On the Use of Ontologies for Defining, Generating and Exploring the

Resulting Simulations of Application Level Protocols

Mieczyslaw M. Kokar! ©? and Jakub J. Moskal>®°

I Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, U.S.A.

Keywords:

Abstract:

2VIStology, Inc., Mashpee, MA, U.S.A.

Generic Simulation System, Ontologies, Simulation Requirements, Simulation Generation, Application Level
Protocol, Simulation Querying and Exploration.

This paper presents a simulator generator designed to aid in the development of domain-specific protocols
that enable semantic communication, where messages include annotations specifying the meaning of individ-
ual fields. Furthermore, the field types are dynamic, meaning they are incorporated into messages based on
the domain’s underlying ontology. To experiment with such domain-specific semantic protocols, designers
require data for protocol evaluation. Simulation is a common solution to this need. Simulations are produced
by simulators—software systems that take inputs and generate results. For typical applications, generic sim-
ulators are often available. This paper introduces a system, named dg, that generates simulators for semantic
communication protocol designers, based on specifications (inputs and constraints) provided in an ontology.
Additionally, we demonstrate how the same ontology can be used to explore simulation results. Finally, since
our approach involves policies that account for information uncertainty in both simulator implementation and
result querying, we propose initiating an effort to develop an uncertainty-related extension to the SPARQL

query language.

1 INTRODUCTION

When developing a communication protocol tailored
to a specific domain, experimental data is often
needed to evaluate the effectiveness of the protocol.
This data is typically generated through simulation.
One approach to ensuring that the simulation is reli-
able is to adhere to established systems engineering
principles (Adcock, 2007). The first step is to create
detailed specifications for the simulation system, fol-
lowed by analyzing these specifications, then design-
ing and developing the system in a way that satisfies
all the requirements. Additionally, the development
process must account for the adequacy of the model
used by the simulator to generate inputs and outputs.
Overall, designing a simulator for a system under de-
velopment is a complex and resource-intensive task,
requiring significant time and human effort.

In some cases, the simulators already exist and
can be used with minor modifications to the simula-
tor system parameters. These simulators are typically

https://orcid.org/0000-0001-9243-3089
@ nhttps://orcid.org/0000-0001-6467-773X

Kokar, M. and Moskal, J.

available for common scenarios. However, this paper
focuses on scenarios that require simulations tailored
to specific requirements, for which no suitable sim-
ulators currently exist. Thus, our focus is to stream-
line the simulation development process. To achieve
this objective, we are pursuing a simulator generator
approach. We have developed a simulator genera-
tor, dg, which can accept specification requirements
for a simulator, instantiates the specified simulator,
and generates the simulation results according to the
specification. The heart of this generator is an ontol-
ogy and an ontology reasoner (interpreter) that takes
specifications expressed in ontological terms and gen-
erates simulators accordingly. Another aspect that is
covered in this paper is the support for the compre-
hension of the results generated by the simulator. This
objective is also achieved by the use of the ontology.
Ontology provides language that both the user and the
ontological reasoner can understand. The user can is-
sue queries using ontological terms and the queries
are interpreted and answered by the query engine that
dg interacts with.

This paper is structured as follows. First, in Sec-
tion 2 we provide a brief overview of the works that

227

On the Use of Ontologies for Defining, Generating and Exploring the Resulting Simulations of Application Level Protocols.

DOI: 10.5220/0013066700003838
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 2: KEOD, pages 227-234

ISBN: 978-989-758-716-0; ISSN: 2184-3228

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

have addressed the problem of simulations, especially
those that use ontologies to express the specifications
of the required capabilities and their attributes. Sec-
tion 3 presents a class of problems that are covered
by our simulator generator. Section 4 describes a sce-
nario that we are using to show the functionality of
our system. Section 5 provides an overview of the
ontologies for representing knowledge of both the do-
main introduced in Section 4 and the ontologies for
representing the more generic modeling aspects, in-
cluding a top-level ontology for representing systems.
The structure of dg is introduced in Section 6. In Sec-
tion 7, we show examples of simulation results that
are outputs of the simulator generated by dg for the
scenarios described in Section 4. This is followed by
the demonstration of the querying capabilities for sup-
porting comprehension of simulation results in Sec-
tion 8. Finally, in Section 9, we describe the conclu-
sions from this study and the potential directions of
future research.

