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Abstract: A self-organizing map (SOM) is an unsupervised artificial neural network that models training data using

a map structure of neurons, which preserves the local topological structure of the training data space. An

important step in the use of SOMs for data science is the labeling of neurons, where supervised neuron labeling

is commonly used in practice. Two widely-used supervised neuron labeling methods for SOMs are example-

centric neuron labeling and weight-centric neuron labeling. Example-centric neuron labeling produces high-

quality labels, but tends to leave many neurons unlabeled, thus potentially hampering the interpretation or use

of the labeled SOM. Weight-centric neuron labeling guarantees a label for every neuron, but often produces

less accurate labels. This research proposes a novel hybrid supervised neuron labeling algorithm, which

initially performs example-centric neuron labeling, after which missing labels are filled in using a weight-

centric approach. The objective of this algorithm is to produce high-quality labels while still guaranteeing

labels for every neuron. An empirical investigation compares the performance of the novel hybrid approach

to example-centric neuron labeling and weight-centric neuron labeling, and demonstrates the feasibility of the

proposed algorithm.

1 INTRODUCTION

Self-organizing maps (SOMs) are unsupervised learn-

ing neural networks (Kohonen, 2001), which have

been widely investigated in the literature (Kaski et al.,

1998; Oja et al., 2003; Poll ¨ a et al., 2009). SOMs ¨

have seen wide use in data science, data mining, and

exploratory data analysis (van Heerden, 2017). Some

specific application areas include business analytics

(Bowen and Siegler, 2024), healthcare (Javed et al.,

2024), pandemic analysis (Galvan et al., 2021), as-

tronomy (Vantyghem et al., 2024), and environmental

research (Rosa et al., 2024). SOMs are discussed in

more detail within Section 2.

SOMs are made up of neurons, which together

model a training data set. Several SOM neu-

ron labeling techniques exist, each of which at-

taches typically text-based characterizations to a sub-

set of a SOM’s neurons. Neuron labeling often

plays an essential part in SOM-based data analysis

(van Heerden and Engelbrecht, 2008). The quality of

SOM-based data science therefore depends heavily

on the performance of the labeling algorithm that has

a https://orcid.org/0000-0002-9736-7268

been chosen. Section 3 elaborates upon neuron label-

ing approaches.

Two of the most commonly used labeling meth-

ods are example-centric neuron labeling and weight-

centric neuron labeling (Kohonen, 1989). Example-

centric neuron labeling is very accurate but leaves

some neurons unlabeled, while weight-centric neuron

labeling lacks accuracy but guarantees a label for ev-

ery neuron (van Heerden, 2017).

Section 4 introduces a novel SOM neuron labeling

algorithm, namely example-centric neuron labeling

with weight-centric finalization. This algorithm com-

bines the best aspects of example-centric and weight-

centric neuron labeling, by guaranteeing high-quality

labels for every neuron of a SOM.

To demonstrate the advantages of the new algo-

rithm, an empirical analysis was conducted. Section 5

presents the experimental results, which compare

the performance of the novel algorithm to example-

centric and weight-centric neuron labeling.

Finally, Section 6 concludes with a summary of

this work’s most important findings. Additionally,

several avenues are suggested for future investigations

stemming from the research presented here.
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Figure 1: The architectural components making up a SOM.

2 SELF-ORGANIZING MAPS

Teuvo Kohonen introduced the SOM, which is an un-

supervised neural network based on the associative

nature of human cerebral cortices (Kohonen, 1982).

In contrast to supervised neural networks, the training

of a SOM does not require data classifications.

Figure 1 illustrates the architectural components

of a SOM. Map training uses a training data set of

PT training examples, DT = {~z1,~z2, . . . ,~zPT
}. Each

training example is represented by an I-dimensional

vector of attribute values,~zs = (zs1,zs2, . . . ,zsI). Every

attribute value is denoted zsv and is a real value.

