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Abstract: Supervised learning requires a lot of annotated data, which makes the annotation process time-consuming and
expensive. Active Learning (AL) offers a promising solution by reducing the number of labeled data needed
while maintaining model performance. This work focuses on the application of supervised learning and AL
for (named) entity recognition, which is a subdiscipline of Natural Language Processing (NLP). Despite the
potential of AL in this area, there is still a limited understanding of the performance of different approaches.
We address this gap by conducting a comparative performance analysis with diverse, carefully selected cor-
pora and AL strategies. Thereby, we establish a standardized evaluation setting to ensure reproducibility and
consistency across experiments. With our analysis, we discover scenarios where AL provides performance
improvements and others where its benefits are limited. In particular, we find that strategies including his-
torical information from the learning process and maximizing entity information yield the most significant
improvements. Our findings can guide researchers and practitioners in optimizing their annotation efforts.

1 INTRODUCTION

Supervised model training is a widely adopted ap-
proach that requires annotated data. This data is ob-
tained through an annotation process, which often ne-
cessitates the expertise of domain specialists, particu-
larly in fields such as biology, medicine, and law. The
involvement of experts is costly (Finlayson and Er-
javec, 2017). To alleviate the costs, researchers have
introduced various methods to reduce the annotation
effort (Sintayehu and Lehal, 2021; Lison et al., 2021;
Feng et al., 2021; Wang et al., 2019; Yang, 2021). A
popular method is Active Learning (AL). It is based
on the principle that not all data points are equally
valuable for the learning process and thus strives to
select a particularly informative subset for annotation
(Settles, 2009).

Despite the development of numerous AL strate-
gies, their performance across different use cases is
not well understood. We consider the case of entity
recognition (ER) in NLP and conduct a comparative
performance analysis (Jehangir et al., 2023). A rep-
resentative subset of corpora and AL strategies is in-
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cluded, which we selected from a specialized scoping
review (Kohl et al., 2024).

Our contributions are as follows:

• We establish a comprehensive framework for
evaluating AL strategies for ER. This includes
identifying a subset of datasets (corpora) that cov-
ers a wide range of domains (e.g., newspapers,
medicine, etc.) and significant AL parameters, se-
lecting a broad range of AL strategies for diverse
evaluation, and designing a suitable model archi-
tecture that balances both performance and run-
time for testing.

• We conduct an extensive analysis to determine the
best-performing AL strategies for ER, identifying
strategies that perform consistently well across
different domains. We also evaluate the robust-
ness and stability of these strategies, considering
the impact of random processes in model training
and the AL process.

The paper is structured as follows: Section 2 starts
with an overview of the research field and related
work. Then, in Section 3, we delve into the funda-
mental concepts of AL, ER, and the Active Learn-
ing Evaluation (ALE) Framework. Afterward, Sec-
tion 4 explains how we selected the subset of corpora
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and strategies tested in this study. We then present
a description of the experimental setup in Section 5.
While Section 6 presents the results and analyzes our
experimental findings, Section 7 concludes the paper.

Our results, including code, figures, and extensive
tables, can be found on GitHub1.

2 RELATED WORK

Researchers introduced numerous AL strategies for
areas such as computer vision or NLP (Settles, 2009;
Ren et al., 2022; Schröder and Niekler, 2020; Zhang
et al., 2022; Kohl et al., 2024). The strategies have
been classified into taxonomies to provide a struc-
tured domain understanding. However, the existing
surveys typically refrain from ranking the strategies
based on their efficacy (Zhan et al., 2022). There is a
general lack of comparative performance data. While
any new strategy is backed by performance data, these
typically refer to a limited and arbitrary subset of ex-
isting strategies. Direct comparisons are further com-
plicated by variability in parameter selection and im-
plementation details. The present paper helps to close
this gap by providing a systematically designed com-
parative performance analysis for AL strategies in the
ER domain. The limited knowledge of the relative
performance of advanced AL methods may explain
why current annotation tools such as Inception (Klie
et al., 2018), Prodigy (Montani and Honnibal, ), and
Doccano (Nakayama et al., 2018) focus on basic AL
strategies, potentially overlooking more sophisticated
ones.