2 LITERATURE REVIEW

Simulation is a well-established discipline of both re-
search and engineering. Simulation has gained an
exponential recognition with the occurrence of the
Digital Twin technology (Grieves, 2014). Conceptu-
ally, it is part of Systems Engineering. It is typical
to start development of software for controlling en-
gineered systems by simulating their core functional-
ity - the decision derivation function, especially in the
domain of Cyber Physical Systems (CPS) (Koulamas
and Kalogeras, 2018).

Since the focus of this paper is the generation
of simulators from models of the simulated process,
where the model is expressed as an ontology, it would
be advantageous to use systems engineering stan-
dards in the development of such simulators and on-
tologies, and for evaluation of simulation systems.
Towards this end, some researchers relied on the
ISO/TEC/IEEE 15288 (Systems and Software Engi-
neering, System Life Cycle Processes) standard (ISO,
2023). However, it does not address simulation di-
rectly.

Some researchers (cf. (Barth et al., 2023)) relied
on the ISO/IEC 25010 standard related to the qual-
ity of software systems. The authors have proposed
a number of criteria for assessing the quality of sim-
ulation models. Since they could not identify such
criteria in the existing standards, they adopted the at-
tributes of the Software Product Quality Model that
are part of the ISO 25010 standard (ISO-IEC, 2024).

The work on standardization related to simulation

228

started at The Society for Modeling & Simulation
International. It eventually has moved to the IEEE
resulting in the Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA) (IEEE,
2000), still being continued, and the IEEE Standard
for Distributed Interactive Simulation — Application
Protocols (IEEE, 2012), which focuses on the dis-
tributed processing aspect of simulations. However,
those standards in progress are not much used in the
current research on the construction of simulation sys-
tems. For instance, (Liu et al., 2020) propose a pro-
cess for developing an ontological framework for dig-
ital twin modeling of CNC machine tools. However,
the ontology shown in this paper is relatively generic
and not based on any specific standards.

(Singh et al., 2021) focuses on identifying the
minimum data structure to model data for DT using
ontologies to define the semantics, restrictions and
data structure for DT to domain applications. It pro-
poses a multi-step process to develop an ontology and
then discusses a case study of modeling data for a spe-
cific use case. The ontological model is mapped to a
relational data representation for further processing.

(Van Ruijven, 2013) proposes an ontology for sys-
tems engineering, by means of a set of information
models based on a modeling methodology based on
a simplification of the ISO 15926 part 2 data model.
It was implemented using an RDF tool. The future
version is supposed to be implemented in OWL; the
RDF version is not sufficient for the approach we are
presenting in this paper.

(Jeleniewski et al., 2023) presents a semantic
model developed to articulate the interdependencies
between process parameters in manufacturing set-
tings. It promotes the use of Ontology Design Pat-
terns developed by the Semantic Web community
to support the reusability of ontologies (Hildebrandt
et al., 2020). It also incorporates the OpenMath stan-
dard, another sign of commitment to the standards
based development. Consequently, the approach is
very well aligned with some of the standards, al-
though not the simulation standards. While it is fo-
cusing on the representation of processes, it does not
consider a use case that is directly relevant to our ap-
proach.

(Reif et al., 2023) describes the use of ontologies
for the use case of composing multiple simulations to
achieve a simulation objective. This is a very interest-
ing idea, although it is a composition of simulation re-
sults, rather than composition of simulation processes
into one simulation process, which would be much
more in line with the focus of this paper.

