
Intrinsic Evaluation of RAG Systems for Deep-Logic Questions*

Junyi (Edward) Hu a, You Zhou b and Jie Wang c

Miner School of Computer & Information Sciences, University of Massachusetts, Lowell, MA, U.S.A.
{junyi hu, you zhou1}@student.uml.edu, jie wang@uml.edu

Keywords: Retrieval Augmented Generation, Logical-Relation Correctness Ratio, Overall Performance Index.

Abstract: We introduce the Overall Performance Index (OPI), an intrinsic metric to evaluate retrieval-augmented genera-
tion (RAG) mechanisms for applications involving deep-logic queries. OPI is computed as the harmonic mean
of two key metrics: the Logical-Relation Correctness Ratio and the average of BERT embedding similarity
scores between ground-truth and generated answers. We apply OPI to assess the performance of LangChain,
a popular RAG tool, using a logical relations classifier fine-tuned from GPT-4o on the RAG-Dataset-12000
from Hugging Face. Our findings show a strong correlation between BERT embedding similarity scores
and extrinsic evaluation scores. Among the commonly used retrievers, the cosine similarity retriever using
BERT-based embeddings outperforms others, while the Euclidean distance-based retriever exhibits the weak-
est performance. Furthermore, we demonstrate that combining multiple retrievers, either algorithmically or
by merging retrieved sentences, yields superior performance compared to using any single retriever alone.

1 INTRODUCTION

A RAG system typically consists of two major com-
ponents: Indexing and Retrieval. The former is re-
sponsible for indexing a reference text document be-
fore any queries are made to it. The latter is responsi-
ble for retrieving relevant data from the indexed docu-
ment in response to a query and passing that informa-
tion, along with the query, to a large language model
(LLM) to generate an answer. The Retrieval compo-
nent is typically a framework that supports a variety
of retrieval methods, each referred to as a retriever.

To assess the effectiveness of a retriever in un-
covering the logical relationship for an answer to a
query with respect to the reference document, we in-
troduce the Overall Performance Index (OPI). This
metric measures both the correctness of the answers
generated by an LLM and the accuracy of the logi-
cal relations produced by a classifier. The OPI is cal-
culated as the harmonic mean of the BERT embed-
ding similarity between ground-truth and generated
answers, and the logical-relation correctness ratio.

To demonstrate the effectiveness of the OPI met-
ric, we use the RAG-Dataset-12000 provided by Hug-

a https://orcid.org/0000-0001-8524-0123
b https://orcid.org/0009-0005-0919-5793
c https://orcid.org/0000-0003-1483-2783
∗ This work was supported in part by Librum Tech-

nologies, Inc.

ging Face (D.H., 2024) as the training and testing
dataset. We fine-tune GPT-4o to construct a classi-
fier to generate logical relations between a query and
an answer, with respect to the reference document.
We then evaluate LangChain (LangChain, 2024), a
popular RAG tool, with seven common retrievers, ex-
tracting relevant sentences from the reference docu-
ment for each query. Using GPT-4o as the underlying
LLM, we generate an answer to the query and use the
fine-tuned GPT-4o classifier to generate a logical re-
lation.

To rank retrievers, we calculate the average OPI
score across all 13 logical relations provided in RAG-
Dataset-12000. We then use OPI to analyze the
strengths and weaknesses of individual retrievers.
Moreover, we demonstrate that several variations of
combining multiple retrievers, either algorithmically
or by merging retrieved sentences, outperform a sin-
gle retriever alone.

2 PRELIMINARIES

The technique of RAG was introduced by Lewis et
al. (2020) (Lewis et al., 2020) a few years before the
widespread adoption of LLMs. The performance of
a RAG system relies on the quality of the underlying
retriever and the ability of the underlying LLM.

Hu, J., Zhou, Y. and Wang, J.
Intrinsic Evaluation of RAG Systems for Deep-Logic Questions.
DOI: 10.5220/0013070300003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 1: KDIR, pages 489-496
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

489

LangChain is a popular RAG tool, which divides
a reference document into overlapping text chunks of
equal size. The suffix of each chunk overlaps with the
prefix of the next.

To the best of our knowledge, no previous re-
search has comprehensively evaluated the perfor-
mance of RAG systems in the context of deep-logic
question answering.

