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Abstract: The paper studies bounds of the synchronization error for networks of diffusively coupled and nonidentical

nonlinear oscillators. In contrast to preceding work, which only analyzes the synchronization error in the limit

and for constant coupling, a method based on over-approximating reachable sets of the synchronization error

is proposed. The method allows the evaluation of different and time-varying gains along the limit cycles.

Instead of using strong coupling gains to preserve synchronization, it is proposed to vary the coupling gains

over time, while the synchronization error determined via reachable set does not exceed a specified bound.

Evaluation results for the proposed method are provided for different types of coupled oscillators.

1 INTRODUCTION

The synchronization of sets of oscillators has been in-

vestigated in context of several applications, such as

high-precision motion control (Xiao and Zhu, 2006),

power grids (Wang et al., 2016), or in biological sys-

tems (Kim et al., 2019).

An essential point is to investigate in how far the

coupling strengths among the oscillators as well as the

interaction topology affects the synchronization error

over time. This error encodes (temporary or perma-

nent) deviation of the amplitudes (or phases) of the

oscillators. While for coupled identical linear oscilla-

tors, the dynamics of the synchronization error can be

expressed explicitly (Scardovi and Sepulchre, 2008),

the situation for sets of nonlinear oscillators is more

involved, since the dynamics of the synchronization

error cannot be computed in closed form. Existing

work can roughly be categorized in approaches that

aim to seek sufficiently large static gains of diffusive

coupling to obtain convergence of the errors to zero

in the limit, and to those where the coupling strength

is varied over time – this paper is focused on the latter

case.

Among the existing approaches for this case,

(Zhao et al., 2012) determine time-varying coupling

gains by treating the error of nonidentical nonlin-

ear systems with Lyapunov-like functions. Although
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bounded synchronization is guaranteed by the cou-

pling gains, the network structure is restricted to an

undirected form and the error is only considered in

the limit, potentially leading to conservatively large

gains. In the work by (Wang et al., 2011), the proce-

dure is similar but only identical nonlinear systems in

discrete time are considered. Also, (Zhu et al., 2020)

and (Panteley and Lorı́a, 2017) use the construction of

Lyapunov-like functions to synthesize coupling gains

bounding the error. The disadvantage of these ap-

proaches is, apart from using possibly larger gains

than necessary for synchronization, the lack of the

possibility to compute the evolution of the synchro-

nization error over time.

A different approach for bounded synchronization

uses funnel control (Lee et al., 2022), where the syn-

chronization error of nonidentical nonlinear systems

is forced to a specific bound by different time-varying

coupling gains. However, the evolution of the error

over time is restricted by the funnel shape, i.e., it is

not possible to allow a larger synchronization error

for certain times if an application requires this. It is

not possible to check which error bounds arise from

given coupling gains.

In contrast to the aforementioned approaches, the

method proposed in this paper offers the possibility to

(i) analyze if the synchronization error stays beyond

a certain threshold for given coupling gains, and (ii)

to synthesize time-varying coupling gains (possibly

different for any coupling of the network topology)

while maintaining a chosen error bound. The syn-
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thesis of gains is particularly useful if a compromise

between the synchronization error and the synchro-

nization effort (through large coupling gains) has to

be determined. A recent paper by (Trummel et al.,

2023) has suggested to solve this task by numeric op-

timization, however, the computation of error bounds

was not included there.

In order to establish the schemes for analysis and

synthesis, the paper on hand uses the technique of

computing over-approximations of reachable sets for

nonlinear systems, see e.g. (Stursberg and Krogh,

2003), (Girard, 2005), (Rungger and Zamani, 2018)

and adopts it to analyze the evolution of the synchro-

nization error. According to the knowledge of the

authors, this is the first exposition on using reach-

able sets to explicitly compute upper bounds of syn-

chronization errors for coupled nonlinear oscillators,

while the only similar work by (Sang and Zhao, 2020)

limits the focus to linear time-delayed local dynamics.

After introducing into the problem setting in

Sec. 2, the main part (Sec. 3) introduces the procedure

for computing over-approximations of reachable sets

for synchronization errors for given coupling gains,

including an analysis of the complexity of the compu-

tation. The section includes also a modification of the

procedure, in which the coupling gains are iteratively

changed on certain time intervals in order to limit the

upper bounds of the synchronization errors on the re-

spective intervals. The effectiveness of the techniques

is illustrated by numerical examples in Sec. 4, before

a conclusion and an outlook on future work is pro-

vided in Sec. 5.

