
Soft Querying JSON Datasets with Personalized Preferences and
Aggregations

Paolo Fosci a and Giuseppe Psaila b

University of Bergamo, DIGIP, Viale Marconi 5, 24044 Dalmine (BG), Italy

Keywords: Soft Web Intelligence, User-Defined Fuzzy Evaluators, Novel Constructs in J-CO-QL+, Soft Querying on
JSON Datasets, Preferences Among Linguistic Predicates.

Abstract: Soft conditions are a powerful and established formal tool to select data on the basis of linguistic predicates. In
previous work, the J-CO Framework (and its query language) was used to perform Soft Web Intelligence, i.e.,
a practical interpretation of the concept of Web Intelligence that exploits soft conditions to search for desired
items in JSON datasets acquired from Web sources. However, the effectiveness of soft conditions depends
on how elementary conditions are combined: in this sense, a plethora of proposals are available, such as the
vector p-norm.
This paper shows how a generic concept, named “user-defined fuzzy evaluator”, that has been recently intro-
duced in the query language, actually allows users to define their own operators, so as to express advanced
operators such as “and possibly”. The paper also shows how the AND operator defined as a vector p-norm
actually behaves, depending on different configurations of parameters, so as to let the reader understand how
to use it in practice.

1 INTRODUCTION

The concept of Soft Web Intelligence was introduced
in (Fosci and Psaila, 2022b; Fosci and Psaila, 2023c)
and later refined in (Fosci and Psaila, 2023a): the con-
cept gives a practical interpretation to the general con-
cept of Web Intelligence, which was introduced more
than two decades ago in (Yao et al., 2001). Specif-
ically, the vision behind Soft Web Intelligence is to
view the World-Wide Web as a giant source of infor-
mation and datasets, that must be gathered from web
sources, possibly stored within NoSQL (Not Only
SQL) data stores, integrated and queried; soft query-
ing, based on Fuzzy Sets and Fuzzy Logic (introduced
in (Zadeh, 1965)), a formal approach that is widely
recognized as a key concept in Artificial Intelligence,
could be the right tool to deal with imprecise and lin-
guistic conditions to be evaluated on the mass of gath-
ered data.

Tasks of Soft Web Intelligence can actually be per-
formed by exploiting the J-CO Framework(Fosci and
Psaila, 2022b; Fosci and Psaila, 2023a)); it is a pool
of software tools under development at the Univer-

a https://orcid.org/0000-0001-9050-7873
b https://orcid.org/0000-0002-9228-560X

sity of Bergamo (Italy); the framework is designed
to provide analysts and data engineers with sophisti-
cated capabilities to gather, integrate and query JSON
datasets (Fosci and Psaila, 2021a). In particular, its
query language, named J-CO-QL+, is undergoing a
continued evolution with the addition of novel con-
structs. Specifically, the authors are now unifying two
distinct concepts, to simplify the language and pro-
vide a more powerful construct for evaluating mem-
bership degrees to fuzzy sets, so as to widen the po-
tential application fields of the framework. Indeed,
in the current version of the language, the novel con-
cept of “Fuzzy Evaluator” unifies the former concepts
of “Fuzzy Operator” (see (Fosci and Psaila, 2022b;
Fosci and Psaila, 2023c)) and of “Fuzzy Aggrega-
tor” (see (Fosci and Psaila, 2023b; Fosci and Psaila,
2023a)).

The concept of “Fuzzy Evaluator” not only unifies
two concepts that were previously managed through
two distinct linguistic constructs; it also opens the
way to define sophisticated fuzzy concepts that it was
not possible to specify previously, such as preferences
among predicates based on sophisticated approaches.
An interesting example is constituted by logical oper-
ators defined through the “Vector p-norm” (see (Bor-
dogna and Psaila, 2008; Fosci and Psaila, 2023b)),

Fosci, P. and Psaila, G.
Soft Querying JSON Datasets with Personalized Preferences and Aggregations.
DOI: 10.5220/0013070200003825
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 153-164
ISBN: 978-989-758-718-4; ISSN: 2184-3252
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

153

in which preferences among predicates can be ex-
pressed, so as to give unequal importance to predi-
cates. The availability of a linguistic tool that jointly
supports user-defined preferences and aggregations
further expands the way tasks of Soft Web Intelligence
can be carried on.

This paper, after a discussion about previous work
(Section 2), introduces the novel statement CREATE
FUZZY EVALUATOR, showing how to define various
types of aggregators, both for aggregating raw data
and for expressing preferences among linguistic pred-
icates (Section 3). Then, the practical exploitation of
fuzzy evaluators is discussed (Section 4), by relying
on the same case study formerly presented in (Fosci
and Psaila, 2023a), so as to see the improvements that
are enabled by the novel concept. Section 5 presents a
sensitivity analysis with different importance weights
for linguistic predicates, so as to understand how the
behaviors of the Vector p-norm varies. Finally, Sec-
tion 6 draws conclusions and future work.

2 PREVIOUS WORK

This paper relies on several previous works. Here-
after, the main ones are discussed. A detailed review
of related work on the topic is not reported, because
the current proposal is unique and not counterparts are
available. Furthermore, readers that are interested in
the relation with Web Intelligence can refer to (Fosci
and Psaila, 2022b; Fosci and Psaila, 2023a).

2.1 The J-CO Framework

The J-CO Framework is a pool of software tools
whose goal is to provide analysts with powerful sup-
port for gathering, integrating and querying possibly-
large collections of JSON datasets. The core of the
framework is its query language, named J-CO-QL+.

The current organization of the framework is not
different from the one that was presented in (Fosci
and Psaila, 2023a). Consequently, it is not necessary
to report it in this paper (the interested reader can refer
to (Fosci and Psaila, 2023a)). The following provides
a short overview of the main features that are offered
by the J-CO Framework.

• J-CO-QL+ is the query language of the frame-
work. By means of it, users (such as analysts
and data scientists) can write scripts that ac-
quire JSON datasets from Web sources and JSON
stores, transform and integrate them, perform soft
queries and save results again into JSON stores.