Given below are seven common sentence retriev-
ers supported by LangChain:

DPS (dot-product similarity) converts a query and
a text chunk as BERT-based (Devlin et al., 2018) em-
bedding vectors and compute their dot product as a
similarity score. It returns k chunks with the highest
scores to the query. (DPS in LangChain is referred to
as Cosine Similarity.)

kNN (k-Nearest Neighbors) in LangChain is the
normalized dot-product similarity by the L2-norm,
which is widely referred to as the cosine similarity.
It returns k chunks with the highest cosine similarity
scores to the query.

BM25 (Robertson and Zaragoza, 2009) is a prob-
abilistic information retrieval model that ranks docu-
ments based on the term frequency in a chunk and the
inverse chunk frequency in the reference document.
Let q be a query, T a chunk of text, f (ti,T) the fre-
quency of term ti in T , |T | the size of T , avgTL the
average chunk length, N the total number of chunks,
and n(ti) the number of chunks that contain ti. Then
BM25(q,T) is defined by

BM25(q,T) =
n

∑
i=1

ln
(

N −n(ti)+0.5
n(ti)+0.5

+1
)
·

(f (ti,T) · (κ+1))

f (ti,T)+κ · (1−b+b · |T |
avgTL)

,

where κ and b are parameters. Return k chunks of text
with the highest BM25 scores to the query.

SVM (Support Vector Machine) (Cortes and Vap-
nik, 1995) is a supervised learning model that finds
the hyperplane that best separates data points in a
dataset. To use SVM as a retriever, first represent
each chunk of text as a feature vector. This can be
done using word embeddings, TF-IDF, or any other
vectorization method. Then use the labeled dataset
to train an SVM model. Convert the query into the
same feature vector space as the chunks. Apply the
SVM model to the query vector to produce a score
that indicates how similar the query is to each chunk.
Extract k chunks with the highest scores.

TF-IDF (Sammut and Webb, 2011) measures the
importance of a word in a chunk of text relative to the
set of chunks in the reference document, combining
term frequency and inverse chunk frequency. In par-
ticular,

TF-IDF(t,T) = TF(t,T)× IDF(t),
where t is a term, T is a chunk, and IDF(t) is the
inverse chunk frequency of t. Given a query q, select
k chunks with the highest TF-IDF(q,T) values.

MMR (Carbonell and Goldstein, 1998) is a re-
trieval algorithm that balances relevance and diver-
sity in the selection of k chunks. It iteratively selects
chunks that are both relevant to the query and min-
imally redundant with respect to the chunks already
selected.

EDI (Euclidean Distance) (Bishop, 2006) mea-
sures the straight-line distance between a query and
a chunk, represented in bag-of-words vectors. Return
k chunks with the shortest distance to the query.

A data point in RAG-Database-12000 contains the
following attributes: ‘context’, ‘question’, ‘answer’,
‘retrieved sentences’, ‘logical relation’, where ‘con-
text’ is the reference document. There are thirteen
categories of logical reasoning in the dataset. Their
names, abbreviations, descriptions, and the distribu-
tion of counts are presented in Table 1. All but the
last category involve deep logical reasoning, mean-
ing that arriving at the correct answer requires com-
plex, multi-step processes involving multiple con-
cepts, facts, or events extracted from the content. The
table includes eleven specific types of deep reasoning,
with an additional category for general deep reason-
ing, referred to as multi-hop reasoning.

3 OVERALL PERFORMANCE
INDEX

Let A and LR denote, respectively, the ground-truth
answer and logical relation to the question with re-
spect to the question Q, the context C, and the re-
trieved sentences S. Let A′ and LR′ denote, respec-
tively, the answer and the logical relation generated
by a RAG system with an LLM. We represent A and
A′ using BERT embeddings and compute the cosine
similarity of the embeddings.

For a given dataset D with respect to a particu-
lar logical relation LR, let BERTSimD denote the av-
erage BERT similarity scores of all (A,A′) pairs and
LRCRD (logical-relation correctness ratio) denote the
proportion of data points where the predicted logical
relation matches LR. Namely,

LRCRD =
|{d ∈ D | LR = LR′}|

|D|
(1)

The OPI for dataset D is defined by the follow-
ing parameterized harmonic mean of BERTSimD and
LRCRD, similar to defining the F-measure (Lewis and
Gale, 1994).