The central map structure of a SOM consists of a

grid of neurons with Y rows and X columns. Each

neuron, denoted nyx , is positioned at row y and col-

umn x of the grid, and has a linked weight vector,

~wyx =(wyx1,wyx2, . . . ,wyxI). Every real valued weight,

wyxv , corresponds to zsv across every~zs in DT .

The objective of SOM training is to adapt every

~wyx in the map structure, so that they collectively

model DT . The model is a simplified representation

because DT is I-dimensional, while the map is two-

dimensional. The map has two characteristics:

1. The map models the probability density function

of the data space represented by DT . Weight vec-

tors move towards denser parts of the data space

during training. Neurons thus model subsets of

mutually similar data examples after training.

2. Data examples that are close together in the data

space are represented by neurons that are posi-

tioned near each other in the map grid. The map

model therefore maintains the local topological

structure of the data space represented by DT .

Figure 2 shows the result of SOM training on syn-

thetic two-dimensional data. Gray circles represent

the original uniformly distributed positions of weight

x

x
x

x

x

x

x

Figure 2: SOM weight updates for two-dimensional data.

vectors in the map space, and dashed lines connect

the weight vectors of adjacent neurons. Crosses show

the positions of training examples in the data space.

After training, the weight vectors shift to the loca-

tions of the black circles, where solid lines connect

the weight vectors of adjacent neurons. Characteris-

tic 1 is demonstrated by the drift of weight vectors to

the dense group of training examples. Training exam-

ples are also positioned close to the weight vectors of

adjacent neurons, illustrating characteristic 2.

Several SOM training algorithms exist (Engel-

brecht, 2007), which are all usable with the proposed

labeling approach. The experiments of Section 5 used

the original stochastic training procedure (Kohonen,

1982), shown in Algorithm 1, which is commonly

used and a good baseline for comparisons.

Stochastic training repeatedly iterates over each

~zs ∈ DT . The best matching unit (or BMU), denoted

nba , with ~wba closest to~zs , is defined as follows:

‖~zs −~wba‖2 = min
∀yx

{

‖~zs −~wyx‖2

}

(1)

At the current training iteration, t, every ~wyx on the

map is updated relative to the BMU, as follows:

~wyx(t + 1) = ~wyx(t)+∆~wyx(t) (2)

The change applied to a weight vector is composed of

an update for each weight, as follows:

∆~wyx(t) =
(

∆wyx1(t),∆wyx2(t), . . . ,∆wyxI(t)
)

(3)

Finally, the change computed for a weight is defined

according to the following equation:

∆wyxv(t) = hba,yx(t) ·
(

zsv −wyxv(t)
)

(4)

Here, hba,yx(t) is the neighborhood function at itera-

tion t, which is usually the smooth Gaussian kernel:

hba,yx(t) = η(t) · exp

(

−
‖cba − cyx‖

2
2

2 ·
(

σ(t)
)2

)

(5)
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initialize map grid
set current training iteration, t = 0
randomly shuffle DT

repeat
choose unselected~zs ∈ DT

use Equation (1) to find BMU, nba , for~zs

forall ~wyx in the map do
update ~wyx using Equation (2)

end
update current training iteration, t = t +1
if all~zs ∈ DT selected, shuffle DT

until a stopping condition is satisfied

Algorithm 1: Stochastic SOM training procedure.

In this equation, η(t) is the learning rate hyperparam-

eter and σ(t) is the kernel width hyperparameter, both

at iteration t, while ‖cba − cyx‖2 is the distance be-

tween the map coordinates of nba and nyx .

For SOM training to converge, the learning rate

and kernel width must both be monotonically decreas-

ing functions of t. The reported experiments used an

exponential decay function for the learning rate:

η(t) = η(0) · e−t/τ1 (6)

Here, η(0) is the initial learning rate at the start of

training, and τ1 is a constant governing the decay rate.