• J-CO-QL+ instructions are made through declar-
ative statements. Scripts are sequences of state-

ments that receive and generate a “temporary col-
lection”, i.e., a pool of JSON documents.

• Fuzzy sets are natively supported: for each sin-
gle JSON document, it is possible to evaluate its
membership degrees to several fuzzy sets at the
same time. This “fuzzification” process is made
possible by adding, to each document, a special
root-level field, named ˜fuzzysets, holding the
membership-degree values to different fuzzy sets.
Through membership degrees to fuzzy sets, it is
possible to exploit the concept of “linguistic pred-
icate”, so as to exploit vague or imprecise condi-
tions.

2.2 Fuzzy Logical Aggregators

When dealing with multiple fuzzy sets, to which an
entity can belong, and with a multitude of entities that
belong to the same fuzzy set, several interpretations of
the concept of “aggregation” can be provided. Indeed,
a plethora of proposals can be found in the literature.

Many fuzzy aggregators, such as “t-norm” and
“t-conorm” operators, see (Farahbod and Eftekhari,
2012), consider the aggregation of “pairs of fuzzy
sets” for the same entity, for example the classical
AND and OR operators in the fuzzy version, where a
fuzzy set denotes a linguistic property. For example,
if CheapFlat is the linguistic predicate that denotes if
a flat belongs to the fuzzy set of “cheap flats”, while
LargeFlat is the linguistic predicate that denotes if a
flat belongs to the fuzzy set of “large flats”,

CheapFlat AND LargeFlat
denotes a complex linguistic condition that looks for
those flats that are “cheap and large“. How to ob-
tain the resulting membership degree? Many propos-
als for t-norm and t-conorm operators are available in
the literature; the simplest one is to use the minimum
membership degree1, where for the OR operator (the
corresponding t-conorm operator of the t-norm oper-
ator AND), the maximum membership degree is con-
sidered2.

In an orthogonal way (studied in (Fosci and Psaila,
2023a)), it is possible to aggregate entities in groups
(or in categories) G j = {x j,1,x j,2, . . .}) of items x j,i
that belong to the same group G j because they share
some common properties or are samples of the same
category of items. Each x j,i singularly may belong to
a fuzzy set A, thus it is provided with a membership
µA(x j,i). Consequently, the set A of groups G j can be
seen as a partition of A: with this vision, the member-
ship of a group G j to A should be derived by somehow

1µCheapFlat ANDLargeFlat = min(µCheapFlat ,µLargeFlat)
2µCheapFlat ORLargeFlat = max(µCheapFlat ,µLargeFlat)

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

154

aggregating memberships µA(x j,i), group by group.
Alternatively, if items x j,i do not have a membership,
their properties might have to be aggregated to obtain
the final membership of the G j group.

Popular fuzzy aggregators of this type are
“Weighted aggregation” (see (Dombi and Jónás,
2022)) and “Ordered Weighted Aggregation” (OWA)
(Yager, 1988; Li and Yen, 1995).

2.3 The Vector p-norm

When soft conditions are written by means of lin-
guistic predicates, the basic interpretation of AND and
OR as the minimum (respectively, maximum) mem-
bership degree to the fuzzy sets that correspond to
the linguistic predicates is overly simplified. Further-
more, “preferences” for linguistic predicates can be
conceived as their “importance”.

In the literature, the “Vector p-norm” was pro-
posed as an elegant mathematical formalization to
cope with this situation. The reader can refer to (Bor-
dogna and Psaila, 2009). Hereafter, the general for-
mulas are reported.

Given a list P = (p1, . . . , pn) of linguistic predi-
cates pi, µi(x) denotes the membership degree of the
item x to the fuzzy set associated with pi. Consider
the list I = (i1, . . . , in), where ii is the “importance de-
gree” for the predicate pi.

The membership degree computed by the AND op-
erator in the p-norm version is formulated as in Equa-
tion 1:

µAND(x) = 1− p

√
Σn

k=1(ik)
p × (1−µk(x))p

Σn
k=1(ik)

p (1)

To understand the rationale, in the case of n = 2 (bi-
dimensional case), all ik = 1 (no preferences) and
p = 2, the square root computes the Minkowski dis-
tance between the point (µ1,µ2) and the point (1,1).
Consequently, the final membership degree is maxi-
mized when the Minkowski distance between the two
above-mentioned points is minimized. In practice,
when all ik = 1, the points (µ1,µ2) that are equidistant
from the point (1,1) have the same final membership
degree (“iso-membership” line), because they are on
the same circle that is centered in the point (1,1) (see,
for example, the black solid line in Figure 1).

The OR operator is defined as in Equation 2:

µOR(x) =
p

√
Σn

k=1(ik)
p ×µk(x)p

Σn
k=1(ik)

p (2)

Reasoning for the case n = 2, all ik = 1 and p = 2,
the final membership degree is the Minkowski dis-
tance between the point (µ1,µ2) and the point (0,0)

Figure 1: Iso-membership lines for the AND (solid lines) and
the OR (dashed lines) defined as Vector p-norm, with differ-
ent importance degrees.

(the final membership degree is maximized when the
Minkowski distance from the point (0,0) is maxi-
mized). Consequently, points on the same circle cen-
tered on the point (0,0) have the same final member-
ship degree (see, for example, the black dashed line
in Figure 1).

Keeping n= 2 and varying the importance degrees
ik, circles become ellipsis. The reader can see this
effect in Figure 1.

Looking at solid lines, the blue line is obtained
with (i1, i2) = (2,1), i.e., µ1 doubles the importance
of µ2; all the points on this line denotes pairs (µ1,µ2)
giving the same final membership degree µ = 0.8;
clearly, a small variation of µ1 must be compensated
by a much greater variation of µ2, to obtain the same
final membership degree. Similarly, the red solid line
corresponds to the case (i1, i2) = (1,2), i.e., µ1 has
half the importance of µ2. Notice that the three solid
lines determine the same final membership degree of
µ = 0.8; consequently, a point on the main diagonal
has the same final membership, independently of the
importance degrees: as an effect, the three solid lines
depicted in Figure 1 cross on one single point, be-
cause they correspond to the same final membership
dgree.