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

490

Table 1: Information of logical relations.

OPI(β)D =
(1+β2) ·BERTSimD ·LRCRD

(β2 ·BERTSimD)+LRCRD
. (2)

OPI(1)D weighs answer accuracy and logical re-
lation accuracy equally. OPI(β)D weighs answer ac-
curacy more heavily when β > 1 (e.g., β = 2), and
weighs logical relation accuracy more heavily when
β < 1 (e.g., β = 0.5).

When there is no confusion in the context, the sub-
script D is omitted. Denote OPI(1) as OPI-1, OPI(2)
as OPI-2, and OPI(0.5) as OPI-0.5.

In addition to BERTSim, other metrics may be
used to measure the similarity between the generated
answer and the ground-truth answer, such as Hugging
Face’s MoverScore, as applied in the study of con-
tent significance distributions of text blocks in a doc-
ument (Zhou and Wang, 2023). We choose BERT-
Sim because MoverScore uses IDF to compute word
weights, which is better suited for extractive answers
but less appropriate for generative answers produced
by LLMs.

Experimental results show that the BERTSim met-
ric aligns well with the outcomes of extrinsic compar-
isons of the ground-truth answers with the generated
answers (see Section 4.2 for details).

In what follows, we will use OPI-1 as the default
intrinsic measure to study the performance of RAG
systems for answering deep-logic questions.

4 EVALUATION

As seen in Table 1, the data points in RAG-Dataset-
12000 are unevenly distributed across the 13 logical
relations, with significant disparities, such as only 106
data points in Fuzzy Reasoning compared to 6,920
data points in Direct Matching. To fine-tune GPT-4o

and construct a classifier for identifying logical rela-
tions, a balanced dataset is preferred. To achieve this,
we randomly select 100 data points from each logical
relation category, forming a new dataset called RAG-
QA-1300 that consists of 1,300 data points. This
dataset is then split with an 80-20 ratio to create a
training set and a test set.

Fine-tuning was performed by combining the con-
text, question, and answer from each data point into
a cohesive input text, labeled with its corresponding
logical relation. The process involved approximately
800 training steps, resulting in a validation loss of
10−4. This specific checkpoint was selected for its
optimal performance.

The fine-tuned GPT-4o classifier for logical rela-
tions significantly improves the accuracy to 75.77%
on the test set, compared to 49.23% when using GPT-
4o out-of-the-box without fine-tuning.

We used LangChain with the seven common re-
trievers mentioned in Section 2. We used GPT-4o to
generate answers and the fine-tuned GPT-4o classifier
to generate logical relations. LangChain supports a
wide range of retrievers and allows for the seamless
integration of pre-trained LLMs.

4.1 Intrinsic Evaluation

We set the chunk size to 100 (words) with a chunk
overlap of 20 % in the setting of LangChain, where
paragraph breaks, line breaks, periods, question
marks, and exclamation marks are set to be the sep-
arators. These settings were fed into the LangChain
function RecursiveCharacterTextSplitter to
split a reference document into chunks, where each
chunk contains up to 100 words, ending at a specified
separator to break naturally such that the chunk is as
large as possible, and adjacent chunks have a 20%

Intrinsic Evaluation of RAG Systems for Deep-Logic Questions

491

Table 2: Intrinsic comparisons across all logical relations, where “Retr” is an abbreviation of Retriever, “B” stands for
BERTSim, “L” for LRCR, and “O-1” for OPI-1.

overlap.
We used the default settings for each retriever

to return four chunks in the context with the best
scores—highest for similarity and ranking measures,
smallest for distance measures—from the underlying
retriever as the most relevant to the query. We then
converted the four chunks extracted by the retriever
back into complete sentences as they appeared in the
original article. These sentences and the query were
then fed to GPT-4o to generate an answer. Moreover,
we instructed GPT-4o to determine the logical rela-
tionship for the answer with respect to the input text.

