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Abstract: Anti-money laundering (AML) refers to a comprehensive framework of laws, regulations, and procedures
to prevent bad actors from disguising illegally obtained funds as legitimate income. The AML framework
encompasses customer identity verification and risk assessment, monitoring transactions to detect suspicious
money laundering activities, and reporting suspicious transactions to regulators. In this paper, we focus on the
transaction monitoring task of the AML framework. We propose a graph convolutional networks (GCN) model
to classify transactions as legitimate or suspicious of money laundering. We tested and evaluated the model on
a publicly available large dataset to promote reproducibility. The proposed model was trained and evaluated
using the classification objectives for AML transaction monitoring per industry standard. We describe in detail
our solutions to the class imbalance problem typical of AML datasets. We present comprehensive experiments
to demonstrate and justify how the important parameters of the model were optimized and selected. This helps
to support reproducibility and comparison with future work.

1 INTRODUCTION

Money laundering (ML) is the process of converting
illicit funds, often referred to as “dirty” money, into
assets that appear legitimate. This process typically
involves proceeds from a wide range of criminal ac-
tivities, including but not limited to tax evasion, hu-
man trafficking, illegal gambling, terrorism, and theft.
Money laundering is a global threat to economy and
security, ranking as the third-largest industry within
the realm of criminal enterprises. It contributes to ap-
proximately 2% to 5% of the global gross domestic
product (GDP) (UNODC, 2022). This translates to
a staggering $800 billion to $2 trillion in current US
dollars.

1.1 Background and Motivations

To combat money laundering (anti-money launder-
ing), financial institutions are legally required to im-
plement measures aimed at identifying and preventing
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such illicit activities. These measures include strin-
gent customer identity verification, risk assessment of
customers, monitoring of their accounts and financial
transactions, and reporting of any suspicious activity
to the corresponding national regulator (e.g., FinCEN
in the United States and FINTRAC in Canada). Fail-
ures to report AML cases or comply with AML regu-
lations have resulted in huge fines for many financial
institutions (Husain, 2024). In this article, we limit the
scope of AML to transaction monitoring and use the
term “AML” to refer to the task of monitoring transac-
tions to detect suspicious money laundering activities.

In the current systems for monitoring transactions,
alerts are typically triggered by a rule-based algo-
rithm (Ross and Hannan, 2007) when customer trans-
actions violate certain rules, e.g., when a customer
in the U.S. or Canada deposits a cheque of $10,000
or more and withdraws cash immediately after that.
These alerts then progress through three stages: alert
stage, case stage, and reporting stage (Jullum et al.,
2020). During the alert stage, investigators quickly
assess and classify alerts as either “false positives” or
“suspicious”. Those flagged as suspicious advance
to the second stage (case stage) for an in-depth re-
view and validation. Investigators perform thorough
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and detailed examinations to determine the nature
of the suspicious transactions (e.g., unusual activity,
high-risk transfer), and verify whether the transac-
tions are indeed part of money laundering activity.
If so, these cases are forwarded to the third stage,
(reporting stage). Stage-3 investigators further re-
view the cases forwarded and validate the findings of
stage-2 investigations. If deemed accurate and com-
pliant, these cases are reported to the Money Laun-
dering Reporting Officer (MLRO) of the financial in-
stitution with a recommendation for filing suspicious
activity/transaction reports to the regulators.

Note that the thresholds for the alert generation
logic are set to highly conservative values to catch
the maximum possible number of money laundering
transactions, but also lead to high numbers of false
positives (legitimate transactions labeled as money
laundering). The false alert rate (FAR), defined as the
number of false positives divided by the total number
of alerts generated, is typically 95% - 98%. Investi-
gators must thoroughly examine all alerts to dismiss
false positives. This process is very costly due to high
FAR and manual investigations.

Machine learning can significantly reduce the
FAR while accurately detecting money launder-
ing (Jullum et al., 2020; Raiter, 2021). Also, machine
learning can detect emerging patterns absent in a rule-
based system and learn new patterns quickly via re-
training with new data. On the other hand, develop-
ing machine learning models for AML face several
challenges, more so than most other applications of
machine learning.

1.2 Challenges in Developing Machine
Learning Models for AML and Our
Methodology

We identify the three most challenging issues: 1) lack
of real-world datasets; 2) extremely imbalanced class
distributions in AML datasets; and 3) improper use of
metrics to evaluate AML machine learning models.

1.2.1 Lack of Real-World Datasets

This results from stringent data protection regulations
to protect the privacy and confidentiality of customer
data. Real-world datasets used in prior research are
usually very small, or do not have real money laun-
dering transactions (Bakhshinejad, 2023).