2 PROBLEM DESCRIPTION

With an index set N = {1, . . . ,n}, consider a set of

nonlinear dynamics:

ẋi(t) = fi(xi(t)), i ∈ N (1)

with state vector xi ∈ R
nx , time variable t ∈ R, and

flow function fi : Rnx → R
nx .

Assumption 1. Let fi(xi(t)) be continuous in time,

continuously differentiable with respect to xi(t), as

well as bounded on each compact subset of Rnx . For

the solution of (1), let furthermore a unique limit cy-

cle 1 exist, and let xi(t) converge to the limit cycle for

any initialization.

With this assumption, we refer to the set of dy-

namics according to (1) as nonidentical nonlinear os-

cillators. Obviously, one can expect different limit

1For a definition of limit cycles, see e.g. the book by
(Ye and Cai, 1986).

cycles for any i in the general case. Now consider an

extension of (1) by a diffusive coupling law to:

ẋi(t) = fi(xi(t))+∑
j∈Ni

ki j(t)(x j(t)− xi(t)) ∈ R
nx (2)

with the subset of Ni ⊆ N of indices referring to

the oscillators coupled directly to oscillator i, and

ki j(t) ∈ R
≥0 denotes different time-varying coupling

gains. Any ki j(t) models the individual gain by which

the state difference of j and i affects the oscillator i.

Assume that ki j(t) 6= k ji(t) is possible and that the

coupling network is directed and strongly connected.

From (Lee and Shim, 2022) it is known that the

solutions of diffusively coupled nonidentical nonlin-

ear systems2 converge for a sufficiently large ki j(t) =
k = const.∀ i, j ∈ N to the solution s(t) ∈ R

nx of the

averaged dynamics:

ṡ(t) =
1

n
∑

i∈N

fi(s(t)), s(t0) =
1

n
∑

i∈N

xi(t0). (3)

It is shown by (Lee and Shim, 2022) that for any syn-

chronization accuracy ε > 0, a threshold κ of the cou-

pling gain k exists for which:

limsup
t→∞

‖ xi(t)− s(t) ‖≤ ε, ∀ i ∈ N (4)

for any k ≥ κ ∈ R
≥0. Since Eq. (3) represents the av-

eraged dynamics of all oscillators and encodes itself a

nonlinear oscillator, the averaged trajectory s(t) also

converges to a limit cycle for t → ∞.

In the following, the existence of the averaged dy-

namics is exploited to determine the error dynamics,

whereas the requirement of a large gain is omitted,

(e.g., in order to establish tradeoffs between synchro-

nization errors and efforts). In particular, the quan-

titative determination of gains, or upper bounds of

the synchronization errors are addressed along the fol-

lowing lines:

Problem 1. For a given κ or given time-dependent

profiles of the coupling gains ki j(t), determine the nu-

meric value of the upper bound σ > 0 of the synchro-

nization error.

Problem 2. For specified time-varying upper bounds

of the synchronization error, determine values ki j(t)
which ensure that error bounds are never exceeded.

Both problems will be addressed based on the

computation of over-approximations of the sets of

reachable synchronization errors. When calculating

the reachable sets, both the local dynamics and the

2(Lee and Shim, 2022) refer to the case that the network
is undirected and connected, which corresponds to the case
of a directed and strongly connected network.
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network structure are taken into account in order to re-

duce the conservatism of the over-approximation. For

the case of Problem 1, the question may arise where

from the course of the ki j(t) would be known. A pos-

sible option is the use of the method by (Trummel

et al., 2023), which uses a scheme of numeric op-

timization to compute the time-varying gains, how-

ever, without guaranteeing synchronization for these

gains. The procedure proposed below to solve Prob-

lem 1 aims at providing this guarantee. The scheme

to be developed as solution to Problem 2 iterates over

candidates for the gain profiles in order to eventually

satisfy the specified bounds on the synchronization er-

ror.

3 ENCLOSURE OF

SYNCHRONIZATION ERRORS

3.1 Conservative Linearization of the

Coupled Dynamics

Since it is, in the general case, not possible to compute

the dynamics of the synchronization error in closed

form, the concept followed here is to (1.) conser-

vatively linearize the nonlinear oscillator dynamics,

i.e., to resort to a local differential inclusions of affine

structure (which is guaranteed to include the nonlin-

ear dynamics), and (2.) to use the differential inclu-

sions to determine upper bounds for the synchroniza-

tion error.