In summary, we were somewhat successful in
identifying standards for modeling simulations, al-

On the Use of Ontologies for Defining, Generating and Exploring the Resulting Simulations of Application Level Protocols

though none of them were satisfactory for our needs
since none of them were designed for the purpose
of generating simulators. Similarly, we have identi-
fied ontologies for representing simulations, however,
similarly to the standards, they were not developed for
the use case as in our approach. In effect, we put em-
phasis on the concept of ontological representations
of inputs to the simulators and constraints relevant
to the domain of our application. The approach pre-
sented in this paper does not cover such a wide scope
as some of the other approaches, yet it is able to suc-
cessfully generate simulators for a relatively narrow
domain of simulation problems.

3 THE CLASS OF PROBLEMS

The objective of the simulated process discussed in
this paper is to establish the priorities of the mes-
sages to be transmitted by an overloaded communica-
tion channel, assuming that the highest priority mes-
sages will be selected first. Consider a time slot S
and a set of messages to be transmitted {m,...,m;}.
Moreover, assume the messages include the seman-
tic content that can be classified along k aspects (field
types). These fields will be referred to as variables:
Xi,...,X;. The objective is to order the messages for
transmission based on a user-defined policy. The pol-
icy consists of two parts. First, the user defines the
priorities for the specific values for each of the vari-
ables, fi(x;;),x;j € X;. This is feasible for the prob-
lem considered in this paper since the variables are
all discrete, i.e., the values of the variables are all
objects. Second, the user defines preferences for the
specific field types; they represent the importance of
the specific field type to the user. The preferences
are defined by the policy and represented as weights,
w=(w(Xi),...,w(Xp)).

This problem can be formalized as a Multi-
Objective Constrained Optimization Problem (MO-
COP) in which the priorities for each of the variables
are treated as optimization objectives, i.e., the objec-
tive is to select the messages for transmission in such
a way that they maximize (or minimize) the specific
objectives functions for each of the variables. How-
ever, since the particular objectives may push the se-
lection in opposite directions - what is good for one
variable may be bad for another - there is a need
to reconcile the possibly conflicting objectives. One
possible approach to solving this problem is to select
solutions that are Pareto optimal, i.e., such that none
of the objective functions can be improved in value
without degrading some of the other objective values.

In general, the problem of finding Pareto-optimal

solutions is NP-hard, which is one of the reasons that
we are simulating a simpler problem. We follow an
approach to the reconciliation of the multiple opti-
mization objectives using the so-called utility function
which prioritizes particular objectives. In our imple-
mentation we used the linear scalarization function
Y wi(fi(x)). This function is used by the Simu-
lator to solve the message selection decision. It is
effective and guaranteed to find Pareto optimal solu-
tions when the Pareto front is convex, but it can fail
when the Pareto front is non-convex. Proper selection
of weights is crucial, and multiple scalarization runs
with different weights are often needed to approxi-
mate the Pareto front comprehensively. This is one of
the justifications for developing support for analyzing
multiple policies for a given domain.

Since the weights for the variables all add to 1
and thus they can be treated as probabilities for com-
puting the decisions. The objective of the simulated
process is thus to compute the expected value of the
decision function for all possible hypotheses and se-
lect the one that gives the highest expected value, as
shown in Equation 1, achieving the objective of the
message selection decision, .

maxeex Y wifi(Xi(x)) (1
i=1

The solution to this problem is subject to various con-
straints on both the values and, even more impor-
tantly, the relations among the particular variables. In
other words, the solution defined in Equation 1 is sub-
ject to a set of constraints, C(X), which are not shown
explicitly in this formulation, although they are em-
bedded in the domain ontology.

4 SCENARIO

We are demonstrating our approach on the scenario
shown in Figure 1. It involves communication be-
tween Nodes, where Sources send messages to Des-
tinations, starting at the Start time and ending at the
End time. It is important to stress that only one com-
munication channel exists whose capacity is mostly
insufficient to accommodate all the messages and thus
the Monitor needs to make decisions which messages
to serve first, which may result in some messages be-
ing unattended.

Figure 1 shows only one instance of Source and
one of Destination (in ontology they are referred to
as Nodes). However, in this scenario, there are mul-
tiple Nodes sending messages to one another con-
currently, resulting in a multitude of communication
events requiring monitoring and prioritization. The

229

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

specific Nodes belong to specific Organizations, are
involved in some Activities, and deliver various Ser-
vices to their clients (Destinations). The objective of
the monitoring system is to decide which of the mes-
sages should be selected for transmission first. Since
the Monitor runs a loop, it selects most preferable
messages until the transmit buffer is full.