Similarly, the same happens for the dashed lines
in Figure 1, which correspond to the OR operator: the
three dashed lines denotes the same final membership
degree of µ = 0.2.

Notice that, in the case ik = 1, the limit for p going
to infinite of the AND and OR operators are the classical
definitions based on min and max, respectively, Con-
versely, when p = 1, AND and OR behave in the same
way, so their semantics cannot be distinguished.

The reader can see that the logical operators de-
fined on the basis of the Vector p-norm are a form
of fuzzy aggregation: given a vector of membership

Soft Querying JSON Datasets with Personalized Preferences and Aggregations

155

Listing 1. J-CO-QL+: fuzzy evaluator
highCumulativeRain.
1. CREATE FUZZY EVALUATOR highCumulativeRain

 PARAMETERS rainData TYPE ARRAY

 FOR ALL rd IN rainData

 AGGREGATE rd AS av

 EVALUATE av

POLYLINE [(0, 0.0), (50, 0.0), (100, 0.1),

(200, 0.7), (300, 0.9), (400, 1.0)];

Figure 2: Membership function for the fuzzy evaluator
highCumulativeRain.

degrees and a vector of importance degrees, they are
aggregated to compute the final membership degree.

The above definitions rely on the “Minkowski dis-
tance”, one of the concepts of the “Minkowski geom-
etry” (Thompson, 1996). These concepts are widely
used in Mathematics (see, for example, (Crasta
and Malusa, 2007)) and in various applied sciences
(Merigó and Gil-Lafuente, 2008),

3 FUZZY EVALUATORS IN THE
J-CO FRAMEWORK

As far as linguistic capabilities are concerned, the
novel contribution that is presented in this paper is the
concept of “Fuzzy Evaluator”, recently introduced in
J-CO-QL+ (the query language of the J-CO Frame-
work).

The novel statement CREATE FUZZY EVALUATOR
unifies the two previously-existing statements CREATE
FUZZY OPERATOR (Fosci and Psaila, 2021b; Fosci
and Psaila, 2022a) and CREATE FUZZY AGGREGATOR
(Fosci and Psaila, 2023a): indeed, a fuzzy evaluator
can be used for computing membership degrees of a
JSON document by moving from elementary prop-
erties, arrays of simple values, arrays of documents,
pools of membership degrees, all together at the same
time. This way, users can define libraries of highly
complex fuzzy evaluators, enabling them to express
sophisticated soft queries on collected JSON datasets.

Listing 2. J-CO-QL+: fuzzy evaluator owaRain.
2. CREATE FUZZY EVALUATOR owaRain

 PARAMETERS rainData TYPE ARRAY

 SORT rd IN rainData

BY rd TYPE NUMERIC ASC AS sRainData

 FOR ALL srd IN sRainData

 LOCALLY (POS^2 - (POS-1)^2)

/ (COUNT(sRainData)^2) AS w

 AGGREGATE srd * w AS av

 EVALUATE av

POLYLINE [(0.00, 0.0), (0.10, 0.0), (0.15, 0.7),

 (0.20, 0.8), (0.50, 0.9), (0.80, 1.0)];

A fuzzy evaluator is characterized by the follow-
ing features.

• The fuzzy evaluator receives a list of “formal pa-
rameters”, which can be either simple values or
documents or arrays; the actual values are used to
evaluate the final membership degree.

• A “precondition” is a Boolean condition that is
evaluated on the actual parameters, so as to ensure
that the computation can be performed properly.

• A pool of “internal variables” can be derived, so
as to perform preliminary computations.

• Internal array variables can be derived by sorting
input arrays.

• A pool of “aggregated values” can be computed,
by scanning arrays that are received as actual pa-
rameters; the resulting aggregated values become
internal variables.

• A “resulting value’ is computed, by evaluating an
expression that can exploit both parameters and
internal variables.

• If the resulting value is in the range [0,1], it can
be returned as the “output membership degree”. If
this is not the case, it becomes the x-axis value of a
“membership function” that is specified as a poly-
line; the corresponding y-axis value (in the range
[0,1]) becomes the output membership degree.
The syntax of the statement for defining fuzzy

evaluators will be discussed hereafter.

Simple Fuzzy Aggregation. Listing 1 reports the
definition of a very simple fuzzy evaluator (named
highCumulativeRain), whose goal is computing a
cumulative sum of numerical values (millimeters of
rain) within an array, so as to obtain a membership
degree that denotes high cumulative rain.

The reader can see the clauses PARAMETERS,
which defines the formal parameters, and
PRECONDITION, which specifies the Boolean
precondition. Specifically, the evaluator receives the
array rainData, whose values are numbers denoting
millimeters of rain.

The “resulting value” is computed by the
EVALUATE clause; the expression in the clause con-
tains only the internal variable av, which is computed

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

156

Figure 3: Membership function for the fuzzy evaluator
owaRain.

by the previous clause FOR ALL. The clause FOR ALL
is substantially straightforward: it scans the input ar-
ray rd, summing its values into the internal variable
av (see the sub-clause AGGREGATE). Thus, the result-
ing value is the sum of millimeters of rain.

The resulting value becomes the x-axis value of
the membership function, which is defined as a poly-
line function by the clause POLYLINE (the function is
depicted in Figure 2): the corresponding y-axis value
is returned as output membership degree.

More Complex Fuzzy Aggregation. Listing 2 shows
a more complex fuzzy evaluator, named owaRain.
It performs the “Ordered Weighted Aggregation”
(OWA, see (Yager, 1988)): a monotone function is
used to determine the weights of each item in the ar-
ray to aggregate, in such a way that the array is sorted
beforehand.

A novel clause, named SORT, derives a novel in-
ternal array, named sRainData, which is obtained by
sorting the input array rainData in ascending order.

The clause FOR ALL now contains an extra sub-
clause LOCALLY, which defines a variable whose value
is locally associated to each single scanned value.
This way, a specific weight w is computed for each
single value; thus, the aggregated value av is obtained
by summing the products of each single value (de-
noted as srd) by its weight w.