Given the severe scarcity of real-world datasets,
synthetic data have been used to enable the first
step towards developing machine learning models for
AML. Such models can be fine-tuned when real-
world data are made available. In this article, we use a

synthetic dataset named PaySim (Lopez-Rojas et al.,
2016) and adapt it to the requirements of the AML
transaction monitoring task.

1.2.2 Extremely Imbalanced Class Distributions

Financial transaction data for AML are inherently and
extremely imbalanced, with the positive to negative
(P/N) sample ratio in the range of 1/100 to 1/1,000.
Given a large number of negative samples (legiti-
mate transactions) versus very few positive samples
(money laundering transactions), the training model
will learn from negative samples most of the time and
not enough from positive samples. This will lead to
a high number of misclassifications, especially in the
minority class. In AML, failing to catch money laun-
dering transactions may result in fines in the range
of millions of dollars (Rae, 2024; AUSTRAC, 2024),
imposed by regulators on the offending institutions.
A prior survey (Bakhshinejad, 2023) noted that many
papers on AML did not discuss the problem of data
imbalance or solutions to the problem in their data.
We suspect that many did not even resolve or miti-
gate the problem. In the development of our proposed
AML model, we resolve the data imbalance prob-
lem using SMOTE (Synthetic Minority Oversampling
Technique) (Chawla et al., 2002) and near-miss un-
dersampling (Mani and Zhang, 2003) discussed in
Section 4.1.

1.2.3 Improper Use of Metrics to Evaluate AML
Machine Learning Models

A prior survey (Bakhshinejad, 2023) noted that many
papers on AML use accuracy and F1 score to evaluate
their models against some baseline. Given a test set
with a positive to negative sample ratio of 1/1,000, a
naı̈ve algorithm that returns false (i.e., negative label)
for every input sample would result in an accuracy of
99.99%!

F1 score favors a balance of recall and preci-
sion. In AML, the ultimate goal is to reach a recall
of 100% (not missing any money laundering trans-
actions), even at the expense of precision (which is
equal to one minus the false alarm rate). In fact, false
alert rates in current rule-based transaction monitor-
ing systems are about 95% to 98% (equivalent to pre-
cision values of 5% to 2%, respectively). For this
reason, F1 score is not suitable for evaluating AML
machine learning models.

The survey (Bakhshinejad, 2023) noted that many
papers on AML used accuracy and F1 score as the
only metrics to evaluate their models, which cannot
tell us about the effectiveness and performance of a
model for AML transaction monitoring. Table 1 pro-
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vides examples of earlier models that used the PaySim
dataset (Lopez-Rojas et al., 2016) and their classifica-
tion performance as reported in the respective papers.
The accuracy of these models ranges from 81.25%
to 99%, while the class distribution of the PaySim
dataset is approximately 1/1000. The above naı̈ve al-
gorithm with an accuracy of 99.99% would have out-
performed all the models in Table 1 in terms of accu-
racy1!

Table 1: Performance metrics in existing works that use the
PaySim dataset (FPR: false positive rate, FNR: false nega-
tive rate).

Model Accuracy F1 Score FPR FNR

(Raiter, 2021) 99.00 36.00 - -
(Tundis et al., 2021) 95.44 95.89 6.70 2.70
(Pambudi et al., 2019) 88.00 90.00 – –
(Kumar et al., 2020) 81.25 – – –

In this paper, we use two main metrics to eval-
uate our proposed model: recall and false alert rate
(equivalent to 1− precision). All metrics used will be
discussed in detail in Section 4.2.

1.3 Contributions and Methodology

In this article, we propose a model based on graph
convolutional networks (GCN) to classify transac-
tions as legitimate or suspicious of money laun-
dering. We use the node embedding algorithm
node2vec (Grover and Leskovec, 2016) to capture es-
sential structural information about nodes and their
relationships to enhance the classification perfor-
mance of the GCN model. Equally important, we pro-
vide detailed solutions to the class imbalance problem
of AML data and use appropriate metrics for evalu-
ating machine learning models for AML transaction
monitoring. Following are the contributions of this
paper:

• We propose a GCN classifier named N2V-GCN to
detect suspicious money laundering transactions,
which outperforms traditional machine learning
techniques such as random forests, logistic re-
gression, and SVM. N2V-GCN is among the first
GCN models developed specifically for AML
transaction monitoring.

• We provide experimental results that show that
node embeddings (using node2vec) noticeably en-

1It is not clear if the authors of the above papers had
applied any resampling techniques to get a positive to nega-
tive sample ratio higher than that of the PaySim dataset for
evaluating their models. The papers did not discuss how the
problem of imbalanced data was handled.

hances the classification performance of the GCN
classifier.