. Requirements Estimates

Monitor 55

I

Destination

. -

Figure 1: A surveillance scenario.

S ONTOLOGIES USED

The ontology fragment used to provide the generic in-
formation to the generator is shown in Figure 2. Since
we are using a generic foundational ontology, Nuvio
(http://cogrario.org/ont/Nuvio.owl), the names of the
classes to represent a simulation are taken from this
ontology. Entity is the top class in this ontology; all
other classes are either direct or indirect subclasses of
this class. The InformationContent is the class that
will represent the requirements of the domain ontol-
ogy. Process is the class that represents things that
change in time, while Object is for static things. The
Attribute class is where all attributes of all of the other
classes are represented. The Quality class is for qual-
itative attributes, while the Quantity class is for quan-
titative attributes. The quantitative attributes have a
special structure of Interval. Some quantitative at-
tributes may have UnitOfMeasure, while some others
(like probabilities) are dimensionless.

Additionally, the ontology must be able to repre-
sent the aspects of the specific scenario described in
Section 4. A partial view of the ontology for repre-
senting some of the domain aspects of the scenario is
shown in Figure 3. The simulated process is an in-
stance of class Service. The information channel that
is surveilled is shown as Stream. The Requirements
originate from the system User, as shown in Figure 1.
The class Priority represents the priorities assigned by
the user to the specific information sources and to the
particular variables and their values. The figure seems

230

Object] [Process]

*® InformationCont [

ent /
s - "

R

A & ~

[Value] [Attribute } [+ ..LlniIOfMeasure I

/ \
| / N ~
Lvi [vd pa AN
i ! \ ——
.

I ConfidenceValue ll' Qu:-;lity H* \Quantitv “ Interval I

Figure 2: A fragment of the simulation generator ontology.

self-explanatory since the classes are linked via OWL
properties with informative names. A mapping of the
classes of the domain ontology to the classes of Nuvio
is shown in Table 1. The left column of the table lists
the classes of the Domain Ontology, while the right
column represents the classes of Nuvio. The Domain
Ontology classes are related to the Nuvio classes via
the OWL subClassOf relation, i.e., each class in the
left column is subClassOf the Nuvio class located in
the same row in the right column.

. | priortyRoquiremonts timeEnd =
hasSodico Y & timoStart /

e hasSarvico
_~" haspostinaten 550

™ - % hasSpream - >
~ hadService __1 Activity s
s §€\ | T o timeEnd ;" timeStart
gy | hasQfganizatign’)
hasDestination 5 hasAclivity / vd
AN gl

Nyl

Figure 3: Domain ontology: a partial view.

Table 1: Mapping of Domain Ontology to Simulator ontol-
ogy.

Domain Ontology | Nuvio Ontology
Requirement InformationEntity
Stream InformationContent
Service Process
Activity Process
Node Object
Organization Object
ChanceNode ConfidenceValue
TimeStamp Quantity
Priority xsd:decimal

Note that some of the Nuvio classes from Figure 2
do not appear in Table 1. This is because some of
them are parts of the subclass chains. E.g., Entity
is the top class and thus none of the Domain Ontol-
ogy classes are directly subclasses of this class. The
same applies to the other Nuvio classes from Figure

On the Use of Ontologies for Defining, Generating and Exploring the Resulting Simulations of Application Level Protocols

2. More specifically, Service — the process to be simu-
lated — is the subclass of Process. The simulation vari-
ables are represented by Quantity, a subclass of Az-
tribute. Their values are captured by the instances of
the class Value. In general they may have dimensions,
represented by the class UnitOfMeasure. The require-
ments for the Simulator are associated with Service.
They are instances of the Requirement class, which
is aggregated by RequirementList (not shown in the
figure). The formal relation between the Simulator
(Process) and the Requirement can be formalized as
a triple (SimulatorObject rdf:type Requirement). Fi-
nally, the ChanceNode domain class, which appears
in the table, is not shown in Figure 3 because it origi-
nates from a separate Uncertainty Ontology, which is
omitted here due to space constraints.