Again, this aggregated value is the x-axis value of
the membership function, which is depicted in Figure
3.

A Fuzzy Evaluator for Generic AND Based on the
Vector p-norm. A fuzzy evaluator can be used to
aggregate membership degrees, even in a non-trivial
way, such as the operators AND and OR defined through
the vector p-norm (see Equation 1 and Equation 2).
Listing 3 reports the fuzzy evaluator pNormAND, which
implements Equation 1.

The evaluator receives three formal parameters,

Listing 3. J-CO-QL+: fuzzy evaluator pNormAND.
3. CREATE FUZZY EVALUATOR pNormAND

 PARAMETERS

 p TYPE NUMERIC,

 importances TYPE ARRAY,

 memberships TYPE ARRAY

 PRECONDITION p >= 1

AND COUNT(memberships) = COUNT(importances)

 FOR ALL m IN memberships

 LOCALLY (1-m)^p AS x,

 importances[POS]^p AS i

 AGGREGATE i*x AS numerator,

 i AS denominator

 EVALUATE 1 - (numerator/denominator) ^(1/p);

respectively the exponent (or root) p, the array of im-
portance degrees (named importances) and the array
of membership degrees (named memberships). The
precondition must check that p is no less than 1 and
that the two arrays have the same size.

The complexity of Equation 1 is managed by the
FOR ALL clause, which is able to deal with several
local variables and with several aggregated variables
at the same time. Specifically, the x is the p-th power
of the complement of a membership value m, while
i is the p-th power of the corresponding importance
degree. The AGGREGATE clause computes the sum of
the product of i by x (named numerator, as well as
the sum of i (named denominator).

This way, the clause EVALUATE can subtract
to 1 the result of the division of numerator by
denominator. Since the resulting number is in the
range [0,1] and it is already the desired output mem-
bership degree, it is returned as it is (no polyline is
specified).

The reader can notice that the fuzzy evaluator is
still declarative and elegant. Furthermore, it is an ex-
ample of how a fuzzy evaluator can be used to extend
linguistic capabilities of J-CO-QL+: novel aggrega-
tions of membership degrees can be easily defined by
the user, to be used in soft conditions. Users can cer-
tainly create their own library of fuzzy evaluators, to
be exploited when necessary.

The statement CREATE FUZZY EVALUATOR in-
corporates the former statements CREATE FUZZY
OPERATOR and CREATE FUZZY AGGREGATOR. In-
deed, a former fuzzy operator (Fosci and Psaila,
2021b) encompassed only the clauses PARAMETERS,
PRECONDITION, EVALUATE, and POLYLINE; further-
more, arrays were not allowed as parameters. In con-
trast, a former fuzzy aggregator (Fosci and Psaila,
2023a) provided the same clauses that are presented in
this paper, but only one clause SORT was allowed after
the clause PRECONDITION, as well as only one clause
FOR ALL was possible. In contrast, a fuzzy evalua-
tor can be defined as a free sequence of clauses SORT,
FOR ALL, and DERIVE (which is not shown in this pa-
per, whose goal is to derive novel internal variables).

Soft Querying JSON Datasets with Personalized Preferences and Aggregations

157

{

"city" : "Osio Sopra",

"province" : "BG",

"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"rainData" : [

 {

"timestamp" : "12/05/2023 21:00:00",

"value" : 2.2

},

…, // other rain data

 {

"timestamp " : "24/05/2023 17:00:00",

"value" : 47.8

}

]

}

Figure 4: Example of document in the starting collection
MeasuredRain.

4 CASE STUDY AND QUERY

This section provides the second contribution of the
paper, i.e., showing how to exploit preferences in soft
conditions by using a generic fuzzy concept, such as
user-defined fuzzy evaluators.

To do that, the section relies on the same case
study that was introduced in (Fosci and Psaila,
2023a).

4.1 Case Study

In (Fosci and Psaila, 2023a), a dataset of rain data
was collected on May 2023. The dataset was made
available on an institutional Open-Data portal3: it
describes measurements of rain performed by rain
sensors, located in the Lombardy region of Italy, on
May 2023.

Figure 4 reports one of the 207 documents in
the collection MeasuredRain, that was obtained by
preprocessing source datasets (see (Fosci and Psaila,
2023a)). Each single document describes a sensor
and the measurements that it has taken: the field
sensorId reports the identifier of the sensor; the
fields city, province, longitude and latitude
briefly represent the position of the sensor. Notice
the array field rainData (highlighted by a blue box),
which contains simple documents describing mea-
surements of rain (the field value reports millime-
ters of rain, and the field timestamp reports when the
measurement was taken). The average number of doc-
uments in the array field rainData is above 4400.

The application goal was to discover those sen-
sors that, in the considered time-window, measured
high peaks of rain possibly with significant cumula-
tive rain. Specifically, the addressed problem was for-
malized as reported in Problem 1 (taken from (Fosci

3Open-Data portal of Regione Lombardia:
https://www.dati.lombardia.it/

and Psaila, 2023a)).

Problem 1. Given the measurements of rain collected
in the MeasuredRain collection, find out those sen-
sors that measured high peaks of rain, possibly with
significant cumulative rain.

The analysis was made in fuzzy terms: the mem-
bership of each sensor to two fuzzy sets named,
respectively, PeaksOfRain, denoting those sensors
that measured peaks of rain, and SignificantRain,
denoting those sensors that measured a significant
amount of rain in the monitored period, were eval-
uated. Then, the memberships to the fuzzy sets
PeaksOfRain and SignificantRain were com-
bined together by means of a weighted fuzzy aggre-
gator, whose weights were predetermined, to discover
those sensors that reported interesting data.

In this work, the same dataset is exploited, as well
as the same problem is addressed; however, instead
of using a weighted fuzzy aggregator, the adoption of
the generalized AND operator based on the vector p-
norm is explored; consequently, the fuzzy evaluator
pNormAND (reported in Listing 3) will be used, so as
to express preferences between memberships to fuzzy
sets (i.e., preferences between linguistic predicates).