Assume for the moment that all coupling gains

ki j(t) would be known and constant at any time, such

that a limit cycle of the averaged dynamics s(t) will

be obtained. It is then reasonable to select a suitable

number of supporting points along this limit cycle in

order to obtain the local conservative linearizations.

Assume further that the oscillators have initial states

xi(t0) = xi,0 close to a point s(t0) that belongs to the

solution of the averaged dynamics (i.e., an initial syn-

chronization error is possible).

Choosing a first linearization point xi,0 and an ele-

ment of the set:

Xi,0 :=

{

x ∈ R
nx

∣
∣
∣
∣
|x− xi,0| ≤

ε√
nx

1nx

}

(5)

for all i ∈ N , where 1nx ∈ R
nx denotes a vector of

ones and ε is a given desired accuracy according to

(4). Additional linearization points xi,1, xi,2, . . . , xi,p

are distributed along the limit cycle s(t) for sample

times tq, thus leading to partitioning of the period of

the limit cycle into time intervals [tq, tq+1] with tq+1 =
tq + δtq and q ∈ {0,1, . . . , p− 1}. δtq > 0 can change

from time step to time step, and is suitably chosen

based on the curvature of s(t), i.e., based on the value

of the second derivative of (3).

Assumption 2. Assume from now on that the cou-

pling gains ki j(t) are piecewise constant on [tq, tq+1]
and thus denoted by ki j,q.

The linearization points result from the step-by-

step computation of the solutions xi(t)∀ t ∈ [tq, tq+1],
where the set Xi,q of the current linearization point

is the initial set for the next computation. The set-

based computation of the solutions is carried out us-

ing the procedure previously proposed in (Althoff

et al., 2008), which uses Lagrangian remainders to

conservatively encode the right-hand sides of (2).

When denoting the Lagrangian remainders by Li,q,r

the conservative linearization of (2) around xi,q for all

i ∈ N and q ∈ {0,1, . . . , p− 1} is:

ẋi,r(t) = fi,r(s0)+
∂ fi,r(xi(t))

∂xi(t)

∣
∣
∣
xi(t)=xi,q

(xi(t)− xi,q)

+ ∑
j∈Ni

ki j,q(x j,r(t)− xi,r(t))+Li,q,r (6)

for each dimension r ∈ {1, . . . ,nx} of xi(t) with t ∈
[tq, tq+1]. Li,q,r is evaluated on a set Xi,q which is pa-

rameterized according to (5) using xi,q, leading to the

bound:

|Li,q,r| ≤ wmax,i,q,r (7)

with:

wmax,i,q,r := max
0≤α≤1,xi∈Xi,q

∣
∣
1

2
(xi − xi,q)

T

∂2 fi,r(xi)

∂x2
i

∣
∣
∣
xi=ξ

(xi − xi,q)
∣
∣

and ξ := xi,q +α(xi − xi,q). The values wmax,i,r form a

vector wmax,i ∈ R
nx and are used to establish:

Wmax,i,q := {wi ∈ R
nx
∣
∣ |wi| ≤ wmax,i,q}.

Now, the nonlinear dynamics (2) is over-

approximated by the linearized inclusions:

ẋi(t) ∈(Ai,qxi(t)+ bi,q

+ ∑
j∈Ni

ki j,q(x j(t)− xi(t)))⊕Wmax,i (8)

for t ∈ [tq, tq+1], where:

Ai,q :=
[

∂ fi(xi)
∂xi

]∣
∣
∣
xi=xi,q

and bi,q := fi(xi,q)−Ai,qxi,q

holds, and the symbol ⊕ denotes Minkowski addi-

tion. In order to ensure the tightness of the over-

approximations, it is important to determine or select

appropriate δtq, as already mentioned.
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Furthermore, the quantities of the local lineariza-

tions are collected in Aq := diag(A1,q, . . . ,An,q), bq :=
[bT

1,q . . . bT
n,q]

T , wm,q := [wT
max,1,q . . . wT

max,n,q]
T , and

in the weighted Laplacian matrix:

Kq =







m11 m12 . . . m1n

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn






∈R

n×n
. (9)

In here, mii = ∑ j∈Ni
ki j,q and mi j =−ki j,q applies if a

coupling from oscillator j to i exists, while mi j = 0

otherwise. By defining Wm,q := {w ∈ R
nxn

∣
∣|w| ≤

wm,q}, the dynamics of the global vector x(t) =
[xT

1 (t) . . . xT
n (t)]

T satisfies:

ẋ(t) ∈ ((Aq − (Kq ⊗ Inx))x(t)+ bq)⊕Wm,q (10)

for t ∈ [tq, tq+1], where ⊗ denotes the Kronecker prod-

uct and Inx is the nx × nx identity matrix.

