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Abstract: In this work, we study the critical issue of knowledge mismatch in ontology-guided machine learning
(OGML), specifically between domain ontologies and application ontologies. Such mismatches may arise
when OGML uses ontological knowledge that was originally created for different purposes. Even if onto-
logical knowledge improves the overall OGML performance, mismatches can lead to reduced performance
on specific data subsets compared to machine-learning models without ontological knowledge. We propose
a framework to quantify this mismatch and identify the specific parts of the ontology that contribute to it.
To demonstrate the framework’s effectiveness, we apply it to two common OGML application areas: im-
age classification and patient health prediction. Our findings reveal that domain-application mismatches are
widespread across various OGML approaches, machine-learning model architectures, datasets, and prediction
tasks, and can impact up to 40% of unique domain concepts in the datasets. We also explore the potential root
causes of these mismatches and discuss strategies to address them.

1 INTRODUCTION

Motivation. Ontologies formally represent domain
knowledge in a structured way. They use a set of con-
cepts and their relationships that is understandable by
both humans and machines (Min et al., 2017; Lour-
dusamy and John, 2018; Wilson et al., 2022). They
are increasingly important for intelligent, ontology-
informed applications in fields such as knowledge
management, data integration, decision support, rea-
soning, and machine learning (McDaniel and Storey,
2020; Min et al., 2017).

One application area that is gaining interest in
the machine-learning community is ontology-guided
machine learning (OGML). OGML is a subfield of
knowledge-guided machine learning (KGML) (von
Rueden et al., 2023; Willard et al., 2023) that sys-
tematically incorporates ontological domain knowl-
edge into machine-learning models. OGML aims
to improve prediction performance, especially for
rarely represented data objects, reduce training data
requirements, and generate more interpretable results.
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OGML methods have shown significant success in
fields like computer vision (image classification, seg-
mentation, and retrieval) and medical data processing
(including text classification and patient health pre-
diction (Choi et al., 2017; Ma et al., 2018; Yin et al.,
2019)), where rich ontological background knowl-
edge is abundant (Min and Wojtusiak, 2012).

OGML methods generally outperform ontology-
uninformed machine-learning methods on average
(Dhall et al., 2020; Karthik et al., 2021; Silla and
Freitas, 2011). However, the underlying ontologi-
cal domain knowledge may not always have the op-
timal structure for a particular machine-learning task,
which may negatively impact particular subsets of the
data. In other words, OGML methods can suffer from
a mismatch between domain and application-specific
knowledge, which typically arises because ontolog-
ical domain knowledge is created for different pur-
poses than the specific OGML task. Existing liter-
ature on OGML methods often ignores this type of
low-quality domain knowledge and assumes that on-
tologies only positively impact predictions. It is cru-
cial to understand how such mismatches manifest,
how big their impact is, and how to address them.
The first step in tackling this challenge is to develop a
method for identifying and quantifying this mismatch
in OGML approaches.
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Approach. In this work, we study the important is-
sue of knowledge mismatch between domain-specific
and application-specific ontologies in OGML, which
has been mostly overlooked in the literature. As a
result, both the existing theory-based and empirical
methods to evaluate ontology quality (Hlomani and
Stacey, 2014; Wilson et al., 2022) are inadequate
for detecting this mismatch. To address this gap,
we propose a new OGML-aware evaluation frame-
work based on the task-based framework (Porzel
and Malaka, 2004). Because the original frame-
work was not designed for OGML, we adapt it to
account for OGML-specific aspects, such as sepa-
ration of the ontology and data, different task and
ground truth definitions, and the stochastic nature of
machine-learning algorithms. We argue that domain-
application knowledge mismatch manifests as harm-
ful domain knowledge, negatively impacting the pre-
diction performance of OGML methods. Our frame-
work identifies such harmful parts of the ontology
for a specific task by comparing the performance
of the OGML method with an ontology-uninformed
method.