The problem of using the operator AND based on
the vector p-norm with preferences is to comprehend
how to choose p and ik (the importance weights, or
preferences); indeed, the fuzzy evaluator pNormAND
is parametric as far as they are concerned. Conse-
quently, it is worth considering several different con-
figurations, so as to study the behavior of the operator
with different configurations of its parameters.

Important Disclaimer. The authors are not experts
in meteorology or weather sensors. This case study
was defined solely to showcase the capabilities of the
J-CO Framework and should not be interpreted as sci-
entifically accurate or professionally verified, as far as
the meteorological side is concerned.

4.2 Query

Problem 1 can be practically interpreted as described
by Query 1, enabling the writing of a J-CO-QL+

script.

Query 1. Consider the universe of sensors.
The fuzzy set that is named PeaksOfRain de-

notes those sensors that measured peaks of rain; this
corresponds to the linguistic predicate P1: “is x a sen-
sor that measured peaks of rain?”.

The second fuzzy set is named
SignificantRain and denotes sensors that
measured a significant amount of rain in the

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

158

Listing 4. J-CO-QL+: retrieval and soft querying.
4. USE DB webist2023

ON SERVER MongoDB 'http://127.0.0.1:27017';

5. GET COLLECTION MesauredRain@webist2023;

6. FILTER
 CASE WHERE WITH .rainData

 GENERATE

 CHECK FOR

 FUZZY SET SignificantRain

USING highCumulativeRain(EXTRACT_ARRAY(

.value FROM ARRAY .rainData)),

FUZZY SET PeaksOfRain

USING owaRain(EXTRACT_ARRAY(

.value FROM ARRAY .rainData));

7. JOIN OF COLLECTIONS temporary AS t,

Configurations@webist2023 AS c

 SET FUZZY SETS KEEP LEFT

 CASE WHERE

KNOWN FUZZY SETS SignificantRain, PeaksOfRain

 GENERATE

 CHECK FOR

 FUZZY SET Wanted

USING pNormAND (.c.p, .c.importances,

MEMBERSHIP_ARRAY([PeaksOfRain,

SignificantRain]))

 ALPHACUT 0.80 ON Wanted

 BUILD {

.city : .t.city,

.province : .t.province,

.sensorId : .t.sensorId,

.dateStart : MIN_ARRAY(.t.rainData, STRING,

.timestamp),

.dateEnd : MAX_ARRAY(.t.rainData, STRING,

 .timestamp),

.label : .c.label,

.ranking : MEMBERSHIP_TO (Wanted) }

DEFUZZIFY;

8. SAVE AS Results@webist2023;

monitored period; it corresponds to the linguistic
predicate P2: “is x a sensor that measured significant
rain?”.

A third fuzzy set that is named Wanted de-
notes those sensors that are in the fuzzy set
PeaksOfRain “and possibly” in the fuzzy set
SignificantRain, selecting only sensors whose
membership to the fuzzy set Wanted is no less than
0.80. Exploit many different configurations of param-
eters for the evaluator pNornAND, so as to find the
configuration that best meets the request “P1 and pos-
sibly P2”.

To achieve the requirement to use several con-
figurations for parameters of the fuzzy evalua-
tor pNornAND, a collection of documents, named
Configurations, is created. The structure of JSON
documents in this collection will be presented later.
Hereafter, the J-CO-QL+ script is presented.

Listing 4 actually performs Query 1; notice that
the first line number is 4, because the three defini-
tions of fuzzy evaluators reported in previous listings
are part of the query itself. Hereafter, the query is
presented in details.

Acquiring Data. Line 4 of Listing 4 specifies the
database to connect with. Specifically, the database
webist2023 is managed by MongoDB.

On Line 5 of Listing 4, the instruction GET
COLLECTION retrieves the content of the collection
MeasuredRain from the database webist2023; this
collection becomes the new temporary collection of
the process (see Section 2.1). Figure 4 shows an ex-
ample of document in the collection.

Document Fuzzification with Fuzzy Evaluators.
The instruction FILTER, on Line 6 of Listing 4, eval-
uates the belonging of each document in the current
temporary collection to the fuzzy sets PeaksOfRain
and SignificantRain. Hereafter, it is explained in
details.

• The condition CASE WHERE selects (in a Boolean
way) those documents that have the field
rainData. The remainder of the instruction will
work only on these documents; any other docu-
ments are discarded.

• The block GENERATE actually generates the output
documents, by possibly performing several ac-
tions, including evaluating memberships to fuzzy
sets through the clause CHECK FOR.

• The clause CHECK FOR may contain different
branches FUZZY SET, one for each fuzzy set
whose membership has to be evaluated. There are
two branches FUZZY SET on line 6.

• The first branch FUZZY SET evaluates the mem-
bership to the fuzzy set SignificantRain. To
perform this task, the soft condition USING (which
actually provides the membership to the fuzzy set
under consideration) exploits the fuzzy evaluator
highCumulativeRain defined in Listing 1.
To call the fuzzy evaluator, an array of numbers
must be provided as actual parameter: since the
array field rainData contains nested documents,
the special built-in function EXTRACT ARRAY cre-
ates a novel array of numbers by projecting the ar-
ray field rainData on the inner (numerical) field
value.
The membership provided by the fuzzy evaluator
highCumulativeRain becomes the membership
degree of the current JSON document to the fuzzy
set SignificantRain.
The current document is then fuzzified by adding
the special root-level field ˜fuzzysets, so as
to report the computed membership (see Sec-
tion 2.1).