• Different from most existing work, our proposed
model was fine tuned using the following objec-
tives. The primary objective is to maximize the
recall (true positive rate), ideally reaching 100%,
even at the expense of the false alert rate (or pre-
cision). This objective is consistent with the cur-
rent industry practice, with false alert rates rang-
ing from 95% - 98%. The reason is that the cost
of a false negative is much higher than the cost of
a false positive. Failures to report money launder-
ing cases or to comply with AML regulations have
resulted in fines in the range of millions to billions
of US dollars (Husain, 2024). Given the same re-
call value, the secondary objective is to reduce the
false alert rate (or to increase the precision, which
is equal to one minus the false alert rate).

• Different from existing work, our work shows
how class imbalance negatively affects the clas-
sification performance via experimental results.
We applied resampling to obtain a more balanced
dataset to train our model, resulting in higher clas-
sification performance.

The remainder of this article is structured as fol-
lows. Section 2 reviews existing work on machine
learning for AML. In Section 3, we describe our pro-
posed graph-based deep learning model designed for
AML transaction monitoring. Section 4 presents ex-
perimental results of various scenarios: class distri-
butions, fine tuning of model thresholds, fine tuning
node embedding parameters, ablation study of node
embeddings, and performance comparison with tradi-
tional machine learning techniques. Section 6 sum-
marizes key findings and outlines potential issues for
future research.

2 RELATED WORK

We briefly review related work on machine learning
for AML, including traditional machine learning tech-
niques, deep learning, graph-based learning and un-
supervised learning. In-depth surveys and reviews on
machine learning for AML can be found in (Thom-
mandru et al., 2023; Youssef et al., 2023; Kute et al.,
2021; Chen et al., 2018a; Bakhshinejad, 2023; Chen
et al., 2018b; Labib et al., 2020; Alsuwailem and
Saudagar, 2020).
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2.1 Traditional Machine Learning

Most research on money laundering detection lever-
ages supervised machine learning. Early AML super-
vised models used Bayesian networks (Kumar et al.,
2020), decision trees (Jullum et al., 2020; Jayas-
ree and Balan, 2017), logistic regression (Tertychnyi
et al., 2020), scan statistics (Liu and Zhang, 2010),
neural networks (Chen et al., 2021), SVM (Raiter,
2021; Tang and Yin, 2005; Keyan and Tingting,
2011; Lopez-Rojas and Axelsson, 2012), and ran-
dom forests (Lopez-Rojas and Axelsson, 2012; Ke-
tenci et al., 2021).

2.2 Deep Learning

Deep learning models have recently been developed
for the task of fraud detection. Autoencoders have
been applied to detect anomalies by learning to re-
construct inputs and identifying those that cannot be
accurately reconstructed as suspicious (Paula et al.,
2016; Kumar et al., 2022). Generative Adversarial
Networks (GANs) have also shown promise in AML
by generating synthetic data to train models for bet-
ter fraud detection (Pereira et al., 2023; Pandey et al.,
2022). Other deep learning approaches, such as Long
Short-Term Memory (LSTM) networks, have been
employed to capture temporal dependencies in trans-
action sequences, improving detection accuracy (Jur-
govsky et al., 2018; Roy et al., 2018). Transformers,
which have revolutionized natural language process-
ing, have been adapted for AML tasks to model com-
plex dependencies in transactional data (Tatulli et al.,
2023).

2.3 Graph-Based Machine Learning

Graph analytics is particularly effective for AML due
to its ability to analyze complex connections among
customers, accounts, and transactions (Soltani et al.,
2016). Recently, several models based on GCN have
been proposed for anti-financial crime tasks. (Marasi
and Ferretti, 2024), (Ning et al., 2024), (Wan and Li,
2024) and (Guo et al., 2023) propose and/or evalu-
ated GCN models to detect illicit cryptocurrency ac-
tivities using the Elliptic dataset (Weber et al., 2019a).
This dataset contains a large set of Bitcoin transac-
tions which are labeled as licit or illicit. Illicit trans-
actions are those associated with illicit websites or
sources. The patterns of illicit Bitcoin transactions are
different from those of bank transactions due to the
anonymity of Bitcoin transactions. Thus the findings
from the above works may not be applicable to bank
transaction monitoring. (Silva et al., 2023) compare

the performance of GCN, Skip-GCN (Weber et al.,
2019b), and NENN architecture (Yang and Li, 2020)
for detecting money laundering transactions. The pa-
per focuses on achieving a balance of recall and pre-
cision as represented by the F1 score. On the other
hand, the main focus of detecting money laundering
should be to maximize recall to catch the maximum
possible number of money laundering transactions.