3.2 Dynamics of the Synchronization

Error

The synchronization error e(t) ∈R
nx(n−1) for t ≥ t0 is

defined as the difference between x1(t) and any other

x j(t), j ∈ {2,3, . . . ,n}, i.e.:

e(t) =







x2(t)− x1(t)
x3(t)− x1(t)

...

xn(t)− x1(t)







= (









−1 1 0 0 . . . 0

−1 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...

−1 0 . . . 0 1 0

−1 0 . . . 0 0 1









⊗ Inx)

︸ ︷︷ ︸

:=Le

x(t).

By use of (10), the over-approximation of the reach-

able state set can be computed by propagating the set

at time tq forward over the time interval [tq, tq+1]. An

over-approximation of reachable synchronization er-

rors e(t) can be determined by using the extreme val-

ues of each local state xi(t), i ∈ N in each dimension

r ∈ {1, . . . ,nx}. The result may, however, be conserva-

tive, i.e., the set of feasible e(t) may be considerably

over-approximated. To address this problem, the con-

servatively linearized dynamics of e(t) is determined

according to (10): First, a new matrix:

Ld :=

[
[Inx 0nx×nx(n−1)]

Le

]

∈ R
nxn×nxn (11)

is defined based on Le, and Ld is always invertible.

Since the relations:
[

x1(t)
e(t)

]

= Ldx(t),

[
ẋ1(t)
ė(t)

]

= Ld ẋ(t) (12)

hold, the dynamics of the vector [xT
1 (t) eT (t)]T for t ∈

[tq, tq+1] is given by:

[
ẋ1(t)
ė(t)

]

∈ (Ld(Aq − (Kq ⊗ Inx))L
−1
d )

[
x1(t)
e(t)

]

+Ldbq)⊕Wd,q (13)

according to (10) with:

Wd,q :=

{

w ∈ R
nxn

∣
∣
∣
∣
−|Ld |wm,q ≤ w ≤ |Ld |wm,q

}

.

When defining d(t) := [xT
1 (t) eT (t)]T for simplicity of

notation, the initial set E(t0) of d(t0) can be written

as:

E(t0) :=







d ∈ R
nxn

∣
∣
∣
∣
|d−







x1,0

0
...

0






| ≤







xmax 1nx

2xmax 1nx

...

2xmax 1nx













(14)

with xmax := ε√
nx

according to (5). Starting

from E(t0), a method to compute a tight over-

approximation of the reachable set of d(t) (and thus

of the synchronization error e(t)) for the time interval

[t0, tp] is introduced, which is based on the results by

(Girard, 2005).

3.3 Reachable Set of the

Synchronization Error

As (10) and (13) only hold for the time interval

[tq, tq+1], the reachable set of d(t) is iteratively com-

puted for each q ∈ {0,1, . . . p − 1}. As the reach-

able set of d(t) may be small at the sampling time

tq, while being large otherwise, the reachable set of

d(t) is computed for each interval, instead of only at

the sampling times.

For the interval [tq, tq+1], it is known from (13) that

the relation:

d(t) ∈eAd,q δtq E(tq)

⊕
∫ tq+1

tq

e(tq+1−τ)Ad,q(Ldbq ⊕Wd,q)dτ (15)

holds with Ad,q := Ld(Aq − (Kq ⊗ Inx))L
−1
d . The

set on the right-hand side of (15) thus con-

tains the true reachable set of d(t) in this in-

terval. To (efficiently) determine this set, the
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integral
∫ tq+1

tq e(tq+1−τ)Ad,q(Ldbq ⊕ Wd,q)dτ is over-

approximated by a hypercube Clq ⊆ R
nxn centered in

the origin 0nxn, and all sides have a common length

lq ∈R
>0 determined by:

lq := 2

∫ tq+1

tq

e(tq+1−τ)‖Ad,q‖∞ ‖ Ldbq + |Ld |wm,q ‖∞ dτ

:=
2(eδtq‖Ad,q‖∞ − 1)