6 SIMULATION GENERATOR

A representation of dg is shown if Figure 4. The main
component of dg, Simulator Generator, reads in the
ontology that has imported the domain ontology, and
user inputs. The most important aspect of this pro-
cess is that the generator acquires the variables for the
simulator from the Domain Ontology. In this case, the
variables are Activity, Node (Source, Destination), Or-
ganization. The (structural) constraints that the Simu-
lator must satisfy are imported with the ontology, too.
dg then generates the Java object - Simulator. In OWL
terms, the Simulator is of rdf:type Requirement. Thus
it satisfies the constraints of requirements defined by
the user. While the current implementation is limited
to the structural constraints, it can be extended to in-
clude the procedural aspects by expressing them in
the OpenMath standard.

dg Simulator Generator

Excel Excel
gl Spreadsheet
0 M

Generator|

—
owr NI OWL instance

Converter [z

I SPARQL

—

Domain N N Simulation Data
Ontology import Ontology Comprehension

Figure 4: The dg simulator generator.

The user of dg uses a graphical Ul to provide the
Requirements, as described in Section 5. Figure 5
shows the setup menu which allows the user to set the
general parameters of the simulation. This GUI al-
lows the user to roughly set the size of the simulated
data by focusing on Services — the number of Service
Types that are available in the ontology, followed by

the number of Requirement Lists, the number of Re-
quirements per list, and the number of Streams per
requirement. Since the idea of this simulation gener-
ator is to make data generation random and unbiased,
the actual numbers and the values of the variables de-
pend on the user who sets the min/max boundary for
each parameter that is then randomly picked by the
generator (uniform distribution).

Adjust Parameters
Instance Data User Priorities Policy Weights

Mission ID: Mission 1

Service Types Used: Min:1 : T ¢ - Max:9

g :
Lists Per Service: Min:1 . , B 5 Maxs

Min;1 (== Max: 5

i rList:
Requirements Per List: | . i " 2 % 30

Min:1 (= Max:5
1 6 M 16 2 2 30

@ Generate Mission
Generated 167 messages.

Figure 5: The dg setup menu.

| Streams Per Requirement:

[:w Export loOWL] [-a Exportto Exce\]

In the scenario discussed in this paper, the random
variables include Services, Activities, Nodes (Sources
and Destinations) and Organizations. These variables
are provided by the Domain Ontology, shown in Fig-
ure 4, rather than being hard coded in dg itself. This
is the main point of this paper — the Simulator Gener-
ator is controlled through ontology. The weights can
be adjusted in the ‘Policy Weights’ tab.

Adjust Parameters

Instance Data = User Priorities Policy Weights

| Activities EVA 04

| Nodes
Rescue 07

| Organizations
CommandAndControl 09
MissionCritical Activity 015
Handshaking 015
sos o2 |
HumanLifeSupport 08

]

FileTransfer o015 |
Docking 08
Collection 015 |
NormalActivity o015 |

{
4 Restore | [Persist Changes |

@ Generate Mission ||

[@ Export to OWL] [@ Export to Excel]

Figure 6: The dg GUI for defining random variables.

231

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

7 SIMULATION EXAMPLES

In this section, we show some of the simulations that
use dg for experimenting with simulation policies.
The main objective of these simulations is to demon-
strate how the user can explore the simulation space
in order to understand the communications scenarios.
The scenarios are not under the user’s control since
they depend on the communication scenario. How-
ever, the user can get an understanding of which vari-
ables and values should be given more priority in
the policy so that the communications resources are
better utilized to achieve the best information deliv-
ery results. In dg, this policy aspect is encoded in
the weights and controllable through the dg GUI, as
shown in Section 6. In our ontology, these weights
are encoded as individuals of the Probability class.