To demonstrate the effectiveness of our frame-
work, we apply it to two common OGML applica-
tion areas: image classification and patient health pre-
diction. For image classification, we quantify the
mismatch across three biological image datasets, us-
ing the Hierarchical Semantic Embedding OGML ap-
proach by (Chen et al., 2018). For patient health pre-
diction, we quantify the mismatch across three pre-
diction tasks within one medical dataset, using the
GRAM (Choi et al., 2017) OGML approach. Our
findings reveal that such mismatches are widespread
across various OGML approaches, machine-learning
model architectures, datasets, and prediction tasks.
We also explore the potential root causes of these mis-
matches based on the harmful parts of the ontology
identified by our framework. Furthermore, we discuss
strategies to address these issues, demonstrating that
our methodology shows promise as a generalizable
approach for ontology quality assessment, enabling
the identification of various ontological issues.

Contributions. To summarize, our contributions
are as follows:

1. We study the important but relatively over-
looked problem of domain-application knowledge
mismatch in ontology-guided machine learning
(OGML).

2. We introduce a quality evaluation framework to
quantify this mismatch and identify ontology
parts that negatively impact the task performance.

3. We apply our framework in two common OGML
application areas to demonstrate how to detect, in-
terpret, and address such mismatches.

4. We provide the code and experimental results1.

Paper Outline. Section 2 discusses background
and related work. Section 3 introduces our approach.
Section 4 reports on experiments from two OGML
case studies. Section 5 concludes.

2 RELATED WORK

In this section, we review related work regarding
approaches for ontology quality evaluation in Sec-
tion 2.1, OGML in general in Section 2.2, and the
issue of low-quality domain knowledge in the context
of machine learning in Section 2.3.

2.1 Ontology Quality Evaluation

Creating and maintaining ontologies is a highly sub-
jective, labor-intensive process. This process is prone
to errors, as there is no standard method for creat-
ing ontologies (Capellades, 1999; Brewster, 2002;
Duque-Ramos et al., 2011). Additionally, ontolo-
gies are only approximations of domain knowledge,
and multiple valid ontologies can exist to represent
the same knowledge (Hlomani and Stacey, 2014; Mc-
Daniel and Storey, 2020). Thus, evaluating the qual-
ity of ontologies is essential for the broader adoption
of ontology-informed applications (Mc Gurk et al.,
2017). This process ensures that developed ontologies
are useful for specific tasks or domains and helps se-
lect the most suitable ontology for the given applica-
tion (Duque-Ramos et al., 2011). Evaluation methods
can significantly reduce the human effort needed to
create and maintain ontologies. In particular, they can
guide the construction process and enable the reuse
of existing ontologies instead of building them from
scratch (Capellades, 1999; Beydoun et al., 2011; Mc-
Daniel and Storey, 2020). Despite many proposed
approaches to ontology quality evaluation, no univer-
sal solution exists as they address different quality as-
pects. (McDaniel and Storey, 2020).

Existing methods can be grouped into two broad
categories: deductive (metrics-based) and inductive
(empirical) (Burton-Jones et al., 2005; Hlomani and
Stacey, 2014).

Deductive evaluation methods to evaluate ontol-
ogy quality are theory-based metrics that quantify
whether an ontology is correct according to structural

1https://doi.org/10.35097/zv8zqgqd6ezm02vk
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properties and description-logic axioms (Hlomani and
Stacey, 2014; Wilson et al., 2022). Often inspired
by software-engineering research on software quality,
these methods use heuristic quality criteria to identify
syntactic, semantic, and structural problems that are
independent of the application (McDaniel and Storey,
2020). However, because these deductive methods
rely on various subjective interpretations of ontology
quality, none of them has become standard (Brewster
et al., 2004). Additionally, verifying whether an on-
tology meets specific formal criteria does not guar-
antee optimal performance for a particular purpose
(Gómez-Pérez, 1999; McDaniel and Storey, 2020).

Inductive evaluation methods assess ontology
quality by empirically testing its fitness (i.e., useful-
ness for a specific application) rather than its syn-
tax, semantics, or structure (Burton-Jones et al., 2005;
Wilson et al., 2022). Fitness can be quantified in
terms of application fitness, which evaluates perfor-
mance on a specific task, or domain fitness, which
assesses performance across multiple tasks within a
domain. Ontology fitness is typically quantified for
the entire ontology (Porzel and Malaka, 2004; Clarke
et al., 2013), but it can also be quantified for spe-
cific parts of the ontology, which can help identify
improvement potentials. This process requires link-
ing specific parts of the ontology to application per-
formance, which is not trivial and thus often skipped
in practice (Pittet and Barthélémy, 2015).