‖ Ad,q ‖∞
‖ Ldbq + |Ld|wm,q ‖∞ . (16)

Let R [tq,tq+1](E(tq)) denote the true reachable set

of d(t) for the interval [tq, tq+1]. The relation:

R [tq,tq+1] ⊆







⋃
t∈[tq,tq+1]

eAd,q tE(tq)






⊕Clq (17)

thus applies according to (15) and (16), where⋃
t∈[tq,tq+1]

eAd,q tE(tq) is the union of eAd,q tE(tq) for all

t ∈ [tq, tq+1]. Following the method in (Girard, 2005)

to determine the union, the reachable set of d(t) at

time tq+1 is first over-approximated by:

Ê(tq+1) := eAd,q tq+1E(tq)⊕Clq (18)

according to (17). Based on E(tq) and Ê(tq+1),

the union
⋃

t∈[tq,tq+1]
eAd,q tE(tq) is then over-

approximated by a zonotope. The general form of a

zonotope is:

Z := {z ∈ R
nxn | z = c+

o

∑
h=1

gh, |z| ≤ 1} (19)

with the center c ∈ R
nxn and the generators gh ∈

R
nxn, h ∈ {1, . . . ,o} of Z. Note that the initial set

E(tq) in (14) also represents a zonotope Z tq with

the center ctq := [xT
1,q 01×nx(n−1)]

T and a number of

nxn generators gh,tq ∈ R
nxn with: [g1,tq , . . . ,gnxn,tq ] :=

diag(xmaxInx ,2xmaxInx, . . . ,2xmaxInx). Based on Z tq , a

new zonotope Z [tq,tq+1] with the center:

c[tq,tq+1] := 0.5(eAd,q tq + eAd,q tq+1)d(tq) (20)

and a number of 2nxn+1 generators gh,[tq,tq+1] ∈R
nxn,

h ∈ {1, . . . ,2nxn+1} can be determined. The first nxn

generators are obtained to:

gh,[tq,tq+1] := 0.5(eAd,q tq + eAd,qtq+1)gh,tq (21)

for all h ∈ {1, . . . ,nxn}, while for the last nxn genera-

tors:

gh,[tq,tq+1] := 0.5(eAd,q tq − eAd,q tq+1)gh−(nxn+1),tq (22)

applies for all h ∈ {nxn+ 2, . . . ,2nxn+ 1}. The re-

maining (nxn+ 1)-th generator assumes the value:

gnxn+1,[tq,tq+1] := 0.5(eAd,q tq − eAd,qtq+1)d(tq). (23)

In this way, the zonotope Z [tq,tq+1] is ensured to con-

tain the initial set E(tq) and the end set Ê(tq+1).
Then, a new hypercube Cγq is defined with a center

at 0nxn and with all sides having a common length

γq ∈ R
>0:

γq := (etq+1‖Ad,q‖∞ − tq+1 ‖ Ad,q ‖∞

− 1) sup
d∈{e

Ad,q tq E(tq)}
‖ d ‖∞ . (24)

In accordance with a result in (Girard, 2005), the

relation: ⋃
t∈[tq ,tq+1]

eAd,q tE(tq)⊆ Z [tq,tq+1]⊕Cγq (25)

holds. To this end, the reachable set R [tq,tq+1](E(tq))

is over-approximated by a new set:

R̂ [tq,tq+1](E(tq)) := Z [tq,tq+1]⊕Cγq ⊕Clq (26)

according to (17), see also Fig. 1.

Remark 1. The described procedure to compute the

set R̂ [tq,tq+1](E(tq)) is tractable even for a large num-

ber of oscillators, which is important for the applica-

tion to larger networks. This holds true since lq and

γq of the two hypercubes can be directly computed

according to (16) and (24), while for the zonotope

Z [tq,tq+1], the number of generators to be computed

increases only linearly with the number n of oscilla-

tors.