For the first example, consider a case where the
most important variable is the Activity in which the
nodes are involved. In this case, the policy should
place greater emphasis on the weight assigned to the
Activity variable. As shown in Table 2, the weight as-
sociated with Activity is 0.88, while all other weights
are set to 0.02, adding up to 1.

The distribution of the weights may seem a bit ex-
aggerated, however this came as a result of interact-
ing with the simulator. In fact, it is an artifact of the
decision algorithm. Notice that the decisions are de-
rived by optimizing the expected value, which is a lin-
ear combination of weighted probabilities. Our team,
and other people who tried to set policies according to
their intents, were surprised by the low sensitivity to
the policy weights. We all expected that the decisions
of the Monitor would favor a specific variable when-
ever the weight associated with the variable is some-
what higher than those of the others. However, since
in this particular simulation example there were seven
variables, the impact of just one of them is diminished
by the combination of the other variables. Our con-
clusion from these experiments was that users need to
be trained for effectively setting recognition policies
and dg can serve as a useful tool in such training.

Table 2: Weights: Policy: Activity matters the most.

Activity | Service | Org | Src | Dest | Start | End
0.88 0.02 | 0.02|0.02]| 0.02 | 0.02 | 0.02

Figure 7 shows the result of one of the simulations
that followed the “Activity matters the most” policy
described above. While it is difficult to show a rep-
resentation of an 8D sample space, it is rather clear
from this picture that the Activity aspect was prevail-
ing in the decisions. This conclusion can be reached
because for each of the seven groups of samples the

232

priority generated by the Simulator were distributed
uniformly for all of the activity instances of the Ac-
tivity types. In other words, the other six aspects did
not have much impact on the derivation of the priority
of the particular messages.

Policy vs. Activity: Activity matters the most

"Colloction &6 'Docking EVA Fle Handshaldng_Human Lfe Mlssloncliﬁul Rescue
Transfer Support

Figure 7: Simulation result: Activity is the most important
aspect to the user.

Table 3: Weights: Policy: All variables are equal.

Activity | Service | Org | Src | Dest | Start | End
0.15 0.15 0.15 | 0.15 | 0.15 | 0.15 | 0.1

Figure 8 illustrates the decisions derived by the
Monitor when the policy treats all input variables as
equally important (c.f. Table 3). In this case, as with
the previous scenario, the data were grouped and or-
dered by Activity type. By examining the distribution
of the expected values across the Activity groups, it is
evident that the distribution is not uniform.

Policy vs. Activity: All variables are equal

ittt

Collection C&C Docking EVA File Hand- ~ HumanlLife Mission Rescue
Transfer shaking Support Critical

Figure 8: Simulation result: All input variables are equally
important to the user.

8 SIMULATION QUERIES

In this section we show some examples of how ontol-
ogy, supported by an ontology querying tool, is use-
ful for the understanding of the various aspects of the
simulation results.

In the following we show two examples of
SPARQL queries and query results. The first exam-
ple shows a query that is of a similar kind as in (Fang,
2019), i.e., the query is asking to retrieve the bindings
that satisfy the condition of the type ?p < s referred
to above.

Example 1: Show the probability distribution of
variable Activity.

On the Use of Ontologies for Defining, Generating and Exploring the Resulting Simulations of Application Level Protocols

SELECT *
WHERE {
?Vriable rdf:type Monitoring:ChanceNode;
Monitoring:hasDomain ?Domain.
?Domain nuvio:aggregateOf ?Values.
?Values Monitoring:hasPriority ?Probabilities

Listing 1: SPARQL query.

The query can be expressed in SPARQL as shown
in Listing 1. The query is referring to the ontology
namespace Monitoring and selects the values of the
domain of the ChanceNode (from the ontology not
shown in this paper), which is associated with the
class Activities in the ontology. The Activities class
is an aggregate of Activity, each of which has the Pri-
ority value generated by the Simulator dg. The Moni-
toring ontology imports the UncertatintyOntology de-
scribed earlier.

The query is executed by PolVISor IDE, a
SPARQL execution IDE developed by VIStology. It
supports loading an ontology, running an inference
engine, e.g., HermiT, the reasoner that can also be
invoked from Protege, and provides an interface for
the authoring of policies expressed in SPARQL. A
screenshot in Figure 9 shows the result of the execu-
tion of the above query.