(Porzel and Malaka, 2004), (Brank et al., 2005),
(Burton-Jones et al., 2005) and (Ohta et al., 2011) ar-
gue that inductive evaluation, particularly task-based
evaluation, offers an objective measure of ontology
quality by directly evaluating the ontology’s ability to
solve practical problems. Despite this, research in this
area is limited. Apart from the original paper intro-
ducing task-based ontology quality evaluation (Porzel
and Malaka, 2004) and a few adaptations (Clarke
et al., 2013; Pittet and Barthélémy, 2015), there is lit-
tle research on assessing ontology quality based on
its utility for specific applications. Both (Ohta et al.,
2011) and (Wilson et al., 2022) have highlighted the
need for more research in this area. Specifically, eval-
uating ontology quality for OGML, which we address
in this work, has not been previously explored.

Recent research in confident learning and data-
centric AI (Wang et al., 2018; Northcutt et al., 2021;
Rigoni et al., 2023) shows that analyzing predic-
tions from traditional machine-learning methods can
uncover and address ontological issues in image la-
bel hierarchies, enhancing data quality and prediction
performance. Our work follows a similar direction
but focuses specifically on ontology-guided machine
learning.

2.2 Ontology-Guided Machine
Learning

Ontology-guided machine learning (OGML) is a sub-
field of knowledge-guided machine learning (KGML)
that leverages structured ontological domain knowl-
edge to enhance machine-learning models. This
is usually accomplished with custom loss functions
(Zeng et al., 2017; Ju et al., 2024), ontology-aware
embeddings (Vendrov et al., 2016; Nickel and Kiela,
2017; Chen et al., 2018; Dhall et al., 2020; Bertinetto
et al., 2020), or adapted model architectures (Brust
and Denzler, 2019a). OGML methods have demon-
strated significant success in domains rich in ontolog-
ical background knowledge, such as medical data pro-
cessing or computer vision.

In healthcare, abundant medical domain knowl-
edge has accumulated through years of medical re-
search, hospital administration, billing, and documen-
tation of medical procedures. This knowledge is often
organized into ontologies that group medical codes
into semantically meaningful categories using parent-
child relationships, e.g., the ICD-9 hierarchy of symp-
toms and diseases (see Section 4.2). OGML ap-
proaches leverage these ontologies for various auto-
mated medical data processing tasks, such as patient
health prediction (Choi et al., 2017; Yin et al., 2019;
Ma et al., 2019) or medical text classification (Arbabi
et al., 2019). These methods have been shown to im-
prove prediction performance, especially for rare dis-
eases that are often insufficiently represented in data.

In computer vision, domain knowledge is often
structured as taxonomies of labels, reflecting the hi-
erarchical nature of many real-world datasets, such
as those in biology (Silla and Freitas, 2011; Rezende
et al., 2022). Even non-hierarchical datasets can be
enriched with knowledge from literature or general
domain-independent ontologies (Chen et al., 2018;
Brust and Denzler, 2019a). OGML approaches in
computer vision have been applied to tasks such as
image classification (Deng et al., 2014; Goo et al.,
2016; Marino et al., 2017; Chen et al., 2018; Brust
and Denzler, 2019a; Bertinetto et al., 2020; Ju et al.,
2024), image retrieval (Vendrov et al., 2016; Barz and
Denzler, 2019).

OGML approaches typically use readily available
generic or domain ontologies (Burton-Jones et al.,
2005) rather than task-specific application ontologies.
While research often reports that ontological domain
knowledge improves average prediction performance
compared to models without it (Dhall et al., 2020;
Karthik et al., 2021; Silla and Freitas, 2011), there is
limited recognition that not all data subsets may ben-
efit equally in the context of a specific task.
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2.3 Low-Quality Domain Knowledge

In the broader context of knowledge-guided machine
learning (KGML), both (Mitchell, 1997) and (Yu,
2007) recognize that domain knowledge can be im-
perfect due to difficulties in its collection, definition,
and representation. (Yu, 2007) also notes that do-
main knowledge is highly context-dependent, mean-
ing its usefulness can vary across different tasks.
The authors emphasize the importance of considering
the negative impact of imperfect domain knowledge
when applying KGML. (Mitchell, 1997) argues that
even imperfect knowledge can be beneficial as long as
the machine-learning algorithm tolerates some level
of error. While some recent KGML publications ex-
plicitly design or evaluate their approaches with this
in mind and quantify the impact of imperfect domain
knowledge (Bielski et al., 2024; Brust et al., 2021;
Deng et al., 2014), most existing KGML publications
do not explicitly address this issue.