• The second branch FUZZY SET evaluates the
membership of the current document to the fuzzy
set PeaksOfRain, through the fuzzy evaluator
OwaRain (reported in Listing 2).
Apart from the fact that the evaluator OwaRain

Soft Querying JSON Datasets with Personalized Preferences and Aggregations

159

{

 "city" : "Osio Sopra",

 "province" : "BG",

 "sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"rainData" : […],

 "~fuzzysets" : {

 "PeaksOfRain" : 0.930466293345489,

 "SignificantRain" : 0.75399998486042

 }

}

Figure 5: Example of document generated by the instruc-
tion FILTER on Line 6.

performs an OWA aggregation (instead of a cumu-
lative aggregation) the branch behaves similarly to
the previous one: the evaluator is called by pass-
ing the array of values obtained by projecting the
array rainData on the inner field value by means
of the special built-in function EXTRACT ARRAY;
then, the computed membership becomes the de-
gree to the fuzzy set PeaksOfRain.
Definitely, the goal of the fuzzy set PeaksOfRain
is to denote (through the membership) those sen-
sors that measured a peak of rain; the OWA ap-
proach allows for doing that, because the items
with the highest values (typically, two or three)
gain the greatest weights; consequently, many
days of rain with few millimeters of rain do not
contribute significantly to the aggregated mem-
bership: in contrast, two days with heavy rain on
a mass of dry days strongly contribute to achieve
high membership.
A second field is added into the field ˜fuzzysets,
denoting the membership degree to the novel
fuzzy set.

The fuzzified documents of the collection
MeasuredRain, i.e., enriched with membership
degrees to fuzzy sets, constitutes now the current
temporary collection. Figure 5 shows an example
of document generated by the instruction FILTER:
notice the special root-level field ˜fuzzysets (high-
lighted by a yellow box), with the memberships to
the fuzzysets PeaksOfRain and SignificantRain.

Soft Querying with Fuzzy Evaluators. The in-
struction JOIN OF COLLECTIONS, on Line 7 of List-
ing 4, actually performs Query 1. The goal of the in-
struction is to apply the fuzzy evaluator pNormAND to
the fuzzy sets SignificantRain and PeaksOfRain
with different configurations of parameters. To
achieve this purpose, a second collection of docu-
ments, named Configurations, is considered. Fig-
ure 6 shows an example of document in the collec-
tion Configurations: considering Equation 1, in
each document the field p reports the value of the
parameter p and the array field importances holds
the values of the parameters ik; the field label iden-

{

 "label" : "p:7-i1:3-i2:1",

 "p" : 7,

 "importances" : [3, 1]

}

Figure 6: Example of document in the collection
Configurations.

{

 "c" : {

 "label" : "p:7-i1:3-i2:1",

 "p" : 7,

 "importances" : [3, 1]

 },

 "t" : {

"city" : "Osio Sopra",

 "province" : "BG",

"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"rainData" : […],

"~fuzzysets" : {

"PeaksOfRain" : 0.930466293345489,

"SignificantRain" : 0.75399998486042

}

},

"~fuzzysets" : {

 "PeaksOfRain" : 0.930466293345489,

 "SignificantRain" : 0.75399998486042

}

}

Figure 7: Example of temporary document generated by
the instruction JOIN OF COLLECTIONS on Line 7 after the
clause SET FUZZY SETS.

tifies each configuration of parameters with a string
that briefly resumes it.

Hereafter, the instruction JOIN OF COLLECTIONS
is explained in details.

• For each couple (t,c), where t is a document in the
temporary collection, and c is a document in the
collection Configurations in the webist2023
database, the instruction JOIN OF COLLECTIONS
generates a novel document with two root-level
fields named t and c holding, respectively, the t
document and the c document.

• The clause SET FUZZY SETS fuzzifies the novel
document and the option KEEP LEFT fills the field
˜fuzzysets with the fuzzy sets in the t docu-
ment.
Figure 7 shows an example of temporary doc-
ument generated by the instruction JOIN OF
COLLECTIONS after the clause SET FUZZY SETS:
notice the field t holding the document t (high-
lighted by a blue-box), the field c holding the doc-
ument c (highlighted by a red-box), and the field
˜fuzzysets (highlighted by a yellow-box) with
the memberships from the document t.

• The following condition CASE WHERE selects
those documents belonging to the fuzzy sets
PeaksOfRain and SignificantRain.

• The block GENERATE actually generates, filters
and restructures the output documents.

– The clause CHECK FOR contains one branch

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

160

{

"city" : "Osio Sopra",

"province" : "BG",

"sensorId" : 5856,

"label" : "p:7-i1:3-i2:1",

"dateStart" : "01/05/2023 00:00:00",

"dateEnd" : "31/05/2023 23:00:00",

"ranking" : 0.914731773101206

}

Figure 8: Example of document in the collection Results.

FUZZY SET to evaluate the degree of the cur-
rent JSON document to the fuzzy set Wanted.
The goal is to exploit the fuzzy evaluator
pNormAND in order to aggregate the fuzzy sets
PeaksOfRain and SignificantRain with the
configuration of parameters provided by the
document in c the Configurations collection.
Thus, in the soft condition USING, the fuzzy
evaluator pNormAND is called passing as actual
parameters the field c.p for the parameter p,
the array field c.importances for the param-
eters ik, and, by means of the J-CO-QL+ built-
in function MEMBERSHIP ARRAY, the array of
memberships for the parameters µk.
The returned value of the fuzzy evaluator
pNormAND is the membership degree to the
fuzzy set Wanted. Thus, the fuzzy set Wanted
is added to the special field ˜fuzzysets.

– The clause ALPHACUT discards those JSON doc-
uments whose membership degree to the fuzzy
set Wanted is less than 0.80. In this way, only
documents that describe sensors that actually
measured peaks of rain and possibly significant
rain during the monitored period (or very close
to this situation) are selected.

– The block BUILD flattens and restructures
the output documents. In particular, the J-
CO-QL+ built-in functions MIN ARRAY and
MAX ARRAY are used to extract, from the array
rainData, respectively, the starting date (field
dateStart) and the final date (field dateEnd)
of the time-window of the considered rain data.
Notice also the use of the J-CO-QL+ built-in
function MEMBERSHIP TO to assign to the field
ranking the value of the membership degree
to the fuzzy set Wanted.

– The final option DEFUZZIFY actually “defuzzi-
fies” documents by removing the special field
˜fuzzysets, so as documents become again
classical crisp JSON documents.

Figure 8 reports an example of document gener-
ated by the instruction JOIN OF COLLECTIONS.