LT | & Clear Results

4D show History
[oW eRn |

022 (xsdidecimal)

02 (xsdidecimal)

017 (xsdldecimal)

0.1 [xsddecimal)

0.08 (xsd:decimal)

0.05 (xsdidecimal)

0.02 (xsddecimal)

Figure 9: Query result for Example 1.

Example 2: Show the Activity instances whose
probability is less than 0.1.

A screenshot from PolVISor IDE in Figure 10
shows both the SPARQL expression that represents
this query and the result of the execution of the query.

10 SELECT®

11 WHERE

12 ?Vriable rdftype Monitoring:ChanceNode:

13 Monitoring:hasDomain ?Domain

14 ?Domain nuvio:aggregateOf ?Values

15 ?Values Monitoring:hasPriority ?Probabilities
16 FILTER (?Probabilities <0.1)
17

LT | ¢ Clear Results

4D show History

1 0,05 (xsdldecimal)

2 0,02 (xsdidecimal)

2

Figure 10: Query Example 2 and the result of its execution.

While such queries can be very useful for brows-

ing through the simulated (or real) data, it requires the
mapping of the natural language expressions shown in
Examples 1 and 2 above to SPARQL, which requires
some knowledge of this language and the ontology
that captures the domain knowledge, plus the results
of logical inference on the original data. While in
these examples the names of the random variables and
the names of SPARQL variables (the ones with the
“?” mark as the first character) were selected in such a
way that they indicate the meaning of these variables,
SPARQL does not care about such choices. More-
over, SPARQL does not include any functions that are
useful for computing various probabilistic and statis-
tical attributes. We claim that it would be desirable,
to add such features to pure SPARQL. In particular,
an agreed upon Uncertainty Ontology would have to
be used as the first ingredient of the solution. Second,
a number of functions specific to the probability and
statistics domains would need to be included. The
functions would perform quantitative computations,
such as generating random data according to specific
probability distributions (e.g., Binomial, Exponential,
Normal, Bernoulli), and calculating joint probabil-
ity distributions, expected values, and similar met-
rics. Additionally, functions for statistics and statis-
tical testing could be included. Note that quantitative
computations are not well-suited for inclusion in the
ontology, making functions associated with SPARQL
a more appropriate place for them.

9 CONCLUSIONS

In summary, this paper has shown the value of ontol-
ogy in the process of developing simulators to sup-
port the experimentation with the semantic commu-
nication. In particular, we have shown that ontology
can play different roles. First, it can be used to setup
generation of simulators of various systems. The sim-
ulators, like the one described in this paper, would
take an ontology as input. The simulator would then
provide a User Interface to setup the various param-
eters that can control the simulated variables and the
amount of the simulated data. The main structure of
the simulator code remains unchanged, even though
different systems are simulated thanks to the use of
ontology and ontology reasoners to interpret the sim-
ulation requirements.

Second, the ontology used in this work can be ex-
panded to introduce many more concepts from both
probability theory and statistics and then used by the
simulator. In this work we developed a very basic on-
tology and ran simulations of very simple data prior-
itization algorithms. With a more complex ontology

233

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

more advanced prioritization algorithms could be de-
fined and used for the processing of information by
the simulator and later used for querying.

We briefly showed the PolVISor IDE system for
query editing, invoking a logical inference engine,
executing queries and displaying results of queries.
These capabilities could be significantly expanded to
make simulation simpler and the querying more inter-
esting. Finally, we have shown that the ontology was
useful for browsing through the simulated data.

We conducted a literature search for SPARQL
extensions, specifically looking for a Probabilistic
SPARQL. Our search yielded limited results, as
the only extension we found was pSPARQL. The
pSPARQL extension provides an extension to the se-
mantics of the FILTER function of SPARQL. We
would like to see an extension that includes an Un-
certainty Ontology, various attributes that are native
to both probability theory and statistics, and vari-
ous functions for probabilistic and statistical compu-
tations. We believe such a SPARQL extension as pos-
tulated here would be possible, feasible, and most im-
portantly useful not only for developing simulation
systems, but more generally to the software engineer-
ing community.