In the specific context of OGML, no studies sim-
ilar to ours on the problem of domain-application
knowledge mismatch have been conducted. However,
several related observations have been made regard-
ing the low quality of domain knowledge. For exam-
ple, (Brust and Denzler, 2019b) investigated the dis-
crepancy between visual and semantic similarity in
OGML for image classification. They observed that
the overall prediction performance may decrease in
some situations compared to knowledge-uninformed
baselines. (Choi et al., 2017) showed that fully
randomized ontological domain knowledge can de-
crease the overall prediction performance in health-
care OGML applications. The above studies consid-
ered the overall negative effect on average prediction
performance and did not analyze the prediction per-
formance on subsets of the data. They also did not
consider identifying specific parts of ontological do-
main knowledge that might have caused the decrease
in the prediction performance. (Deng et al., 2014)
and (Brust et al., 2021) investigated the related prob-
lem of maximizing the utility of imprecise ontologies
in OGML but did not focus on identifying potential
quality issues within the ontologies themselves.

The most similar work to ours is (Marino et al.,
2017), where the authors analyzed the prediction per-
formance of their OGML approach for image clas-
sification across different data subsets. They found
that their OGML approach performed worse than
the baselines on certain subsets of the data, attribut-
ing this to missing relationships in the ontology.
While their study provided valuable insights, our
work builds upon this by offering a more comprehen-
sive framework that not only broadens the perspective

on the underlying issues but also systematically quan-
tifies and addresses them.

3 APPROACH

Section 3.1 outlines our adaptation of the orig-
inal task-based evaluation framework to OGML.
Next, Section 3.2 introduces the concept of domain-
application mismatch and explains how to quantify it.

3.1 Adapting Task-Based Ontology
Quality Evaluation to OGML

The original task-based evaluation framework for on-
tologies, proposed by (Porzel and Malaka, 2004), as-
sessed quality within ontology-informed applications
by comparing task results against human-generated
gold standards. While effective in its context, this
framework requires significant adaptation to OGML.

Separation of Ontology and Data. In the origi-
nal framework, the task is performed directly on the
ontology since data and ontology are the same. In
contrast, OGML distinguishes between ontology and
data. The ontology is used to improve the prediction
performance of a machine-learning task on the data.

Task Definition and Ground Truth Data. In the
original framework, tasks were specifically designed
to identify ontology issues, with the ground truth de-
fined by humans, leading to potential subjectivity er-
rors. In OGML, however, the machine-learning pro-
cess defines the task, and the ground truth is de-
rived directly from the data. This ensures that the
evaluation is more objective and less prone to errors.
However, it also necessitates linking the performance
of the OGML task to specific parts of the ontology,
which can be achieved by using refinement metrics,
as described in Section 3.2.

Stochastic Nature of ML Algorithms. OGML in-
troduces stochastic elements inherent in machine
learning, including retraining machine-learning mod-
els multiple times with different seed values, varying
train-test splits, or varying model sizes. These factors
must be considered to ensure the objectivity of results.

3.2 Quantifying Domain-Application
Knowledge Mismatch in OGML

In OGML, a domain ontology represents a broad field
of knowledge, and an application ontology is tai-
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Figure 1: Proposed framework to quantify the domain-application mismatch.

lored to a specific task. A mismatch between domain
knowledge and application knowledge occurs when
the provided ontological knowledge for a domain is
not optimally structured for the specific machine-
learning task at hand. This mismatch can exist even
if the domain knowledge is free of mistakes and thus
has high quality from the domain perspective.