We consider the accuracy of the generated an-
swers and logical relations to be equally important.
Table 2 presents the evaluation results of OPI-1 on
the test data of RAG-QA-1300. The OPI-1 score with
respect to each retriever is calculated for each set of
data points of the same logical relation. The average
OPI-1 score for each retriever across all logical rela-
tions is calculated by

OPI-1 =
2/|L| ·∑ℓ∈L BERTSimℓ ·∑ℓ∈L LRCRℓ

∑ℓ∈L BERTSimℓ+∑ℓ∈L LRCRℓ
, (3)

where L is the set of the 13 logical relations, and
BERTSimℓ and LRCRℓ denote, respectively, the cor-
responding BERTSim score and LRCR value for the
logical relation ℓ.

An alternative is to calculate the average OPI-1
score across all logical relations. While this differs
slightly from Formula (3), the difference is minimal.

We prefer Formula (3) for practical efficiency, as it
bypasses the need to compute individual OPI-1 scores
for each logical relation when these scores are not
needed in applications, streamlining the process and
reducing unnecessary computations.

4.2 Extrinsic Evaluation

The extrinsic evaluation uses a 0-3-7, 3-point scoring
system to score A′ for each pair (A,A′), where A is the
ground-truth answer and A′ is the answer generated
directly by GPT-4o based on the question Q and the
extracted sentences in the corresponding data point.
The scoring system works as follows:

• A′ receives 7 points if it exactly matches the mean-
ing of A.

• A′ receives 3 points if it partially matches the
meaning of A, with or without extra information
not contained in A.

• A′ receives 0 points if there is no meaningful
match.

This scoring system was designed to simplify extrin-
sic evaluation while widening the gaps between per-
fect, partial, and no matches, providing a more nu-
anced assessment compared to the traditional 1-2-3,
3-point scoring system. The intention is to create
a ranking with greater discrepancy between scores,
enabling clearer differentiation of performance levels
and allowing for more meaningful comparisons.

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

492

Given below are examples of each scenario.

• 7 points: A′ receives 7 points if A and A′ have
exactly the same meaning, with neither additional
nor missing information. For example, the follow-
ing A′ using DPS is a 7-point answer.
– Q: What is the debate about what Desmond

said in the context?
– A: The debate is about what Desmond said to

Locke, specifically whether he said “snowman”
or “silhouette”.

– A′: The debate is about whether Desmond said
“snowman” or “silhouette”.

• 3 points. A′ receives 3 points in either of the fol-
lowing two cases:
Case 1: Extra information. A′ matches the mean-
ing of A, but includes additional information not
present in A. For example, the following A′ using
MMR receives 3 points for the reason that A′ con-
tains extra information that the Ford GT40 was
produced in limited runs from 1964 to 1969.
– Q: What was the reason behind the creation of

the Ford GT40?
– A: The Ford GT40 was created as a result of

a grudge between Henry Ford II and Enzo Fer-
rari. After a failed attempt to acquire Ferrari,
Henry Ford II decided to compete against Fer-
rari in the prestigious 24 Hours of Le Mans
race. To break Ferrari’s dominance in the race,
Ford’s chief engineer, Roy Lunn, came up with
the concept of the GT40.

– A′: The Ford GT40 was born out of a rivalry be-
tween Henry Ford II and Enzo Ferrari. After a
failed attempt to acquire Ferrari, Henry Ford II
resolved to challenge Ferrari in the prestigious
24 Hours of Le Mans race. To disrupt Ferrari’s
dominance, Ford’s chief engineer, Roy Lunn,
conceived the idea for the GT40. It was pro-
duced in limited runs from 1964 to 1969.

Case 2: Partial match. The meaning of A′ partially
overlaps with the meaning of A, but not fully. For
example, the following A′ generated using BM25
receives 3 points. Reason: A′ clearly leaves out
information that the Ford GT40 was conceived by
Ford’s chief engineer, Roy Lunn.
– Q: What was the reason behind the creation of

the Ford GT40?
– A: See Case 1 above.
– A′: The reason behind the creation of the Ford

GT40 was to compete against Ferrari in rac-
ing events, as evidenced by Ford’s continued
efforts to improve the GT40 and best the Ital-
ians.

• 0 points: A′ receive 0 points if A and A′ are distinct
from each other with no overlap in meaning. For
example, the following A′ generated through EDI
receives 0 points.

– Q: What was the reason behind the creation of
the Ford GT40?

