework on a larger, more evenly distributed
database. In addition, we can also use ransomware
samples from different operating systems such as
Linux, macOS, and Android.

REFERENCES

(2024). AVClass. https://github.com/malicialab/avclass.
[Online; accessed 05-April-2024].

(2024). Dependencies. https://github.com/lucasg/
Dependencies. [Online; accessed 05-April-2024].

(2024). ExifTool. https://exiftool.org/. [Online; accessed
05-April-2024].

(2024a). Flare-Floss. https://github.com/mandiant/flare-
floss. [Online; accessed 05-April-2024].

(2024b). Flare VM. https://github.com/mandiant/flare-vm.
[Online; accessed 03-April-2024].

(2024). Hybrid-Analysis. https://hybrid-analysis.com/docs/
api/v2. [Online; accessed 24-April-2024].

(2024a). Market share held by the leading computer op-
erating systems. https://www.statista.com/statistics/

416

268237/global-market-share-held-by-operating-
systems-since-2009/. [Online; accessed 05-April-
2024].

(2024). Pefile. https://github.com/erocarrera/pefile. [On-
line; accessed 05-April-2024].

(2024). RansoGuard. https://github.com/raul-dunca/
ransoguard. [Online; accessed 05-April-2024].

(2024b). Total annual amount of money received
by ransomware actors worldwide from 2017 to
2022. https://www.statista.com/statistics/1410498/
ransomware-revenue-annual/. [Online; accessed 02-
April-2024].

(2024). Trojan-PSW:W32/OnlineGames. https:
/Iwww.f-secure.com/v-descs/trojan-psw-w32-
onlinegames.shtml. [Online; accessed 04-June-2024].

(2024a). VirusShare. https://virusshare.com/. [Online; ac-
cessed 29-March-2024].

(2024b). VirusTotal. https://www.virustotal.com/. [Online;
accessed 05-April-2024].

(2024). Wapomi. https://docs.badrap.io/types/malware-
wapomi.html#malware-wapomi. [Online; accessed
04-June-2024].

(2024). Weka. https://waikato.github.io/weka-site/index.
html. [Online; accessed 15-April-2024].

(2024). What Is Zeus Trojan (Zbot)? https://www.
proofpoint.com/us/threat-reference/zeus-trojan-zbot.
[Online; accessed 03-June-2024].

Abbasi, M. S. (2023). Automating Behavior-based Ran-
somware Analysis, Detection, and Classification Us-
ing Machine Learning.

Aslan, O. A. and Samet, R. (2020). A comprehensive re-
view on malware detection approaches. IEEE access,
8:6249-6271.

Aurangzeb, S. (2018). A machine learning based hybrid
approach to classify and detect windows ransomware.
MS (CS) dissertation, Capital Univ. Sci. Technol., Is-
lamabad, Pakistan.

Kara, I. and Aydos, M. (2022). The rise of ransomware:
Forensic analysis for windows based ransomware at-
tacks. Expert Systems with Applications, 190:116198.

Poudyal, S., Subedi, K. P.,, and Dasgupta, D. (2018). A
framework for analyzing ransomware using machine
learning. In 2018 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 1692—-1699.

Rizvi, S. K. J., Aslam, W., Shahzad, M., Saleem, S., and
Fraz, M. M. (2022). Proud-mal: static analysis-based
progressive framework for deep unsupervised mal-
ware classification of windows portable executable.
Complex & Intelligent Systems, pages 1-13.

Singh, J. and Singh, J. (2022). Assessment of supervised
machine learning algorithms using dynamic api calls
for malware detection. International Journal of Com-
puters and Applications, 44(3):270-277.

Yoo, S., Kim, S., Kim, S., and Kang, B. B. (2021). Ai-
hydra: Advanced hybrid approach using random for-
est and deep learning for malware classification. In-
formation Sciences, 546:420-435.