Saving the Results. The resulting collection, which
contains documents describing sensors of interest on
the basis of Problem 1, is finally saved, by Line 8

Table 1: List of values of the parameters in the
importances field of documents in the collection
Configurations.

i1 1 2 1 3 1 3 2

i2 1 1 2 1 3 2 3

Table 2: Table of the values provided by the fuzzy evaluator
pNormAND with different configurations of parameters.

 [i1, i2]

 [1, 1] [2, 1] [1, 2] [3, 1] [1, 3] [3, 2] [2, 3]

P

1 0.84 0.87 0.81 0.89 0.80 0.86 0.82

2 0.82 0.87 0.78 0.90 0.77 0.85 0.79

3 0.80 0.88 0.76 0.91 0.76 0.85 0.77

4 0.79 0.88 0.76 0.91 0.75 0.84 0.76

5 0.79 0.88 0.76 0.91 0.75 0.84 0.76

6 0.78 0.88 0.75 0.91 0.75 0.84 0.76

7 0.78 0.88 0.75 0.91 0.75 0.84 0.76

of Listing 4, with the name Results in the database
webist2023.

5 DISCUSSION

The J-CO-QL+ script reported in Listing 4 ex-
ploits the JSON documents reported in the collection
Configurations, in order to apply the fuzzy evalua-
tor pNormAND with different configurations for param-
eters p, i1, and i2; the goal is to study the behavior of
the Vector p-norm on the field. 49 different configura-
tions were considered, which are hereafter presented.

• As far as p is concerned, seven integer values,
from 1 to 7, were used.

• As far as the pair of importance degrees [i1, i2] is
concerned, 7 different combinations were consid-
ered, for each distinct value of p. These combi-
nations are reported in Table 1; for the sake of the
completeness, both cases in which i1 > i2 (which
gives more importance to µ1 than to µ2) and in
which i1 < i2 (which gives more importance to µ2
than to µ1) are considered.

The sample document, presented in Figure 4 and
Figure 8, was exploited to understand how the fi-
nal membership degree (in the field ranking) varies,
provided that µ1 = 0.930466293345489 and µ2 =
0.75399998486042 (see Figure 7). Table 2 reports the
values of the field ranking when the parameters p (in
rows) and [i1, i2] (in columns) vary. The same data are
depicted in Figure 9.

Each line of Figure 9 corresponds to a configura-
tion for [i1, i2] (“iso-configuration” line), connecting
the results that were obtained for varying values of p

Soft Querying JSON Datasets with Personalized Preferences and Aggregations

161

Figure 9: Iso-configuration lines. Graph of the values pro-
vided by the fuzzy evaluator pNormAND with different con-
figurations of parameters.

(on the x-axis). Figure 9 is crucial, as far as the fol-
lowing discussion is concerned: indeed, it allows the
reader to visualize the different behaviors of the Vec-
tor p-norm, when the parameters p, i1, and i2 vary.
The goal is to improve the consciousness of users for
properly exploit such an aggregation method.

• The black line corresponds to the case of equal
importance degrees i1 = i2 = 1. Notice how, with
increasing values of p, the resulting membership
degree tends to the minimum value between µ1
and µ2.

• The orange, light red, and red lines correspond
to the configurations in which i1 < i2. These
lines are below the black line, meaning that the
lower membership degree µ2 gains increasing im-
portance in the final membership degree. In other
words, the final membership degree is dominated
by µ2 < mu1; thus, the corresponding lines must
be below the black line.

• The light blue, blue and green lines correspond to
those configurations in which i1 > i2. Notice that
the configuration (i1, i2) = (3,1) (light blue line),
behaves as expected.
In contrast, the configuration (i1, i2) = (3,2)
(green line) lies below the blue line (configura-
tion (i1, i2) = (2,1)): indeed, the difference ∆ =
i1 − i2 = 1 in both cases; however, ∆ is only 33%
of i1 = 3 (green line), while ∆ is 50% of i1 = 2
(blue line). This shows that the important feature
that determines the behavior of the Vector p-norm
is the ratio of the distance between i1 and i2 on
max(i1, i2), to manage the importance of a pred-
icate with respect to another. The blue line has
a ratio of 50%, which is greater than the ratio of
33% for the green line; consequently, the blue line
is above the green line, because the strength of
µ− 1 is higher than in the green line (remember
that µ1 > µ2).

Table 3: Execution times of the script in Listings 1, 2, 3,
and 4 applied on the input collections.

Instruction Execution Time (ms) %

1 CREATE FUZZY EVALUATOR 1 0.00%

2 CREATE FUZZY EVALUATOR 0 0.00%

3 CREATE FUZZY EVALUATOR 0 0.00%

4 USE DB 2 0.00%

5 GET COLLECTION 2,723 1.86%

6 FILTER 140,677 95.96%

7 JOIN OF COLLECTIONS 3,126 2.13%

8 SAVE AS 65 0.04%
 Total Time (ms) 146,594

• Finally, notice that the light blue and blue lines in-
crease, while the other decreases. The explanation
is the following: with p → ∞, the final member-
ship degree becomes as in Equation 3.

µAND(x) = minn
k=1(1−

ik
max(i1, . . . , in)

(1−µk(x)))

(3)
Thus, an iso-configuration line is ascending (re-
spectively, descending) when its membership de-
gree for p = 1 is less than (respectively, greater
than) its limit as p → ∞.

To conclude, Table 3 presents data related to the
performance (in terms of execution time) of the script
in Listings 1, 2, 3, and 4. The experiment was con-
ducted on a PC powered by a Processor Intel quad-
Core i7-8550-U, running at 1.80 GHz, equipped with
16 GB RAM and 250 GB Solid State Drive. For each
instruction, the execution time (in milliseconds) and
the percentage of the total time are reported.

The input collections, MeasuredRain and
Configurations, consisted of 207 and 49 docu-
ments, respectively, while the resulting collection,
named as Results, comprised 57 documents.

The total execution time was less than 147 sec-
onds, with nearly 96% of the time (140 seconds) con-
sumed by the instruction FILTER, primarily due to the
sorting operation on the array parameter rainData,
specified by the clause SORT in the fuzzy evaluator
owaRain.