By iteratively determining the over-approximated

reachable sets of Eq. (26), an over-approximated

reachable set can be determined for the whole period

[t0, tp] of the limit cycle consisting of p intervals:

R̂ [t0,tp](E(t0)) :=
p−1⋃
q=0

R̂ [tq,tq+1](Ê(tq+1)) (27)

with Ê(t0) := E(t0). As only the part e(t) of the vec-

tor d(t) := [xT
1 (t) eT (t)]T refers to the synchronization

0 1 3 4 0E
3 4

d3(t)

d
4
(t
)

Figure 1: Consider the first reachable set for compo-
nent three and four of d(t): Starting from E3,4(t0),

which is also the zonotope Z t0,3,4, the sets Ê3,4(t1) and

R̂ [t0,t1]3,4(E3,4(t0)) can be determined, and both are zono-
topes.
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error, one can project R̂ [tq,tq+1](Ê(tq+1)) onto the cor-

responding subspace in order to obtain the reachable

set of e(t). Now let σ := ‖R̂ [t0,tp](E(t0))‖max, such

that the sought upper bound of the synchronization

error is obtained.

3.4 Determination of Coupling Gains

Based on Reachable Sets

While the last section aimed at computing an upper

bound on the size of the over-approximated set of syn-

chronization errors, the perspective is now reverted,

i.e., given a bounding set for the error, the objective is

to obtain admissible time-varying coupling gains.

First of all, a possibly time-varying bounding set

Emax(t) ⊆ R
nxn of the maximally allowable synchro-

nization errors is chosen for any x j(t)− x1(t), j ∈
{2, . . . ,n}. Corresponding to Assumption 2, it makes

sense to choose again a piecewise constant bounding

set Emax(t) = Emax,q for t ∈ [tq, tq+1]. The objective is

now to synthesize the coupling gains ki j,q such that

the reachable set of xi(t)− x1(t) within one period

never leaves Emax,q. An option to obtain ki j,q is to

start from an initial value and then to iterate it until

the size of the over-approximation of the set of reach-

able synchronization errors is limited to Emax,q.

To do so, first determine the period T of the limit

cycle of (3) and set tp equal to T while t0 = 0. The pe-

riod is divided into p intervals, whereby it should be

noted that although the ki j,q are assumed to be dif-

ferent for each time interval [tq, tq+1], the coupling

gains can also be constant for a series of time inter-

vals [tq, tq+1], . . . , [tq+v, tq+1+v] with v ∈N,v < p.

Starting from initial values xi,0 close to a point

of the limit cycle of the averaged dynamics, an ini-

tial set E(0) results as in (14), and the reachable

set R̂ [0,T ](E(0)) can thus be determined. By allow-

ing the coupling gains to be adjusted in each interval

[tq, tq+1+r], the reachable set R̂ [tq+l ,tq+1+l ](Ê(tp+l)),

l ∈ {0, . . . ,v + 1} can be successively constructed.

The synthesis task, accordingly, is to find suitable

gains ki j,q for each interval (e.g. the smallest ones

which are just sufficient to keep the error within the

selected bound).

Theorem 1. Let the projections of

R̂ [tq+l ,tq+1+l ](Ê(tp+l)), l ∈ {0, . . . ,v + 1} onto each

subspace of e( j,1)(t) := x j(t)− x1(t), j ∈ {2, . . . ,n}
be denoted by R̂ [tq+l ,tq+1+l ]r,r+1(Er,r+1(t0)) with the

dimensions r ∈ {1, . . . ,nxn− 1}. If:

a.) the projected sets R̂ [tq+l ,tq+1+l ]r,r+1(Er,r+1(t0))

with the dimensions r ∈ {1, . . . ,nxn− 1} are con-

tained in Emax,q for all coordinates r and all q,

and if

b.) Ê(T ) is contained in the initial set E(t0) at the

end of the last interval,

then the synchronization error e( j,1)(t), j ∈ {2, . . . ,n},

never exceeds Emax,q for the whole phase of preserv-

ing synchronization.

Proof. Starting from the first interval of the limit cy-

cle, the if-condition under a.) ensures that the syn-

chronization error starting from E(0) at t = 0 is al-

ways bounded by the Emax,q within the first period.

At the time t = T , which is the end of the first pe-

riod as well as the beginning of the second period,

the second if-condition b.) ensures that the initial set

Ê(T ) of the second period is a subset of E(0). Thus,

the synchronization error within the second period is

further bounded by the Emax,q and contained in E(0)
at the end. Recursive application guarantees that the

error is bounded by the Emax,q for all t > 0.