– A: See Case 1 above.
– A′: The Ford GT40 was created to take full ad-

vantage of the benefits associated with a mid-
engine design, including a slinky aerodynamic
shape and benign handling characteristics.”

Table 3 shows the average scores of comparing
answers by freelance annotators as well as the cor-
responding BERTSim scores. The integers in the row
below the row of evaluation scores represent the re-
spective rankings.

Table 3: Evaluation scores by extrinsic evaluation and in-
trinsic BERTSim metric with rankings, where “Extr” stands
for “extrinsic evaluation” and “Intr” for “intrisic evalua-
tion”.

It is evident that the extrinsic evaluation scores
align well with the BERTSim scores, demonstrating
consistency in ranking. In particular, both evaluations
are in complete agreement for the 2nd, 5th, 6th, and
7th places, with only minor variations in the other
rankings. For instance, MMR is ranked 1st by extrin-
sic evaluation and 3rd by BERTSim, which is quite
close. Similarly, TF-IDF is ranked 2nd by extrinsic
evaluation and 4th by BERTSim. Notably, DPS, kNN,
and TF-IDF all share the 2nd rank in extrinsic evalu-
ation, likely due to the coarseness of human annota-
tion. Since DPS and kNN are essentially the same
measures, they should logically be ranked closer to
each other than to TF-IDF. Therefore, the extrinsic
rank of TF-IDF, while differing slightly from BERT-
Sim, can still be considered reasonably aligned. Over-
all, this suggests a strong correlation between the two
evaluation methods.

4.3 Combining Multiple Retrievers

LangChain supports combining multiple retrievers
into a new retriever. We use the default setting to
return four chunks for each combination. This ap-
proach diversifies the retrieved content from the ref-
erence document, potentially improving overall per-
formance.

Intrinsic Evaluation of RAG Systems for Deep-Logic Questions

493

Table 4: Evaluation results of various combinations of retrievers and sentences.

As examples, we combine all seven retrievers, de-
noted as A-Seven; three retrievers with the highest
OPI-1 scores: kNN, DPS, and TF-IDF, plus MMR for
its strength in balancing relevance and diversity, de-
noted as A-Four; and two retrievers with the highest
OPI-1 scores: kNN and DPS, denoted as A-Two.

We may also combine the sentences retrieved by
individual retrievers, removing any duplicates, and
use the remaining set of sentences with the corre-
sponding questions to generate answers and logical
relations. Let S-Seven, S-Four, and S-Two denote the
sets of sentences obtained this way by the correspond-
ing retrievers as in A-Seven, A-Four, and A-Two.

The experimental results of both types of combi-
nations are shown in Table 4.

5 ANALYSIS

We first analyze the performance of individual retriev-
ers, followed by examining the combinations of re-
trievers and the sentences retrieved by multiple re-
trievers.

5.1 Individual Retrievers

For each retriever, we first analyze the performance
for each logical relation individually and then assess
the overall performance across all logical relations.

5.1.1 Individual Logical Relation

We use the OPI-1 scores to help identify the strengths
and weaknesses of individual retrievers across the 13
logical relations. For example, as seen in Table 2,
almost all retrievers tend to perform the worst on ad-
versarial reasoning, followed by fuzzy reasoning. For
other logical relations, the performance of retrievers
varies, indicating that certain retrievers may be more
suited to specific types of reasoning tasks while strug-
gling with others. For example, even for the worst-
performing retriever, EDI, which consistently ranks
the lowest in both extrinsic and intrinsic evaluations
of answer accuracy as seen in Table 3, it still per-
forms best on deductive reasoning. This suggests that
while EDI may generally be less effective across var-
ious logical relations, it has a particular strength in
handling tasks that involve deductive reasoning. This
example highlights the nuanced performance of re-
trievers, where even a generally weaker retriever can
excel in specific logical tasks. This variability in per-
formance highlights the importance of selecting the
appropriate retriever.

5.1.2 Across all Logical Relations

The average OPI-1 scores provide a means to iden-
tify, across all 13 logical relations, which retrievers
are more suitable for specific tasks and which retriev-
ers should be avoided. For example, as shown in Ta-
ble 2, EDI has the lowest and SVM the second-lowest
average OPI-1 scores, indicating they should gener-
ally be avoided. This is likely due to the limitations of
the underlying features used to compute SVM scores

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

494

and the coarseness of L2-norms when representing
text chunks as bag-of-word vectors, which may fail
to capture the nuanced relationships required for deep
logical reasoning tasks.