Several frameworks support the implementation
and evaluation of AL strategies in other areas. libact
(Yang et al., 2017) focuses on comparing AL strate-
gies with scikit-learn models, while DeepAL (Huang,
2021; Zhan et al., 2022) is tailored for image vi-
sion tasks. We utilize the Active Learning Evaluation
(ALE) framework (Kohl et al., 2023), which has a so-
phisticated, modular design, supports integration with
various deep learning libraries and cloud computing
environments, and has a strong focus on reproducible
research.

Besides AL, there are other approaches that can
reduce the annotation effort: semi-supervised learn-
ing (Sintayehu and Lehal, 2021) leverages a small la-
beled dataset to annotate unlabeled data, and weak
supervision (Lison et al., 2021) uses heuristics or la-
beling functions to annotate data automatically. Data
augmentation (Feng et al., 2021) generates new ex-
amples by replacing words or reformulating sen-

1https://github.com/philipp-kohl/
comparative-performance-analysis-al-ner

tences, enhancing the training dataset without addi-
tional manual effort. Zero-shot (Wang et al., 2019)
and few-shot learning (Yang, 2021; Brown et al.,
2020) techniques transfer knowledge from one do-
main to another, reducing the need for extensive new
datasets. Large language models (LLMs) are inher-
ently few-shot learners (Brown et al., 2020), but they
are not always applicable due to offline scenarios,
hardware limitations, or the need for smaller models
in specialized domains (Jayakumar et al., 2023).

3 FUNDAMENTALS

In this section, we introduce core concepts and a com-
mon taxonomy of AL, which will be used in Sec-
tion 4. We also define and embed the ER task into
the active learning domain. Finally, we provide some
details on the ALE framework.

3.1 Active Learning

Active learning (AL) addresses the reduction of an-
notation effort and, therefore, is embedded into the
annotation process (Settles, 2009). This process con-
sists of three steps: (a) selecting unlabeled documents
(batch), (b) annotating these documents, and (c) train-
ing a classifier. These steps are repeated until perfor-
mance metrics (e.g., F1 score) reach a desired value.
AL modifies step (a) so that data points are selected
with an AL strategy instead of randomly or sequen-
tially. AL is based on the assumption that different
data points have different information gains for the
learning process. The AL strategies quantify these
gains (Settles, 2009; Finlayson and Erjavec, 2017).

The AL strategies can be divided into three cate-
gories (Settles, 2009; Zhan et al., 2022; Kohl et al.,
2024):

Exploitation depends on model feedback (e.g.,
confidence scores) to compute an informativeness
score. For example, least confidence selects data
points the model is most uncertain about.

Exploration is solely based on the corpora and
uses similarities and dissimilarities between data
points. For example, some strategies embed the data
points into a high-dimensional vector space and uti-
lize cluster methods to select a batch of data points
from different clusters.

Hybrid strategies combine exploitation and ex-
ploration approaches, for instance, by merging their
scores. Several hybrid approaches start with explo-
ration to identify a subset of the data points, which is
then analyzed using exploitation. This way the need
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for costly model feedback is reduced to the selected
subset.

3.2 Entity Recognition

Entity Recognition (ER) is a subtask of information
extraction (Jehangir et al., 2023). Given some un-
structured text, ER finds arbitrary, predefined domain-
specific entities (e.g., persons, diseases, time units,
etc.). On the technical level (see Figure 1), a model to-
kenizes the text and classifies these tokens. Thus, the
model feedback (e.g., confidence scores) is present
for each token.

AL strategies select whole documents for anno-
tation. Some AL strategies rely on model feedback,
which requires to aggreate the token-wise informa-
tion to a document-wise score. Figure 1 visualizes
the aggregation process.

Active Learning reduces annotation effortTokens

Confidences 𝐶𝑖 𝟎
𝟎. 𝟔
𝟎. 𝟒

𝑂
𝐵 −𝑀𝐸𝑇𝐻𝑂𝐷
𝐼 − 𝑀𝐸𝑇𝐻𝑂𝐷

𝟎
𝟎. 𝟏
𝟎. 𝟗

𝟎. 𝟗𝟗
𝟎. 𝟎𝟎𝟓
𝟎. 𝟎𝟎𝟓

𝟎. 𝟗𝟗
𝟎. 𝟎𝟎𝟓
𝟎. 𝟎𝟎𝟓

𝟎. 𝟗𝟗
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Aggregation
𝒅𝒐𝒄𝒔𝒄𝒐𝒓𝒆 = 𝒇𝒂𝒈𝒈(𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒, 𝒄𝟓)

Figure 1: Tokenized text on the lowest level (whitespace to-
kenization for simplicity) on which the model infers predic-
tions with the IOB2 (Ramshaw and Marcus, 1995) schema
and computes confidence scores. At the top level, an ag-
gregation function would compute a document-wise score
based on the confidences per token.