By using this scheme, Problem 2 of synthesizing

the coupling gains ki j,q is solved. Note that the set

R̂ [tq+l ,tq+1+l ](Ê(tp+l)), l ∈ {0, . . . ,v+ 1} for each in-

terval depends explicitly on the linearization (10) and

the Laplacian matrix L.

4 NUMERICAL EXAMPLES

In the following, two settings with two different

classes of nonlinear limit cycle oscillators are consid-

ered. For the first setting, a constant gain ki j(t) = k

is used, while a time-variable k(t) is synthesized for

the respective oscillator network in the second setting.

For the sake of simplicity, the gains for all coupling

links are selected to be the same, a uniform step size

δtq = δt > 0 is selected, and Emax(t) is chosen to be

constantly Emax for all times.

4.1 Coupled van-der-Pol Oscillators

In the first test, the synchronization problem for an

example of n = 10 nonidentical van-der-Pol oscilla-

tors:
[

ẋi,1(t)
ẋi,2(t)

]

=

[

xi,2(t)
−xi,1(t)+ µi(1−xi,1(t)

2)xi,2(t)

]

(28)

with significantly different parameter µi > 0 and i ∈
N is considered, see e.g. (Trummel et al., 2023). The

value of µi decides the form of each local limit cycle.

It can be noticed from their limit cycles in Fig. 2

that even without coupling, the limit cycles are close

to each other in the region marked as D, while far

to each in the region G. Hence, one can infer that a
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G

D

32 4 5 96 8 101 7

Figure 2: The considered 10 oscillators are assumed
to be connected by undirected edges in chain structure,
while their parameters are selected to: µ1 = 0.5,µ2 =
3,µ3 = 4.5,µ4 = 1.5,µ5 = 4,µ6 = 2,µ7 = 1.2,µ8 = 3.5,µ9 =
1,µ10 = 5. Their uncoupled limit cycles are quite different
in the region G, while being quite similar in the region D.

larger coupling gain would be required to preserve the

synchronization in G than in D. To examine this, the

reachable set R̂ [0,tp](E(t0)) of the synchronization er-

ror is computed for using a gain k = 20 – once for an

initial set in the region G (on the limit cycle of the

averaged dynamics (3)), and once with an initial set

in D, see Fig. 4. Note that the obtained reachable set

R̂ [0,tp](E(t0)) is projected onto the subspace of the

error e10,1(t) for illustration reasons. This pair of os-

cillators is chosen since the parameters µ1 = 0.5 and

µ10 = 5 differ the most over all oscillators. By com-

paring the reachable sets in Fig. 4b and Fig. 4d, one

can notice that the reachable set starting from the re-

gion D in the former plot is much smaller than the

one starting from G even for a larger time interval

(tp = 1.5 versus tp = 0.75). This shows that, in or-

der to keep the synchronization error below a certain

bound, a coupling gain smaller than k = 20 can be ap-

plied for the region D, while a larger one is required

for the region G.

Then, the coupling gain k for two diffusively cou-

pled van-der-Pol oscillators with µ1 = 0.5 and µ2 = 2

is synthesized based on the reachable set (see the limit

cycles of the two oscillators and the one of the aver-

aged dynamics (3) in Fig. 6a). A given set Emax of a

maximally permitted synchronization error is shown

in Fig. 6c. It is shown that by using the time-varying

coupling gain in Fig. 6e, the reachable sets of the syn-

chronization error are always contained in Emax. At

the same time, the reachable set Ê(T ) at the end of a

period with T = 6.8 and v = 34 is also contained in

the initial set E(0), see Fig. 6d.

4.2 Coupled Merkin–Needham–Scott

Oscillators

In the second test, a number of six diffusively coupled

Merkin–Needham–Scott oscillators (Saha and Gan-

gopadhyay, 2017) in the form of:
[

ẋi,1(t)
ẋi,2(t)

]

=

[
−xi,1(t)+ (ηi + xi,1(t)

2)xi,2(t)
βi − (ηi + xi,1(t)

2)xi,2(t)

]

with nonidentical parameters ηi ≥ 0, βi ∈ R, and

i ∈ N are considered, see Fig. 3. The regions D and

G are defined equivalently to the previous example,

and again the oscillators with the largest difference

between their limit cycles are taken into account. It

can be noticed that the reachable error sets starting

from region D are much smaller than the one initializ-

ing from area G. Therefore, a gain much smaller than

5 can be applied to obtain a synchronization which is

similar to the one for k = 5. For the area G, the re-

verse case is observed: the gain has to be increased to

reduce the size of the reachable sets. This observation

can once more be examined by computing the reach-

able set of the synchronization error for using a gain

k = 5, and similar as the first test, once starting from

the region G and once from the region D. The result-

ing reachable sets are demonstrated in Fig. 5, which

confirmed the observation.