On the other hand, kNN has the highest and DPS
the second-highest average OPI-1 scores, indicating
that these retrievers would be the best choices for an-
swering deep-logic questions. kNN (cosine similar-
ity) and DPS are similar measures, with kNN being a
normalized version of DPS, which explains their com-
parable performance. However, kNN takes slightly
more time to compute than DPS, as DPS is the fastest
among all seven retrievers—dot products are the sim-
plest and quickest to compute compared to the opera-
tions used by other retrievers.

The MMR retriever allows GPT-4o to generate
better answers across all logical relations, as shown
in Table 3 . However, it does not perform as well in
producing the correct logical relations. This discrep-
ancy may be attributed to MMR’s focus on balanc-
ing relevance and diversity in retrieved content, which
improves answer quality but doesn’t necessarily align
with capturing accurate logical relations.

BM25 is in general more effective for retrieving
longer documents in a document corpus with the de-
fault parameter values for κ and b. However, to re-
trieve sentences from an article, it was shown that
BM25 would should use different parameter values
(Zhang et al., 2021). This explains why BM25 is the
second worse for generating answers as shown in Ta-
ble 3 by both extrinsic and intrinsic evaluations. It is
not clear, however, why it produces a relatively higher
LRCR value.

TF-IDF’s performance falls in the middle range,
which is expected. As a frequency-based approach, it
may struggle to capture deeper semantic information,
but it remains relatively effective because it retains
lexical information, ensuring that important terms are
still emphasized in the retrieval process.

5.2 Performance of Various
Combinations

We first analyze the performance of combinations of
retrievers versus individual retrievers, followed by an
analysis of combining retrievers algorithmically ver-
sus combining sentences retrieved by individual re-
trievers within the combination.

5.2.1 Combinations vs. Individuals

It can be seen from Table 4 that A-Seven outperforms
A-Four, which in turn outperforms A-Two. A similar
ranking is observed with S-Seven, S-Four, and S-Two.

Moreover, both A-Seven and A-Four are substantially
better than the top performer, kNN, when only a sin-
gle retriever is used (see both Tables 2 and 4). A simi-
lar result is observed with S-Seven and S-Four, where
combining more retrieved sentences from different re-
trievers also enhances performance, reinforcing the
benefits of increased diversity in the retrieval process.
These results all confirm the early suggestion that
combining more retrievers generally enhances perfor-
mance in both algorithmic and sentence-based com-
binations, supporting the idea that diverse retrieval
methods contribute positively to the overall effective-
ness of the RAG system.

However, we also observe that some combina-
tions of retrievers may actually lead to poorer per-
formance compared to using the individual retrievers
alone. This is evident in the case of A-Two and S-
Two, the algorithmic and sentence combinations of
kNN and DPS, both result in slightly lower average
OPI-1 scores than kNN alone. This is probably due
to the fact that kNN and DPS are very similar mea-
sures, and combining them doesn’t significantly in-
crease diversity. Worse, the extra information pro-
vided through their combination seems to have led to
diminishing returns, negating the potential benefits of
combining retrievers to improve performance. This
phenomenon warrants further investigation.

Nevertheless, combining retrievers based on dif-
ferent retrieval methodologies could help increase di-
versity and, consequently, improve overall perfor-
mance. This is evident in the case of A-Seven and
S-Seven, which combine retrievers utilizing diverse
retrieval methods, as well as in A-Four and S-Four,
where MMR—a retrieval method that balances rel-
evance and diversity—complements kNN. By lever-
aging varied retrieval techniques, we can ensure that
a broader range of relevant content is retrieved, po-
tentially leading to greater accuracy and more robust
logical reasoning in the generated answers.

5.2.2 Combining Algorithms vs. Combining
Sentences

We compare the outcomes of combining retrievers at
the algorithm level versus the sentence level. Com-
bining retrievers at the algorithm level is a feature
supported by LangChain, which returns the same
default number of chunks before sentences are ex-
tracted. In contrast, combining retrievers at the
sentence level involves merging sentences retrieved
by individual retrievers, which may include more
sentences than the algorithmic combination, and so
should lead to a slightly better performance. This is
evident when comparing A-Four with S-Four and A-
Two with S-Two (see Table 4).