3.3 Active Learning Evaluation
Framework

We use the Active Learning Evaluation (ALE) frame-
work (Kohl et al., 2023) for comparing different AL
strategies against each other. ALE simulates the anno-
tation process (see Subsection 3.1), which we call an
AL cycle: (a) proposing new data points using an AL
strategy. (b) annotating the data. Instead of forward-
ing the selected batches to human annotators, ALE
uses provided gold labels of the corpora for the simu-
lation. (c) Training and evaluation of the model.

Figure 2 gives an overview of ALE. The frame-
work spans different stages. The first stage represents
an experiment, which simulates a single strategy. The
experiment follows a pipeline approach to preprocess
the data and start so-called seed runs. Each seed
run simulates one annotation process (AL cycle) with
some random seed. Multiple seed runs are conducted
to assess the stability and robustness of the AL strate-
gies. Table 1 shows the connection between seed runs
and AL cycles: A row represents the annotation pro-

cess for a single seed with a growing corpus, while
the column provides information on the robustness.

Table 1: Example F1 scores for seed runs across AL cycle
iterations in a single experiment. Each cell shows the F1
score measured on the test corpus after each data proposal.
For instance, AL cycle 2 represents the F1 scores after the
second data proposal.

Seed Run AL Cycle 1 AL Cycle 2 . . . ALCycle N
Seed 1 0.01 0.05 . . . 0.85
Seed 2 0.01 0.06 . . . 0.83

. . . . . . . . . . . . . . .
Seed M 0.02 0.04 . . . 0.87

ALE has many configuration parameters. These
and the corresponding experimental outcomes are re-
ported to MLflow2, which is an MLOps platform that
supports reproducible research. The two core pa-
rameters are the seeds and the step size. The seeds-
parameter is an integer list defining which and how
many seed runs ALE starts. The step size defines how
many documents the AL strategy selects in step (a) of
the AL cycle.

ALE comes with an implementation for spaCy3,
which we have replaced by PyTorch Lightning4 as
deep learning library for step (c) of the AL cycle. Py-
Torch Lightning gives us finer control of the learning
process.

The framework provides evaluation functions to
address two critical aspects of AL: data bias and
model calibration. It is crucial to avoid AL strate-
gies that exacerbate existing biases within the dataset
(see Section 6). Additionally, reliable model feedback
requires well-calibrated models. To assess model cal-
ibration, ALE employs the expected calibration error
(ECE) and reliability diagrams (Wang et al., 2021).

4 SELECTION OF CORPORA &
STRATEGIES

We base our selection of corpora and strategies on the
scoping review (Kohl et al., 2024), which reviewed
62 papers and collected information about the used
AL strategies and other aspects of the evaluation en-
vironment.

4.1 Corpora

(Kohl et al., 2024) provide a collection of 26 publicly
available corpora used to evaluate AL strategies for

2https://mlflow.org/
3https://spacy.io/
4https://lightning.ai/docs/pytorch/stable/
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Figure 2: The ALE framework introduces three key con-
cepts: Experiments, Seed Runs, and AL cycles. Each exper-
iment involves a pipeline execution, with Seed Runs as the
core element. A single Seed Run represents one AL cycle.

ER. We selected seven corpora based on the follow-
ing criteria: frequency of use, diversity of domains
(e.g., newspapers, medicine, social media), varying
language complexity measured by the moving aver-
age type-token ratio (MATTR) (Covington and Mc-
Fall, 2010; Kettunen, 2014)), label complexity and
distribution (e.g., number of labels per sample), and
average document length (limited to 512 tokens for
compatibility with our model). The selected cor-
pora are CoNLL2003, MedMentions, JNLPBA, Ger-
mEval, SCIERC, WNUT, and AURC-7. Further de-
tails are provided in Table 2.