2.4 Unsupervised Learning

Compared to supervised learning, there is a limited
number of works using unsupervised learning. The
most commonly used algorithm is k-means clustering
(Chen et al., 2014; Dreżewski et al., 2015). Other
clustering algorithms that have been used for AML
include expectation maximization (Chen et al., 2014),
CLOPE (Cao and Do, 2012), and minimum spanning
trees (Wang and Dong, 2009).

In addition to clustering, unsupervised anomaly
detection techniques have been used to detect suspi-
cious cases of fraud or money laundering (Pham and
Lee, 2016). Unlike clustering techniques that sepa-
rate data points into different groups, anomaly detec-
tion models aim to find data points that deviate from
the normal behavior of the majority of data points in
the dataset.

3 THE PROPOSED MODEL

Figure 1 presents an overview of the proposed model,
which we name N2V-GCN. This model integrates the
node2vec (N2V) graph embedding technique with a
graph convolutional network (GCN).

To train the model, we aimed to have a training
set more balanced than the original class distribu-
tion of the PaySim dataset (Lopez-Rojas et al., 2016).
To achieve this, we applied the following resampling
techniques:

• oversampling the minority class (money launder-
ing transactions) using SMOTE (Synthetic Mi-
nority Over-sampling Technique)(Chawla et al.,
2002).

• undersampling the majority class (legitimate
transactions) using near-miss undersampling.

The resampled training dataset is then converted into
a graph, in which vertices represent customer ac-
counts and edges represent transactions between cus-
tomer accounts, one edge per transaction. The ver-
tices and edges of the graph are then transformed into
vector representations using node2vec embeddings,
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which are then input into the GCN model. The model
is trained using the vectors output by node2vec.

The testing and evaluation process is similar to the
above procedure, except that the test data is not re-
sampled but keeps the natural distribution, which is
1/1,000 on the PaySim dataset.

3.1 Generating Node Embeddings with
node2vec

We employed node2vec (Grover and Leskovec,
2016), a node embedding technique based on Deep-
Walk, to generate embedding vectors for transaction
graphs. DeepWalk explores a graph through random
walks, but its randomness limits representation qual-
ity. Node2vec improves this by using a biased random
walk with two key parameters:

• In-out parameter q: Controls exploration depth,
balancing between exploring far nodes (BFS-like)
or staying local (DFS-like).

• Return parameter p: Adjusts the probability of
revisiting nodes, promoting either local or broad
exploration.

These parameters guide walk paths and control the
balance between local and global exploration. Node
sequences generated by node2vec are processed with
the skip-gram algorithm to create embedding vectors,
which are then used as input for the graph convolu-
tional network (Mikolov et al., 2013).

3.2 Learning Algorithm Using a Graph
Convolution Network

We use the graph convolution network (GCN) al-
gorithm proposed by Kipf and Welling (Kipf and
Welling, 2016), to classify transactions as legitimate
or suspicious. The GCN algorithm consists of three
main layers: input layer, convolution (or hidden)
layer, and output layer. At the input layer, the GCN
algorithm takes two inputs: embedding vectors gener-
ated using the node2vec algorithm and the adjacency
matrix representing the graph.

In our model, the embedding vectors generated by
the node2vec algorithm are used as a feature set to
classify transactions. These embedding vectors form
a matrix of numerical values, where each row repre-
sents the embedding vector for a specific node in the
graph. This matrix is depicted in Figure 2.

At each layer of neighborhood aggregation, an
embedding vector is generated for each node. As a
result, nodes have different embeddings at each layer.
For instance, in the input layer, node embeddings are

essentially the input matrix X that represents the ini-
tial features of the node network.

In each layer, the neural network performs the
propagation step while learning a set of weights for
the input data. This process repeats for all layers
in GCN, increasing the size of the local neighbor-
hood used to calculate embedding for each node.
This type of computation is a first-order approxima-
tion of the local spectral filters on the graph, which
improves computational efficiency (Palamuttam and
Chen, 2017).