Because most OGML approaches leverage do-
main ontologies instead of application ontologies, it
is often impossible to quantify the mismatch between
domain and application knowledge directly by com-
paring OGML models with both types of ontolo-
gies. We argue that such a mismatch manifests itself
through the existence of harmful parts of the ontolog-
ical domain knowledge, which may exist independent
from the fitness of the entire ontology. That is why
we propose to approximate domain-application mis-
match by measuring harmful domain knowledge.

Definition 1. A particular part of domain knowl-
edge is harmful (helpful) for a particular super-
vised machine-learning task if it negatively (posi-
tively) affects the prediction performance compared
to a knowledge-uninformed baseline. The machine-
learning task comprises the datasets for training and
testing, prediction target, prediction model, and eval-
uation metric.

Measuring harmful and helpful domain knowl-
edge requires measuring the fitness of specific ontol-
ogy parts, which can be achieved with our proposed
framework (Figure 1). An ontology part is the sub-
set of nodes and edges of the ontology that is se-
mantically connected with a specific domain concept
(e.g., unique class label) from the dataset. A refine-
ment metric, which is a task-specific heuristic, links
these ontology parts to application performance. We

demonstrate examples of such refinement metrics in
Section 4. In general, a refinement metric assigns a
score to each part of the domain knowledge: 0 in-
dicates no impact on the prediction performance, a
score greater than 0 indicates a positive impact, and
a score less than 0 indicates a negative impact. The
distribution of the refinement scores can be plotted,
as shown in Figure 1. The parts of domain knowledge
with scores below zero are harmful.

As the representation of domain knowledge may
be of considerable size, e.g., for an ontology with
many nodes and edges, only some parts may be harm-
ful or helpful. Furthermore, the above definition is
closely tied to one particular machine-learning task.
In particular, some knowledge may be harmful for
one task but not another. We propose to leverage our
framework to quantify mismatch as follows:

Definition 2. The knowledge mismatch is the ratio
between the number of harmful domain-knowledge
parts (Definition 1) and the total number of domain-
knowledge parts.

For example, if the OGML approach outperforms
the ontology-uninformed baseline, but 25% of rele-
vant domain concepts perform worse than the base-
line, we consider there to be a 25% mismatch. Note
that different domain concepts may occur with differ-
ent frequencies in the data. For example, if 25% of the
domain concepts are harmful, 10% of the data for the
machine-learning task may be affected if the affected
concepts are relatively infrequent or 50% of the data
if they are relatively frequent.
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Table 1: Comparison of the three datasets for image classification (negative refinement scores in red).

Dataset Butterflies Birds VegFru

Acc. Baseline [%] 84.78 85.23 86.31
Acc. OGML [%] 85.82 88.09 88.77
Improvement [pp] 1.04 2.86 2.46
Mismatch [%] 25.50 16.50 40.21
– Data affected [%] 22.00 17.00 40.67

Frequency

20 0 20
Refinement Score

0
25
50
75

100

20 0 20
Refinement Score

0
25
50
75

100

20 0 20
Refinement Score

0
25
50
75

100

4 CASE STUDIES

In this section, we demonstrate how to quantify a
domain-application mismatch in two common OGML
application areas: image classification (Section 4.1)
and patient health prediction (Section 4.2). For each
area, we explain how to apply our proposed frame-
work to quantify the mismatch and present the results.
Additionally, for patient health prediction, we use our
framework to identify and qualitatively describe on-
tological issues arising from mismatches.

4.1 Use Case 1: Ontology-Guided
Image Classification

Scenario. In the first use case, we demonstrate how
to quantify domain-application mismatch in computer
vision. We apply our framework to the OGML ap-
proach for image classification proposed by (Chen
et al., 2018). This approach incorporates structured
information about parent-child relationships between
image categories and subcategories (i.e., a label tax-
onomy) into a deep learning model. The OGML
model employs a Hierarchical Semantic Embedding
framework to maintain consistency in classification
across different taxonomy levels.

Experimental Setup. We employ the same setup as
the original paper by (Chen et al., 2018). Specifi-
cally, we use the three pre-trained machine-learning
models made publicly available by the authors and
apply them to the corresponding hierarchical image
datasets: Butterflies, Birds, and VegFru (Vegetables
and Fruits). These datasets contain 200 unique classes
for Butterflies and Birds, and 292 classes for VegFru,
each organized into a taxonomy with four levels for
Butterflies and Birds, and two levels for VegFru.