4.2 Strategies

For strategy selection, we followed (Kohl et al.,
2024), which highlights a focus on uncertainty ex-
ploitation strategies, particularly entropy, margin, and
least confidence. These strategies use token-level
confidences to compute scores, which are aggregated
using methods such as average, minimum, maximum,
sum, and standard deviation (Subsection 3.2). In addi-
tion to these three uncertainty strategies, we included
count-based, round-robin, and two specialized strate-
gies considering past predictions, as well as three ex-
ploration and two hybrid approaches.

Exploitation Strategies.
Least Confidence (LC) measures the uncertainty

of the model for each token. The strategy strives to
select documents the model is most uncertain about
to receive a high information gain (Esuli et al., 2010;
Şapci et al., 2023).

Margin Confidence computes the difference (mar-
gin) of the confidences for the two most probable la-
bels per token. The intention is that a confident de-
cision would have a high margin (e.g., 0.93−0.03 =
0.9) because the decision boundary is learned well,

while not confident decisions have very low margins
(e.g., 0.45− 0.4 = 0.05). The strategy selects doc-
uments with low aggregated margins (Settles, 2009;
Şapci et al., 2023).

Entropy Confidence uses the Shannon entropy to
quantify the expected information gain. The strat-
egy selects documents with a high entropy (Yao et al.,
2020; Şapci et al., 2023).

Max Tag Count sums the number of entities the
model predicts in a document (label different from the
O-tag). The strategy favors documents with many en-
tities because the authors hypothesize that the infor-
mation gain is higher (Esuli et al., 2010).

Round Robin by Label strives to achieve a bal-
anced distribution of labels in the batches. The strat-
egy employs a round-robin approach to select docu-
ments based on their labels. The strategy maintains a
score for each label per document. This differs from
the previous strategies, which compute a single score
per document (Esuli et al., 2010).

Fluctuation of Historical Sequence measures the
uncertainty over the last n predictions (historical)
instead of only considering the current prediction.
The authors define a formula for a weighted sum of
the current confidence and the historical confidence
scores. The intuition is that volatile confidence scores
indicate a higher impact on the learning process than
stable ones because they might influence the decision
boundary (Yao et al., 2020).

Tag Flip of Historical Sequence measures the in-
stability of the model’s decisions for a document. It
counts the label changes (tag flip) for each token in
a document across the last n predictions. Documents
with many flips can be an indicator to influence the
decision boundaries and, therefore, are beneficial for
the training process (Zheng et al., 2018).

Exploration Strategies.
Diversity embeds the dataset into a vector space

and precomputes pair-wise cosine similarities. The
strategy selects data points that are most dissimilar to
already labeled data points. In that way, the dataset
should be diverse (Chen et al., 2015).

Maximum Representativeness-Diversity extends
the previous strategy by adding the condition to not
only select data points that are most dissimilar to al-
ready labeled data points (diversity) but also most
similar to unlabeled documents (representative). The
authors (Kholghi et al., 2015) use the product of the
diversity and the representative score as document
score.

K-Means Cluster Centroids embeds the data
points into a vector space and clusters them with the
k-means algorithm. The strategy selects data points
nearest to cluster centroids (Van Nguyen et al., 2022).
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Table 2: Overview of the seven selected corpora: Besides the domain as a selection criterion, the characteristics highlighted
in bold also served as criteria. The row number of labels also states information about the label balance.

Corpus CoNLL03 MedMent. JNLPBA SCIERC WNUT16 GermEval AURC7

Domain News Medicine Bio-
medicine

Scientific
papers

Twitter
posts

Encyclo-
pedia Politics

MATTR 0.96 0.77 0.9 0.79 0.95 0.96 0.89
Size (s=sample,
t=token)

20744 s
� 15 t

4392 s
� 275 t

22402 s
� 26 t

500 s
� 131 t

7244 s
� 18 t

31300 s
� 19 t

7977 s
� 27 t

# of labels 4 (unbal.) 1 (bal.) 5 (unbal.) 6 (unbal.) 10 (unbal.) 3 (unbal.) 2 (bal.)
Language English English English English English German English
Data ratio
without labels 0.205 0 0.113 0.002 0.537 0.411 0.436

# of labels
per sample 1.691 80 2.674 16.188 0.771 1.206 0.634

Hybrid Strategies.
Representative LC sequentially applies an explo-

ration and then an exploitation strategy. At first, the
exploration strategy selects data points that represent
the unlabeled documents best. The least confidence
strategy selects data points from this subset the model
is most uncertain about (Kholghi et al., 2017).