Following the convolution layer, a fully connected
layer combines the information from all nodes in the
graph to make a final prediction or decision. We apply
two neurons in the output layer, each of which repre-
sents one of the two classes: legitimate or suspicious
transaction. The softmax activation function converts
a raw output into the probability that the correspond-
ing input belongs to a particular class. This probabil-
ity is in the range of (0, 1] and provides an intuitive
interpretation of the output, e.g., “there is a 75% prob-
ability that this transaction is money laundering” or
“there is a 90% probability that this transaction is le-
gitimate.” The two-neuron configuration allows us to
obtain prediction probabilities directly for each class
(instead of relying on a threshold probability value
separating the two classes in the one-neuron config-
uration, e.g., 60% or higher indicating money laun-
dering, and under 60% indicating legitimate trans-
actions). The more intuitive and user-friendly pre-
diction probabilities can assist investigators in prior-
itizing cases for investigation and quickly dismissing
false alerts to improve productivity.

4 EXPERIMENT SETTINGS AND
MODEL PARAMETERS

In this section, we describe the dataset used, data pre-
processing, solutions to the class imbalance problem,
performance metrics, and node2vec and GCN param-
eters.

4.1 Dataset and Data Processing

We use a synthetic dataset named PaySim (Lopez-
Rojas et al., 2016) publicly available on Kaggle.
PaySim consists of 1,142 illegitimate transactions and
1,047,433 legitimate transactions, giving a minor-
ity/majority sample ratio of approximately 1/1,000.
Each transaction in the PaySim dataset is composed
of several features and a classification label indicat-
ing if the transaction is licit or illicit. The features in-
clude the type of transaction, amount, sender account
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Figure 1: An overview of N2V-GCN.

Figure 2: Resulting matrix from node embeddings by
node2vec.

number, receiver account number, sender account bal-
ances before and after the transaction, and receiver
account balances before and after the transaction.

We partitioned the dataset into three subsets for
training (60%), validation (20%) and testing (20%).
The partition maintained the original class distribu-
tion of 1/1000 in all three sets.

Using SMOTE and near-miss undersampling, we
generated nine different class distributions, in addi-
tion to the natural distribution of PaySim, to obtain
the following 10 distributions: 1/1000, 1/500, 1/200,
1/100, 1/50, 1/20, 1/10, 1/5, 1/2, 1/1. These class dis-
tributions were implemented only in the training sets
to evaluate the impact of various class distributions
on the learning algorithm’s performance. The test set
keeps the natural distribution 1/1,000 of PaySim, as
imbalanced data is typical in real-world AML sce-
narios. Experimental results that demonstrate the im-
pact of class distributions on the classification perfor-
mance are presented in Section 5.2.

We then converted the tabular data into graph data
structures using the NetworkX library in Python.

4.2 Performance Evaluation Metrics

We use two main metrics for classification perfor-
mance: recall (true positive rate) and false alert rate
(FAR, which equals 1− precision). The objective of
the classifier is to maximize the recall, ideally reach-
ing 100%. Given the same recall value, the secondary
objective is to minimize the false alert rate.

To facilitate the discussions, we will also show the
following metrics in the results, which are related to
the recall and false alert rate:

• number of false negatives (money laundering
transactions misclassified as legitimate).

• false negative rate (FNR), which equals 1− recall.

• precision, which equals 1− FAR.

4.3 Graph Embedding node2vec
Parameters

There are five parameters to be configured when using
node2vec:

• Return Parameter p: It controls the likelihood of
the random walk returning to the previous node
in the walk. A higher p value discourages back-
tracking to the previous node, encouraging explo-
ration of new nodes and capturing a more global
structure. A value of 1 corresponds to an unbiased
random walk.

• In-Out Parameter q: It controls the likelihood of
the random walk exploring new nodes. A higher q
value encourages the random walk to explore dis-
tant nodes, capturing a broader view of the graph.

• Number of Walks: It specifies the number of walks
to start at each node. More walks from each node
help in capturing more comprehensive structural
information.

A Graph-Based Deep Learning Model for the Anti-Money Laundering Task of Transaction Monitoring

501



• Walk Length: It specifies the number of nodes vis-
ited in each walk. A longer walk length helps in
exploring deeper structures of the graph.

• Size of Embedding Vectors: It specifies the di-
mensionality of the resulting embedding vectors,
which represent each node in a lower-dimensional
space and can be used for various downstream
machine learning tasks.

To obtain the best possible results in our exper-
iments, we conducted tests with various sets of pa-
rameters and ultimately selected the combination that
yielded the most favourable outcomes. The grid
search method was employed to determine the opti-
mal set of hyperparameters for node2vec, as follows:

• p: 1, selected from the range of [0.25, 0.5, 1, 1.25,
1.5, 2].

• q: 2, selected from the range of [0.25, 0.5, 1, 1.25,
1.5, 2].

• Number of Walks: 15, chosen from [5, 10, 15].
The default value in node2vec is 10. We tested all
three values to arrive at the selection (see section
5.3).