Refinement Metric. To quantify the domain-
application mismatch of ontological domain knowl-
edge, we define the refinement metric as the per-class
performance improvements, while the original paper
assesses overall performance improvements. Our ap-
proach allows for a more detailed analysis of how the
ontology impacts the model’s performance, offering
insights into which specific classes benefit from the
ontological knowledge and which do not. We quan-
tify prediction performance with top-1 accuracy, as
in the original paper, on the test set. We calculate
the mismatch as the percentage of classes that show
a decrease in prediction performance compared to the
baseline. Additionally, since classes may vary in the
number of examples, we also report the proportion of
the test data affected by these classes.

Results. As Table 1 shows, the OGML method
demonstrates overall improvements compared to the
knowledge-uninformed baseline across all three hi-
erarchical datasets. However, a substantial number
of classes does not benefit from the ontological do-
main knowledge (highlighted in red on the distribu-
tion plots of refinement scores). Since the classes are
relatively balanced in all datasets, we observe a simi-
lar percentage of data affected by the mismatch.

4.2 Use Case 2: Ontology-Guided
Sequential Health Prediction

Scenario. In the second use case, we demonstrate
how to quantify domain-application mismatch in
medical data processing. We apply our proposed
framework to an OGML approach for sequential pa-
tient health prediction, proposed by (Choi et al.,
2017). This approach incorporates structured infor-
mation about the hierarchical relationships of varying
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Table 2: Comparison of model sizes for two variants of risk prediction (negative refinement scores in red).

Heart Disease Prediction Diabetes Prediction

Architecture Small Large Small Large

Acc. Baseline [%] 71.36 79.66 70.32 85.72
Acc. OGML [%] 78.98 81.32 89.03 90.33
Improvement [pp] 7.62 1.66 18.71 4.61
Mismatch [%] 15.07 20.07 4.73 11.47
– Data affected [%] 40.79 78.76 11.46 48.90

Frequency

50 25 0 25 50
Refinement Score

0
250
500
750

1000

50 25 0 25 50
Refinement Score

0
250
500
750

1000

50 25 0 25 50
Refinement Score

0
250
500
750

1000

50 25 0 25 50
Refinement Score

0
250
500
750

1000

depth between medical codes of symptoms and dis-
eases defined by the ICD-9 classification system2. It
processes sequences of medical codes with a graph-
based attention mechanism (GRAM) to generate se-
mantic embeddings, considering not only individual
medical codes but also their hierarchical ancestors.

Experimental Setup. We employ a similar setup
as the original paper by (Choi et al., 2017), utilizing
the publicly available MIMIC-III healthcare dataset
(Johnson et al., 2016). Different from the computer
vision use case, we train the OGML model ourselves,
varying the experiments across three prediction tasks:
two risk prediction tasks – for heart diseases and di-
abetes – and one next-visit prediction task. In the
dataset, each patient visit is represented by medical
codes corresponding to the diagnoses and symptoms
identified during that visit. For risk prediction, the
goal is to predict whether the patient’s next visit will
include a diagnosis of heart disease or diabetes, based
on their previous visits. For next-visit prediction, the
goal is to predict all the diagnoses and symptoms
recorded during the patient’s next visit, based on their
previous visits.

To address the stochastic nature of machine-
learning methods, we conduct five experiments for
each combination of task and model size. In each
experiment, we used random train-test splits – 80-20
for risk prediction and 90-10 for next-visit prediction.
We then report the average performance on the test
sets. Each model comprises an embedding layer, an
RNN layer, and a final dense layer. The dense layer
uses a sigmoid activation function for risk prediction
and a softmax activation function for next-visit pre-
diction. The larger model has an attention dimension

2http://www.icd9data.com/2015/Volume1/default.htm

of 100, an RNN dimension of 200, and an embedding
dimension of 300, and it is trained with a batch size of
128 for 100 epochs with early stopping. The smaller
model has an attention dimension of 16, an RNN di-
mension of 32, and an embedding dimension of 16,
and it is trained with a batch size of 32 for 50 epochs
with early stopping. For further details on the exper-
imental setup, please refer to the experimental code
provided along with this paper.