Information Density uses a combination of the
representative and the entropy strategy. For each doc-
ument, the strategy independently computes the co-
sine similarity with the unlabeled dataset and the en-
tropy score. Afterward, the product of these scores
represents the document (Settles and Craven, 2008).

5 EXPERIMENTAL SETUP

We conducted four experiment series, which are il-
lustrated in Figure 3: The results of the first three pre-
series led to our standard series, which we applied to
all strategies. For all experiment series, we defined
two test concepts:

Performance Tests: measure the F1 macro score at
each iteration of the AL cycle. Following each
data proposal, ALE retrains the model on the
growing training corpus and evaluates the model
on the corresponding complete and immutable
test corpus. The scores are averaged across the
seed runs (Table 1). Good-performing AL strate-
gies show a steeper increase than the randomizer
in model performance (see Figure 5).

Variance Tests: measure the variance and standard
deviation of the F1 macro scores for each iteration
of the AL cycle across the seed runs (Table 1). AL
strategies with lower variance are preferable be-
cause they do not seem to be sensitive to random
processes. We also call strategies fulfilling this
characteristic robust.

The Model Architecture series explored various
models from the RoBERTa family (Liu et al., 2019),
taking into account the large number of experiments
and their associated runtime. To ensure reliable con-
fidence estimates, we tested label smoothing (Wang
et al., 2021) and a CRF layer (Liu et al., 2022). La-
bel smoothing yielded better model calibration. In
the Seed Settings series, we assessed the number of
seed runs required to obtain stable variance and per-
formance estimates. Additionally, in Aggregation
Methods, we evaluated different aggregations for un-
certainty strategies, selecting only the most effective
ones for use in the Comprehensive Comparison: We
summarize the main parameters as follows: We use
the Distil RoBERTa Base model(Liu et al., 2019; Sanh
et al., 2020)5 with label smoothing of 0.2. To realize
a fair comparison between the different strategies, we
set fixed hyperparameters for the model. Therefore,
we always used 50 training epochs, a learning rate of
2e− 5, and a weight decay of 0.01 as recommended
by (Liu et al., 2019; Kaddour et al., 2023). We used
a batch size of 64. For ALE we use 3 seed runs for
performance tests and 20 seed runs for variance tests.
We chose the step size per corpus so that each data
proposal delivers a similar amount of tokens.

At this stage, we use only the best-performing ag-
gregation method for the uncertainty strategies found
in the pre-series Aggregation Methods. This results in
12 strategies. For each strategy, we run 2 variance
tests and 7 performance tests. For the randomizer
baseline, we only conducted the performance tests.
This results in 115 single experiments.

We used a workstation with 96 CPU cores and
3 Nvidia Quadro RTX 8000, each with 48GB of
VRAM. The experiments took about 720 hours (30
days).

5https://huggingface.co/distilbert/distilroberta-base
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Figure 3: Process to derive our standard evaluation setting, which was applied to each selected strategy.

6 RESULTS

The following sections describe our results regarding
the performance, robustness, and data bias of the con-
sidered AL strategies.

6.1 Performance and Robustness
Comparison

We assessed the performance with two methods: Area
under the learning curve (AUC) and Wilcoxon Signed-
Rank Test (WSRT). AUC serves as an empirical mea-
sure to compare different strategies with each other
based on the F1 macro score depending on the number
of data points (see Figure 5). The larger the area under
the curve, the better the strategy (Settles and Craven,
2008). The authors of (Rainio et al., 2024) recom-
mend the WSRT to compare two models with each
other based on evaluation metrics (here F1 macro
score). We use it to determine which strategies are
statistically significantly better than the randomizer.
Then, AUC ranks these AL strategies. Figure 4 de-
picts the performance of each strategy and corpus. In
the following, we call each combination of AL strat-
egy and corpus a use case (single cell in the figure),
and a domain is represented by a corpus and consti-
tutes a row in the figure.

Exploration strategies show the smallest benefit.
Among the selected subset of strategies — diversity
(diversity), representative (k means bert), and their
combination (rep diversity) — the combination per-
formed best across various domains, improving 5 out
of 7 use cases, while the other two improved only 3 to

4 use cases. A more extensive evaluation of further
exploration strategies could provide deeper insights
into this area.