• Walk Length: 32, chosen from [16, 32, 64, 80].
We tested all four values, including the default
value of 80 in node2vec (see section 5.3).

• Size of Embedding Vectors: 128, chosen from [64,
128, 256], with 128 being the default value in
node2vec.

In section 5.3, we provide a quantitative analy-
sis of the selection of the number of walks and walk
length.

4.4 Graph Convolution Network
Parameters

We evaluated multiple sets of parameters to determine
the optimal combination for achieving the best perfor-
mance in our experiments. We applied the grid search
method using the validation set. The resulting hyper-
parameters optimal for the PaySim dataset and our
classification performance objectives are as follows:

• Network Structure: two convolutional layers that
use 16 filters and have a kernel size of 3, which de-
termines the number of neighbours to aggregate.
The ReLU activation function is applied, and a
fully connected sigmoid layer is used for the out-
put.

• Learning Rate: the model is trained using the
Adam optimizer (Zhang, 2018), while the learn-
ing rate is set to 0.01.

• Batch Size: 16.

• Number of Epochs: 20.

• Threshold: 0.32. The threshold should be chosen
to maximize the recall (true positive rate), ideally
reaching 100%, while maintaining an acceptable
false alert rate, i.e., lower than the industry stan-
dard of 95%. Experimental results with different
threshold values are presented in Section 5.1.

5 EXPERIMENTAL RESULTS

We present experimental results for various scenarios:

1. Determining the optimal classifier threshold to
maximize the recall;

2. Evaluating the impact of different class distribu-
tions on the performance of N2V-GCN;

3. Determining the optimal number of walks for
node2vec;

4. Determining the optimal walk length for
node2vec;

5. Verifying the effectiveness of node embeddings
(ablation study of node2vec);

6. Comparing N2V-GCN with baseline models.

Table 2 summarizes the parameters of the experi-
ments.

5.1 Experiment #1. Determining the
Optimal Classifier Threshold

The choice of the threshold depends on the objective
of classification performance. In our case, the objec-
tive is to maximize recall (i.e., minimizing the number
of false negatives), while keeping the false alert rate
(FAR) as low as possible.

We conducted this experiment using the optimal
parameters for N2V-GCN, which are discussed in
Sections 4.3 and 4.4 and summarized in Table 2.
The optimal threshold for N2V-GCN was 0.32 and
obtained through a grid search within the range of
thresholds from 0.30 to 0.80, with the aim of min-
imizing false negatives. Table 3 displays a part of
the results obtained from threshold adjustments, pro-
viding clearer insights into how altering the threshold
might impact the count of false negatives. According
to the results, from the 0.30 to the 0.32 threshold, the
false negative rate remained constant. Therefore, we
chose 0.32 as the threshold because it produced lower
FAR than 0.30 and 0.31. Note that different dataset
may need a different threshold depending on several
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Table 2: Parameters for each experiment.

Experiment Threshold Class Distribution for Training Number of WalksWalk Length
1 [0.30, 0.31, . . . , 0.40] 1/1 15 32
2 0.32 [1/ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}] 15 32
3 0.32 1/1 [5, 10, 15] 32
4 0.32 1/1 15 [16, 32, 64]
5 0.32 1/1 15 32
6 0.32 1/1 15 32

Table 3: Results of the experiment that investigated the im-
pact of adjusting the threshold for a balanced dataset in
N2V-GCN. The best threshold for N2V-GCN is highlighted
in green . Thresholds that show a sudden increase in FNR

are highlighted in blue . #FN is the number of false nega-
tives.

Threshold FNR #FN FAR Recall Precision

0.30 0 0 69.10 100 30.89
0.31 0 0 66.37 100 33.63
0.32 0 0 63.70 100 36.30
0.33 0.87 2 61.76 99.12 38.24
0.34 0.87 2 60.07 99.12 39.93
0.35 1.31 3 59.31 98.68 40.69
0.36 1.75 4 57.25 98.25 42.75
0.37 1.75 4 55.73 98.25 44.27
0.38 1.75 4 54.75 98.25 45.25
0.39 1.75 4 52.74 98.25 47.26
0.40 2.19 5 51.31 97.80 48.69

factors such as the properties of the transaction graph,
transaction patterns and class distribution.

Furthermore, the data presented in Table 3 reveals
distinct peaks in threshold values (0.33, 0.35, 0.36,
and 0.40) coinciding with sudden rises in the FNR.
Notably, at a threshold of 0.32, our N2V-GCN model
achieved the detection of all money laundering trans-
actions. However, a slight elevation of the threshold
to 0.33 resulted in the misclassification of two money
laundering transactions. Increasing the threshold to
0.40 produced a significant increase in false nega-
tives, causing the model to misclassify five instances
of money laundering.