Intrinsic Evaluation of RAG Systems for Deep-Logic Questions

495

However, having more sentences may not always
lead to improvement, as it can introduce conflict-
ing information. This is evident when comparing A-
Seven with S-Seven, where S-Seven has a lower av-
erage OPI-1 score than A-Seven. This is likely be-
cause A-Seven has already saturated the useful sen-
tences, while S-Seven introduces additional sentences
that negatively impact the average OPI-1 score.

In summary, these analyses suggest that, when
combining appropriate retrievers, both algorithmic
and sentence-level approaches offer performance im-
provements, with each method providing distinct ad-
vantages in terms of retrieval diversity and the quality
of generated answers. Selecting appropriate retrievers
requires a deeper understanding of the underlying re-
trieval mechanisms, making this an interesting topic
for further investigation.

6 FINAL REMARKS

This paper presents an effective intrinsic evaluate
method for the performance of RAG systems in con-
nection to question-answering involving deep logical
reasoning.

LangChain supports a wide range of retrievers
and allows users to integrate custom retrievers. Ad-
ditionally, there are numerous large language mod-
els (LLMs) such as the Gemini series (Google,
2024), LlaMA series (Meta, 2024), and Claude se-
ries (Claude AI, 2024), among others, as well as
various retrieval-augmented generation (RAG) tools
like LLAMAINDEX (LlamaIndex, 2024), HayStack
(Deepset, 2024), EmbedChain (EmbedChain, 2024),
and RAGatouille (AnswerDotAI, 2024). Evaluating
the performance of these models and tools, particu-
larly for answering deep-logic questions where iden-
tifying logical relations is essential, represents an in-
triguing direction for future research.

Regularly reporting the findings of such investi-
gations would significantly contribute to the advance-
ment of RAG technologies. Furthermore, we aim to
develop a tool that quantitatively assesses the depth of
logical relations in question-answering systems rela-
tive to the underlying context. This effort would ne-
cessitate the creation of a new dataset that annotates
the depth of each logical relation for every triple con-
sisting of a question, an answer, and a set of reference
sentences.

REFERENCES

AnswerDotAI (2024). Ragatouille. Accessed: 2024-09-06.
Bishop, C. M. (2006). Pattern Recognition and Machine

Learning. Springer.
Carbonell, J. and Goldstein, J. (1998). The use of

mmr, diversity-based reranking for reordering docu-
ments and producing summaries. Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 335–336.

Claude AI (2024). Claude. Accessed: 2024-09-06.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.

Machine Learning, 20(3):273–297.
Deepset (2024). Haystack - deepset. Accessed: 2024-09-

06.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

D.H., C. (2024). Rag dataset 12000.
EmbedChain (2024). Embedchain. Accessed: 2024-09-06.
Google (2024). Gemini - google. Accessed: 2024-09-06.
LangChain (2024). Langchain official website.
Lewis, D. D. and Gale, W. A. (1994). A study of f-measure

in information retrieval. In Proceedings of the Third
Annual Symposium on Document Analysis and Infor-
mation Retrieval (SDAIR’94), pages 187–199. Cite-
seer.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., et al. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. arXiv
preprint arXiv:2005.11401.

LlamaIndex (2024). Retrieval-augmented generation (rag)
- llamaindex. Accessed: 2024-09-06.

Meta (2024). Llama - meta. Accessed: 2024-09-06.
Robertson, S. and Zaragoza, H. (2009). The probabilistic

relevance framework: Bm25 and beyond. Founda-
tions and Trends in Information Retrieval, 3(4):333–
389.

Sammut, C. and Webb, G. I. (2011). TF–IDF. Springer.
Zhang, H., Zhou, Y., and Wang, J. (2021). Contextual net-

works and unsupervised ranking of sentences. In Pro-
ceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2021).

Zhou, Y. and Wang, J. (2023). Content significance distribu-
tions of sub-text blocks in articles and its application
to article-organization assessment. In Proceedings of
the 15th Knowledge Discovery and Information Re-
trieval (KDIR 2023).

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

496