Although performance analysis is an important
consideration, it is beyond the scope of this paper.
The primary objective here is to demonstrate the J-
CO Framework as a practical and efficient tool for
data analysis under soft conditions. For readers that
are interested in an in-depth performance evaluation,
the studies in (Psaila and Fosci, 2021) and (Fosci and
Psaila, 2023c) provide a thorough investigation of this
topic.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

162

6 CONCLUSIONS

This paper showed how the novel concept of “fuzzy
evaluator”, that was recently introduced in J-CO-
QL+, the query language of the J-CO Framework, ef-
fectively allows users to exploit complex definitions
for the fuzzy interpretation of the AND (and OR) op-
erator. The concept of fuzzy evaluator unifies and
extends the former concepts of “fuzzy operator” and
“fuzzy aggregator”, formerly used to perform tasks of
Soft Web Intelligence on JSON datasets acquired from
Web sources (see (Fosci and Psaila, 2022b; Fosci and
Psaila, 2023b; Fosci and Psaila, 2023a).

The main contribution of the paper is to show
how an interpretation of the AND (and OR) operator
on the basis of the Vector p-norm, so as to express
the concept of “P1 and possibly P2”, which relies on
the idea of “linguistic predicates with unequal impor-
tance”. Indeed, with the concept of fuzzy evaluator,
J-CO-QL+ has gained a further flexibility, allowing
users to define their own (non-trivial) evaluators that
capture complex and personalized semantics. At the
end, since using the AND operator defined as a Vec-
tor p-norm is not trivial — specifically, choosing the
right configuration for its parameters — its behavior
is studied in Section 5.

Due to the lack of space, the behavioral analysis
of the AND operator defined as a Vector p-norm is lim-
ited. As future work, we plan to continue this study,
including both the AND and the OR operators. Indeed,
the J-CO Framework (with its query language) is a
very powerful tool for performing such kind of stud-
ies. Furthermore, it is possible to envision the cre-
ation of a library of fuzzy evaluators to provide com-
plex and varied interpretations of the AND and the OR
operators.

The J-CO Framework is available on a Github
page4.

ACKNOWLEDGEMENTS

This study was funded by the European Union -
NextGenerationEU, in the framework of the GRINS -
Growing Resilient, INclusive and Sustainable project
(GRINS PE00000018 – CUP F83C22001720001).
The views and opinions expressed are solely those of
the authors and do not necessarily reflect those of the
European Union, nor can the European Union be held
responsible for them.

4Github repository of the J-CO Framework:
https://github.com/JcoProjectTeam/JcoProjectPage

REFERENCES

Bordogna, G. and Psaila, G. (2008). Modeling soft con-
ditions with unequal importance in fuzzy databases
based on the vector p-norm. Proceedings of the IPMU,
Malaga.

Bordogna, G. and Psaila, G. (2009). Soft aggregation in
flexible databases querying based on the vector p-
norm. I. J. of Uncertainty, Fuzziness and Knowledge-
Based Systems, 17(supp01):25–40.

Crasta, G. and Malusa, A. (2007). The distance func-
tion from the boundary in a minkowski space.
Transactions of the American Mathematical Society,
359(12):5725–5759.

Dombi, J. and Jónás, T. (2022). Weighted aggregation sys-
tems and an expectation level-based weighting and
scoring procedure. European Journal of Operational
Research, 299(2):580–588.

Farahbod, F. and Eftekhari, M. (2012). Comparison of
different t-norm operators in classification problems.
arXiv preprint arXiv:1208.1955.

Fosci, P. and Psaila, G. (2021a). J-co, a framework for fuzzy
querying collections of json documents. In Flexible
Query Answering Systems: 14th International Con-
ference, FQAS 2021, Bratislava, Slovakia, Septem-
ber 19–24, 2021, Proceedings 14, pages 142–153.
Springer International Publishing.

Fosci, P. and Psaila, G. (2021b). Towards flexible retrieval,
integration and analysis of json data sets through
fuzzy sets: a case study. Information, 12(7):258.

Fosci, P. and Psaila, G. (2022a). Soft integration of geo-
tagged data sets in j-co-ql+. ISPRS International Jour-
nal of Geo-Information, 11(9):484.

Fosci, P. and Psaila, G. (2022b). Towards soft web intelli-
gence by collecting and processing json data sets from
web sources. In Proceedings of the 18th I. C. on Web
Inf. Systems and Technologies.

Fosci, P. and Psaila, G. (2023a). Enhancing soft web intel-
ligence with user-defined fuzzy aggregators. In WE-
BIST 2023, pages 258–267.

Fosci, P. and Psaila, G. (2023b). Fuzzy aggregators in prac-
tice: Meta-model and implementation. In Interna-
tional Conference on Soft Computing Models in In-
dustrial and Environmental Applications, pages 56–
68. Springer Nature Switzerland Cham.

Fosci, P. and Psaila, G. (2023c). Soft querying powered by
user-defined functions in j-co-ql+. Neurocomputing,
546:126311.

Li, H. and Yen, V. C. (1995). Fuzzy sets and fuzzy decision-
making. CRC press.

Merigó, J. M. and Gil-Lafuente, A. M. (2008). Using the
owa operator in the minkowski distance. International
Journal of Economics and Management Engineering,
2(9):1032–1040.

Psaila, G. and Fosci, P. (2021). J-co: A platform-
independent framework for managing geo-referenced
json data sets. Electronics, 10(5):621.

Thompson, A. C. (1996). Minkowski geometry. Cambridge
University Press.

Soft Querying JSON Datasets with Personalized Preferences and Aggregations

163

Yager, R. R. (1988). On ordered weighted averaging ag-
gregation operators in multicriteria decisionmaking.
IEEE Transactions on systems, Man, and Cybernet-
ics, 18(1):183–190.

Yao, Y., Zhong, N., Liu, J., and Ohsuga, S. (2001). Web
intelligence (wi) research challenges and trends in the
new information age. In Asia-Pac. C. on Web Intelli-
gence, pages 1–17. Springer.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

164