The selected hybrid approaches have shown sim-
ilar performance. Both improved 6 out of 7 use
cases. The sequential approach (representative LC)
was slightly better.

Among the exploitation strategies, three exhibit
strong performance (fluctuation history, tag count,
and tag flip), especially for the corpora GermEval and
JNLPBA. Across the domains, they improved 6 out
of 7 use cases. The other strategies show a moder-
ate impact. Based on these results, it seems helpful
to use historical information (fluctuation or flips) and
documents with many entities (tag count).

We compared the hybrid strategies and their un-
derlying exploitation methods. The integration of an
exploitation approach with an exploration approach
appears to extend the coverage across the use cases.
For instance, the representative LC strategy, which
utilizes the least confidence strategy, improved perfor-
mance in 6 out of 7 use cases. When least confidence
is applied alone, it improved 4 out of 7 use cases. A
similar pattern is observed with information density,
where the combination of entropy and density infor-
mation demonstrates enhanced efficacy.

From the domain perspective, we made the fol-
lowing observations: None of the strategies is suit-
able for AURC-7 and Medmentions. AURC-7 is a
balanced corpus with argumentation documents: each
argument follows a counter-argument. Medmentions
has a very high average number of entities per docu-
ment (80) with only one label. In both cases, the ran-
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the number of data points used for training (Entropy is al-
most fully covered by the least confidence strategy).

dom selection might gain sufficient information and
cannot be improved with AL.

The strongest impact was detected for GermEval
and JNLPBA, which represent the largest corpora in
our test suite. See Figure 5 for the learning curves
for JNLPBA as an example. Although the size of
CoNLL2003 is similar to JNLPBA, we cannot see the
same improvement for CoNLL2003. For GermEval
and WNUT every strategy performs better than the
randomizer.

We assessed the strategies’ robustness via the
standard deviation (see Section 5). We require that
the random processes in the training process or the
selection of the initial subset should not significantly
impact good-performing strategies. The results show
that the two best-performing strategies (fluctuation
history and tag count) are also the most robust strate-

gies. The least robust strategies are information den-
sity, representative LC, and diversity.

6.2 Bias Comparison

We also assessed the data bias and the amplification
by the strategies. Inspired by (Hassan and Alikhani,
2023) on classification tasks, we extended their ap-
proach to ER. They showed that unequal label distri-
butions infer a data bias. The authors compare the in-
herent label distribution of the corpora with the error
distribution of the trained model. Good AL strategies
should not introduce high error rates for low-frequent
labels. We derived the following formula to measure
the bias in our use case. Requirements:

(I) Compute the error errl (analog to accuracy) for
each label l except the O-tag. (II) Compute the nor-
malized data distribution dl per label l, so that you
obtain values from the interval [0,1] per label.

The bias per label is defined as:

bl =−errl · log(dl)

Errors associated with low-frequency labels tend
to exacerbate bias more significantly than those linked
to high-frequency labels. This measurement of bias is
effective only as a comparative score within the same
corpus and cannot be applied nominally across differ-
ent corpora.

Our findings indicate that the strategies with the
least susceptibility to bias are tag count and fluctua-
tion history. In contrast, the strategies most amplify-
ing bias include random selection, representative di-
versity, and diversity strategies. We hypothesize that
the random selection strategy amplifies data bias be-
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cause it mirrors the inherent data distribution. Con-
versely, strategies like tag count or fluctuation history
appear to select beneficial subsets of data, thereby
mitigating errors in low-frequency labels. This is also
illustrated in Figure 5, where these strategies outper-
form random selection even in the region where the
data sets begin to converge (∼ 10k documents), fur-
ther demonstrating their efficacy in reducing bias.

7 CONCLUSION

This paper conducted a comparative performance
analysis of Active Learning (AL) strategies in the con-
text of entity recognition (ER). Based on a systematic
selection of corpora and strategies, guided by a com-
prehensive scoping review, we conducted 115 exper-
iments within a standardized evaluation setting. Our
assessment referred to both performance and runtime.
We identified conditions where AL achieved signifi-
cant improvements, as well as situations where its re-
sults are more limited. Two strategies came out as
clear winners: tag count and fluctuation history.

Future work may expand the evaluation to a
broader range of AL strategies and corpora, includ-
ing those that do not adhere to the rigorous construc-
tion standards of benchmark datasets, to explore their
specific challenges.
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