5.2 Experiment #2. Evaluating the
Impact of Different Class
Distributions on the Performance of
N2V-GCN

In this section, we explore how different class distri-
butions affect the performance of N2V-GCN in terms
of FNR, FAR, recall, and precision. To achieve this,
we modified the original class distribution of PaySim
(1/1000) and generated nine new class distributions
(1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, 1/200, 1/500).
Table 4 shows the results of N2V-GCN performance
for each class distribution.

We observe that as the class distribution becomes

Table 4: Results of the experiment examining the effect of
various class distributions on N2V-GCN. The best result is
obtained by 1/1 class distribution, which is highlighted in
green . #FN is the number of false negatives.

Class
distributions FNR #FN FAR Recall Precision

1/1000 11.40 26 20.78 88.60 79.22
1/500 8.77 20 27.78 91.23 72.22
1/200 6.57 15 31.07 93.42 68.93
1/100 4.82 11 31.11 95.18 68.89
1/50 4.82 11 31.76 95.18 68.24
1/20 3.50 8 36.96 96.50 63.04
1/10 2.19 5 44.39 97.80 55.61
1/5 1.75 4 48.39 98.25 51.61
1/2 0.43 1 63.03 99.56 36.97
1/1 0 0 63.70 100 36.30

more balanced (going from 1/1000 to 1/1), the FNR
decreases, or equivalently, the recall increases. For
example, comparing the class distributions of 1/1000
and 1/1, we note that the FNR decreases by 11.40 per-
centage points (11.40% vs. 0). This improvement is
due to additional positive samples in the 1/1 dataset,
enabling the model to learn more about the positive
class. The class distribution 1/1 achieves the best
FNR (recall) in this experiment.

We note that as the recall increases, the precision
decreases. This is expected because we prioritize re-
call: our classification objective is to maximize recall
(catching the maximum possible number of money
laundering transactions), even at the expense of pre-
cision. When the class distribution is 1/1, the recall,
precision and FAR are 100%, 36.30% and 63.70%, re-
spectively. While a FAR of 63.70% seems high, it is
much lower than the industry standard of 95% - 98%
(Ketenci et al., 2021), and allow us to achieve a recall
of 100%.

5.3 Determining the Optimal node2vec
Parameters

Experiment #3. Varying the Number of Walks

The purpose of this experiment is to assess how the
number of walks impacts the performance of our
AML model. We conducted an experiment by holding
all other parameters constant while varying the num-
ber of walks from 5 to 15. The results of this experi-
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mentation are summarized in Table 5.

Table 5: Results of experiments that examined how the
number of walk parameter in node2vec affects N2V-GCN.

Number of Walks FNR FAR Recall Precision

5 1.31 76.68 98.68 23.31
10 0.43 73.20 99.56 26.80
15 0 63.70 100 36.30

It can be seen that with higher numbers of walks
(10 and 15), the model exhibits enhanced results. This
is particularly notable in terms of lowered FNR val-
ues, signifying improved classification of positive and
negative instances, respectively. Noteworthy is the re-
duction of the model’s FNR by 1.31 percentage points
when number of walks is increased from 5 to 15. Sim-
ilarly, the recall improves as the number of walks
increases. This improvement is in line with the de-
creased FNR, as FNR = 1− recall.

Furthermore, the results show that increasing the
number of walks leads to a lower FAR. This is par-
ticularly noticeable for the highest number of walks
(15), when the FAR is lower than that in the case of
five walks (63.70% vs. 76.68%).

Finally, the precision metric shows an interesting
trend where it increases moderately from five to 10
walks (23.31% vs. 26.80%) and then increases sig-
nificantly from 10 to 15 walks (23.31% vs. 36.30%).
This indicates that the model performs better at clas-
sifying legitimate transactions when the number of
walks increases.

Experiment #4: Varying the Walk Length

To explore the impact of this parameter on the per-
formance of N2V-GCN, we conducted an experiment
in which we maintained all other parameters as con-
stants and varied the length of the walks, ranging from
16 to 64. Table 6 summarizes the results of this exper-
iment using various walk lengths.

Table 6: Results of the experiments that examined how the
walk length parameter in node2vec affects N2V-GCN.

Walk Length FNR FAR Recall Precision

16 0.43 48.05 99.56 51.95
32 0 63.70 100 36.30
64 1.75 87.40 98.25 12.59

We observe that longer walk lengths tend to yield
better performance, but only up to a certain point. A
comparison between walk lengths 16 and 32 shows
a minor but important reduction in FNR (0.43 vs. 0
percentage points). Although this change is not sub-

stantial, it is considered significant in the context of
AML because the FNR is critical. The walk length of
64 results in a slight decrease in recall and a notice-
able increase in FAR. For the graph (dataset) that we
use, a walk length of 32 is optimal.