Finally, yet another extension to the current capa-
bilities of dg seems to be possible due to the recent
progress of Al and Machine Learning. Currently, we
generate SPARQL queries manually. We believe it
would be possible and beneficial to add the capability
of automatic translation of natural language queries
to SPARQL. The use of Large Language Models
(LLMs) should be investigated for the use of trans-
lating natural language queries to SPARQL.

ACKNOWLEDGEMENTS

The authors wish to acknowledge that the develop-
ment of the dg simulator was supported by a grant
8ONSSC22CA141 from NASA through a subcontract
from AIRANACULUS to VIStology.

REFERENCES

Adcock, R. (2007). Principles and practices of systems en-
gineering. In INCOSE.

Barth, M., Ristic, M., and Jikel, J. (2023). A role-based
Metric to determine the Quality of Simulation Mod-
els. In 2023 IEEE 28th International Conference
on Emerging Technologies and Factory Automation
(ETFA), pages 1-8. IEEE.

Fang, H. (2019). pSPARQL: A Querying Lan-

234

guage for Probabilistic RDF Data.
2019(1):8258197.

Grieves, M. (2014). Digital twin: manufacturing excel-
lence through virtual factory replication. White paper,
1(2014):1-7.

Hildebrandt, C., Kocher, A., Kiistner, C., Lopez-Enriquez,
C.-M., Miiller, A. W., Caesar, B., Gundlach, C. S., and
Fay, A. (2020). Ontology building for cyber—physical
systems: Application in the manufacturing domain.
IEEE Transactions on Automation Science and Engi-
neering, 17(3):1266-1282.

IEEE (2000). IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) - Framework
and Rules. IEEE Std 1516-2000, pages 1-28.

IEEE (2012). IEEE Standard for Distributed Interactive
Simulation—Application Protocols. IEEE Std 1278.1-
2012 (Revision of IEEE Std 1278.1-1995), pages 1—
747.

ISO (2023). ISO/IEC/IEEE 15288:2023. Systems and
software engineering — System life cycle processes.
https://www.iso.org/standard/81702.html.

ISO-IEC (2024). ISO/IEC 25002:2024. Systems
and software engineering — Systems and soft-
ware Quality Requirements and Evaluation
(SQuaRE) — Quality model overview and usage.
https://www.iso.org/standard/78175.html.

Jeleniewski, T., Nabizada, H., Reif, J., Kocher, A., and Fay,
A. (2023). A Semantic Model to Express Process Pa-
rameters and their Interdependencies in Manufactur-
ing. In 2023 IEEE 32nd International Symposium on
Industrial Electronics (ISIE), pages 1-6. IEEE.

Koulamas, C. and Kalogeras, A. (2018). Cyber-physical
systems and digital twins in the industrial inter-
net of things [cyber-physical systems]. Computer,
51(11):95-98.

Liu, J., Yu, D, Bi, X, Hu, Y., Yu, H,, and Li, B. (2020).
The research of ontology-based digital twin machine
tool modeling. In 2020 IEEE 6th International Con-

ference on Computer and Communications (ICCC),
pages 2130-2134. IEEE.

Reif, J., Jeleniewski, T., and Fay, A. (2023). An Approach
to Automating the Generation of Process Simulation
Sequences. In 2023 IEEE 28th International Confer-
ence on Emerging Technologies and Factory Automa-
tion (ETFA), pages 1-4. IEEE.

Singh, S., Shehab, E., Higgins, N., Fowler, K., Reynolds,
D., Erkoyuncu, J. A., and Gadd, P. (2021). Data man-
agement for developing digital twin ontology model.
Proceedings of the Institution of Mechanical Engi-
neers, Part B: Journal of Engineering Manufacture,
235(14):2323-2337.

Van Ruijven, L. (2013). Ontology for systems engineering.
Procedia Computer Science, 16:383-392.

Complexity,