Finally, the coupling gains for two coupled

Merkin–Needham–Scott oscillators (see Fig. 7a) with

parameters η1 = 0.1, β1 = 0.6, η2 = 0.05, and β2 =
0.5 are synthesized for the phase of preserving syn-

chronization. The application of the procedure ex-

plained in Sec. 3.4 results in the time-varying cou-

pling gains shown in Fig. 7e, and satisfying Emax as

in Fig. 7c. Obviously, Emax contains Ê(T ) at the end

of a period with T = 10.05 and v = 201, see Fig. 7d.

Thus, the time-varying coupling gain satisfies the

two conditions in Sec. 3.4, making it a good choice

for preserving synchronization.

G

D

32

4

5

61

Figure 3: Network of 6 Merkin–Needham–Scott limit cy-
cle oscillators with parameters: η1 = 0.1,η2 = 0.01,η3 =
0.01,η4 = 0.05,η5 = 0.005,η6 = 0.02, and β1 = 0.6,β2 =
0.2,β3 = 0.3,β4 = 0.5,β5 = 0.4,β6 = 0.25. Similar to the
van-der-Pol oscillator example, the trajectories in region D
are more similar than the ones in area G.
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Figure 4: By using a coupling gain k = 20, the reachable set
of e(10,1)(t) is computed once starting from the region D and
once from the region G in Fig. 2. The gray limit cycle seg-
ments in (a) and (c) are the one from the averaged dynamics
(3). The zonotopes in yellow in (b) and (d) are the interme-

diate reachable sets R̂ [tq,tq+1](Ê(tq+1)) projected onto the

space of e(10,1)(t) with δt = 0.005. The union of those inter-
mediate reachable sets is thus the reachable set of the whole
interval [0,1.5] for (b) and [0,0.75] for (d).

(a)
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2
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(b)
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e
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2
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(d)
Figure 5: Reachable sets of e(5,1)(t) determined for k = 5,
once starting from the region D and once from G in Fig.
3. The parts (a) and (c) show the gray limit cycle seg-
ments from the averaged dynamics (3). The yellow colored
zonotopes in (b) and (d) are the intermediate reachable sets

R̂ [tq,tq+1](Ê(tq+1)) projected onto the space of e(5,1)(t) with

δt = 0.05. The union of these reachable sets is the reachable
set for the whole interval [0,2] for (b) and [0,1] for (d).
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Figure 6: By using the time-varying coupling gains in (e), the reachable sets of the synchronization error in (c) are always

contained in Emax for the whole period, while Ê(T ) at the end of a period is also contained in E(0), see (d). A possible
evolution of the synchronization error e(2,1)(t) in (f) of the synchronizing states in (b) confirms the result.
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Figure 7: The application of the time-varying coupling gains in (e) leads to the reachable sets of the synchronization error in

(c), while they are always contained in Emax for the whole period. Ê(T ) at the end of a period is also contained in E(0), see
(d). In (f), the evolution of the synchronization error e(2,1)(t) is illustrated for the synchronizing states in (b).
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5 CONCLUSIONS

The paper has provided techniques to analyze and

synthesize bounds of the synchronization error for a

network of diffusively coupled nonidentical nonlin-

ear limit cycle oscillators. Since the synchronization

error cannot be derived as analytic expression due to

the nonlinear dynamics of the local oscillators, over-

approximating reachable sets of the error are deter-

mined for evaluation over time. Based on the obtained

reachable set, a suitable coupling gain to preserve

the synchronization can be synthesized with a guar-

anteed bound on the maximal synchronization error.

Effectiveness of this method is confirmed in differ-

ent simulations with respect to both, the reachable set

computations and the synthesis of the coupling gain.

The methods can be applied to any possible coupling

topology of the oscillator network.

Future work aims at applying the method to other

types of nonlinear oscillators, and to the consideration

of exogenous signals imposed on the oscillators.
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