5.4 Experiment #5: Effectiveness of
node2vec Node Embeddings

In this section, we compare the performance of our
AML model with and without node2vec. In the latter
case, the transaction graph is input directly into the
GCN model. In the former case, the transaction graph
is first embedded by node2vec, and the output from
node2vec is input into the GCN model. In both cases,
the training data has a class distribution of 1/1. The
other parameters are listed in Table 2. The results are
summarized in Table 7.

Table 7: The performance of the AML model with and with-
out node2vec node embeddings.

FNR FAR Recall Precision

N2V-GCN 0 63.70 100 36.30
GCN 3.50 73.54 96.50 26.46

The results show that N2V-GCN outperforms the
GCN model without node2vec embeddings for all
evaluation metrics. The FAR of the N2V-GCN model
is almost 10 percentage points lower than the FAR
of the other model (63.70% vs. 73.54%). Its re-
call is also 3.50 percentage points higher (100%
vs. 96.50%). Node embedding with node2vec
learns continuous node representations by exploring
local neighborhood connections, while a GCN aggre-
gates information from neighboring nodes to capture
broader graph relationships. This combination allows
the model to effectively leverage both local and global
graph information, resulting in more accurate classi-
fication of money laundering instances.

5.5 Experiment #6: GCN vs. Other
Machine Learning Methods

In this experiment, we compared the performance
of N2V-GCN with other commonly used machine
learning techniques for AML transaction monitoring,
namely, random forest, logistic regression and sup-
port vector machine (SVM). The parameters used for
N2V-GCN are listed in Table 2. For the graph con-
volution network, we kept all the parameters at their
optimal values (as described in section 4.4), with a
threshold of 0.32 and the balanced class distribution
(1/1) for training data. For the other machine learn-
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ing techniques, we used their default values and only
changed the classifier thresholds to the optimal ones,
which are 0.35, 0.40, and 0.41 for SVM, random for-
est, and logistic regression, respectively. The results
of the experiment are given in Table 8.

Table 8: Comparison results of N2V-GCN with other clas-
sification algorithms.

Algorithm FNR FAR Recall Precision

N2V-GCN 0 63.70 100 36.30
Random forest 7.87 82.37 92.13 17.63

Logistic regression 4.37 99.66 95.63 0.33
SVM 10.49 77.21 89.50 22.79

The results show that the N2V-GCN model out-
performs the other models for all evaluation metrics.
Specifically, it has the highest recall and lowest FAR.
Among these, SVM has the lowest recall, while logis-
tic regression has the highest FAR.

We attempted to compare N2V-GCN with existing
models that also used the PaySim dataset for evalua-
tion, which are listed in Table I. However, the reported
results in (Raiter, 2021; Tundis et al., 2021; Pambudi
et al., 2019; Kumar et al., 2020) are only accuracy and
F1 scores, which do not effectively capture the perfor-
mance of an AML transaction monitoring system, as
discussed in Section 1.2.3. The paper by Tundis et
al. (Tundis et al., 2021) compared the performance of
traditional machine learning algorithms: random for-
est, decision trees, SVM, linear regression, and naive
Bayes. They relied heavily on feature engineering,
which may not meet high processing demands of mil-
lions of transactions daily.

6 CONCLUSION

The proposed N2V-GCN model outperforms tradi-
tional machine learning models (e.g., random for-
est, logistic regression, and SVM) thanks to the use
of graphs and GCN. The use of node2vec embed-
dings further improves the performance of the GCN.
We also present the process of fine tuning the model
for optimal performance, depending on the available
dataset. For the dataset used in this article, the optimal
parameters are: walk length of 32, number of walks
of 15, and class distribution of 50/50 for training data.
A different dataset with different transactions patterns
and data distributions will require fine tuning to get its
optimal parameters for the best performance, which
may be different from those reported in this article.

In this preliminary work, we used the PaySim
dataset, which contains transactions for mobile pay-
ments, and adapted it to the task of AML transac-

tion monitoring. We will fine tune and evaluate N2V-
GCN further using other publicly available large-
scale datasets that appear recently and target AML
tasks (Altman et al., 2024; Oztas et al., 2023; Jensen
et al., 2023) . We will also incorporate explainable AI
techniques into the model to assist analysts in their
investigations by providing rationales behind the pre-
dictions output by the model.
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