Refinement Metric. To quantify domain-
application mismatch in both tasks, we define
the refinement metric as the per-code performance
improvements based on all input-output pairs where
the input sequences (patient visits) include that
particular medical code. For risk prediction, the
improvement is measured using binary accuracy. For
next-visit prediction, we define two variants of the
refinement metric. The first one is accuracy-based,
similar to the risk prediction task, but using top-20
accuracy to measure the improvement, in line with
the evaluation metric from the original paper. The
second one measures the average rank improvement
between the baseline and OGML approach by
comparing the rank differences for medical codes
found in the ground-truth data for the respective
patient visits. In both tasks, input sequences may be
counted multiple times for different medical codes.
As in the computer vision use case, we calculate the
mismatch as the percentage of classes (codes) that
show a performance decrease, and we also report the
proportion of data affected by these classes (codes).

Given the smaller dataset sizes, varying train-test
splits, and a larger number of unique classes com-
pared to the computer vision use case, we report the
mismatch on the entire dataset instead of just the test
set. To handle the high number of unique medical
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Table 3: Comparison of model sizes and refinement metrics for next-visit prediction (negative refinement scores in red).

Next-Visit Prediction
Architecture Small Large

Acc. Baseline [%] 55.10 66.19
Acc. OGML [%] 73.87 71.32
Improvement [pp] 18.77 5.13
Refinement Metric Accuracy-based Ranking-based Accuracy-based Ranking-based

Mismatch [%] 29.60 21.47 29.71 25.56
– Data affected [%] 83.50 59.61 82.67 60.78

Frequency

50 25 0 25 50
Refinement Score

0
250
500
750

1000

5 0 5
Refinement Score

0
250
500
750

1000

50 25 0 25 50
Refinement Score

0
250
500
750

1000

5 0 5
Refinement Score

0
250
500
750

1000

codes (1,823 for next-visit prediction and 2,426 for
risk prediction), we filter out codes that appear fewer
than three times in the dataset. This results in 38.2%
of unique codes being filtered out for risk prediction
and 2.1% for next-visit prediction.

Results. The results, summarized in Tables 2 and 3,
reveal distinct patterns across the various models and
tasks. First, domain-application knowledge mismatch
is evident across all model sizes, prediction tasks, and
refinement metrics within the dataset. However, the
degree of mismatch varies, with the mismatch for dia-
betes risk prediction being two to three times smaller
than that for heart disease risk prediction using the
same model sizes. This variation is also reflected in
the differences in the distribution of refinement scores
shown in the bottom row of the table. Addition-
ally, models used for diabetes risk prediction bene-
fit more from domain knowledge than those used for
heart disease risk prediction. Further, ontological do-
main knowledge tends to improve the performance of
smaller models more than of larger models. For risk
prediction, smaller OGML models perform nearly as
well as their larger counterparts, while in next-visit
prediction, smaller OGML models even outperform
the larger ones. Additionally, smaller models gen-
erally exhibit less domain-application mismatch, i.e.,
they benefit more from domain knowledge than larger
models. Lastly, we observe a much higher percentage
of data affected by mismatches compared to the com-
puter vision use case, likely due to the presence of
multiple medical codes in each input sequence.

4.2.1 Identifying Ontological Issues

When examining the top ten medical categories with
the lowest accuracy-based refinement scores for next-
visit prediction, we found several potential ontologi-
cal issues (with the ICD-9 hierarchy) that could de-
crease the prediction performance of OGML.

Similar Concepts in Different Ontological Paths.
This issue arises when related ontological categories
are placed under different paths and lack a com-
mon semantic ancestor. As a result, the OGML
approach treats these categories as semantically in-
dependent, which can confuse the machine-learning
model and negatively impact the prediction perfor-
mance for these categories. For example, five of
the ten medical codes with the lowest refinement
scores are related to drug-related symptoms or dis-
eases. These five categories fall into three paths in the
ontology, without a shared common ancestor:

• 970.8: Poisoning by other specified central ner-
vous system stimulants, falls under the ontological
category Injury and Poisoning 800-999

• E950.0: Suicide and self-inflicted poisoning by
analgesics, antipyretics, and antirheumatics and
E950.4: Suicide and self-inflicted poisoning by
other specified drugs and medicinal substances
both fall under the ontological category Supple-
mentary Classification of External Causes of In-
jury and Poisoning E000-E999.

• 304.23 Cocaine dependence, in remission, and
304.21 Cocaine dependence, continuous both fall
under the ontological category Mental Disorders
290-319.
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Drug Dependence

Drug Type 1 Drug Type 2

EpisodicUnspecified Continuous Remission

Drug Dependence

Drug Type 1 Drug Type 2

EpisodicUnspecified Continuous Remission

Figure 2: Suboptimal parent order (left) and potential improved one (right) for categories related to drug dependence.

Injury to gastrointestinal tract

Location A
with open
wound

Location A
without open
wound

Location B
without open
wound

Location B
with open
wound

Injury to gastrointestinal tract

Location A Location B

with open
wound

without open
wound

Figure 3: Suboptimal parent order (left) and potential improved one (right) for categories related to gastrointestinal tract.

Irrelevant Categorization. This issue arises when
the categorization focuses on aspects that may be less
relevant to the machine-learning task. For instance,
consider the following codes:

• E956 Suicide and self-inflicted injury by cutting
and piercing instrument

• E950.0 Suicide and self-inflicted poisoning by
analgesics, antipyretics, and antirheumatics

• E950.4 Suicide and self-inflicted poisoning by
other specified drugs and medicinal substances

While these codes categorize different types of in-
juries (cutting, poisoning by drugs, etc.), they are all
grouped under the broader category of Suicide and
Self-Inflicted Injury (E950-E959). This grouping does
not account for other causes of such injuries. For
next-visit prediction, the focus on whether an injury
is self-inflicted might be less relevant than the spe-
cific type of injury. A more effective approach could
be categorizing these codes based on the type of in-
jury (e.g., cutting, poisoning) rather than its origin, as
this may be more relevant to the prediction task.

Inaccurate or Overly Broad Categories. This is-
sue arises when a category is not specific enough or is
overly broad. Categories that include terms like ‘un-
specified’ or ‘other’, or have such terms in their parent

categories, are especially susceptible to this problem.
For example, the code 957.1 Injury to other specified
nerve(s) is classified under the broader category 957
Injury to other and unspecified nerves. This broad
classification can include various, potentially unre-
lated medical codes within the same category, which
may confuse the machine-learning model.

Suboptimal Ordering of Parent Categories. This
issue arises when parent categories are organized to
prioritize one aspect over another, which may not be
optimal for the specific task. For example, the ICD-9
ontology initially classifies drug dependence by drug
type and then by dependence type (Figure 2, left).
This structure leads the OGML approach to treat con-
tinuous use of different drugs as unrelated and con-
tinuous versus episodic use of the same drug as more
similar. Reordering to classify by dependence type
first (Figure 2, right) could better capture the nuances
of drug use. Similarly, Figure 3 shows that organiz-
ing wound information by location and type at the
same level may not be ideal. Depending on the task,
it might be more effective to classify injuries first by
location and then by type, or vice versa, or even to
provide both ordering paths.
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5 CONCLUSIONS

In this work, we addressed the critical and often over-
looked issue of domain-application knowledge mis-
match in ontology-guided machine learning (OGML).
We developed an OGML-aware framework to quan-
tify these mismatches and identify harmful ontol-
ogy parts, which negatively affect prediction perfor-
mance. Our framework offers a practical and gener-
alizable methodology for assessing ontology quality
in OGML contexts. Thus, it improves the integration
of ontological knowledge into machine-learning mod-
els, leading to more effective and reliable use of on-
tologies. Our case studies in image classification and
patient health prediction revealed that mismatches are
widespread across datasets, OGML approaches, and
machine-learning architectures. This highlights the
importance of aligning domain ontologies with spe-
cific application requirements in OGML contexts. Fu-
ture research could refine our framework and explore
its applicability across various domains and OGML
methods. For example, one could apply our frame-
work to multiple tasks in a single domain to evalu-
ate an ontology’s domain fitness. Another promis-
ing direction is automatically repairing ontologies for
a given OGML task, i.e., removing harmful domain
knowledge, restructuring the ontologies accordingly,
and re-training the OGML model.
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