Similarly, the kernel width decays as follows:

σ(t) = σ(0) · e−t/τ2 (7)

The initial kernel width is σ(0), and τ2 is a constant

affecting the rate of kernel width decay.

3 SOM NEURON LABELING

Neuron labeling attaches textual descriptions

to neurons, to represent neuron characteristics.

Neuron labels are often used during SOM-

based exploratory data analysis, and are essen-

tial to automated rule extraction from SOMs

(van Heerden and Engelbrecht, 2016). Neuron label-

ing approaches are either supervised or unsupervised

(Azcarraga et al., 2008).

Supervised labeling uses classified examples from

a labeling data set (either the training set or separate

data). Algorithms in this category include example-

centric neuron labeling (Kohonen, 1989), example-

centric cluster labeling (Samarasinghe, 2007), and

weight-centric neuron labeling (Kohonen, 1989).

Unsupervised labeling is not based on classified

labeling data. In the simplest instance, a human an-

alyst manually assigns neuron labels (Corradini and

Gross, 1999). Algorithmic methods also exist, which

base labels either on the weight vectors of the map, or

train a SOM, map, with Y×X neurons

forall nyx in map do

define empty mapped example set, Myx

end

forall labeling examples~zs do

use Equation (1) to find BMU, nba , for~zs

add~zs to Mba

end

forall nyx in map do

find most common class, Acls , within Myx

label nyx with Acls

end

Algorithm 2: Example-centric neuron labeling.

the labeling data in relation to the map neurons. These

unsupervised algorithms include unique cluster label-

ing (Deboeck, 1999), unsupervised weight-based la-

beling (Serrano-Cinca, 1996; Lagus and Kaski, 1999;

van Heerden and Engelbrecht, 2012), and unsuper-

vised example-based labeling (Rauber and Merkl,

1999; Azcarraga et al., 2008).

Unsupervised labeling techniques are more flexi-

ble than their supervised counterparts. However, un-

supervised labelings are difficult to interpret objec-

tively, posing a problem for their empirical analysis.

As a consequence, most research focuses on super-

vised labeling algorithms, as this paper does.

Example-centric cluster labeling performs poorly,

particularly in the presence of heterogeneous clusters

of weight vectors (van Heerden, 2017). This research

therefore focuses only on example-centric neuron la-

beling and weight-centric neuron labeling, which are

elaborated upon in Sections 3.1 and 3.2.

3.1 Example-Centric Neuron Labeling

Algorithm 2 represents example-centric neuron label-

ing. An initially empty set of mapped labeling exam-

ples is associated with each neuron on the map. Each

labeling example,~zs , is then mapped to its BMU us-

ing Equation (1), and ~zs is added to the labeling ex-

ample set of the BMU. Finally, each neuron is labeled

using the most common classification appearing in the

corresponding labeling example set.

Example-centric neuron labeling leaves neurons

unlabeled when the associated labeling example sets

are empty. Such neurons are often referred to as inter-

polating units, and represent a large proportion of the

map in some instances (van Heerden, 2023).

Despite these unlabeled neurons, example-centric

neuron labeling has been shown to outperform the

other supervised labeling methods when used as a

basis for simple classification tasks (van Heerden,

2017). It has also been observed that the presence of

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

510



VIR SET

VER

VIR

VIR VER

SET SET SET SET SET

VER

VIR

VIR VIR

VIR

VIR

VER

VIR

VER SET

VIR

VER

VER

SET SET

SET

VIR

VIR

VIR

VIR

VIR

VIR

VIR

VIR

VER

VIR

VIR

VIR

VER

VIR

VER

VER

VIR

VER

VIR

VER

VER

VER

SET

VER

VER

VER

SET

SET

VER

VIR

VER

SET

VER

SET

VER

VER

SET

SET

VER

SET

SET

VER

VER

SET

SET

VER

VIR

Figure 3: A SOM trained on the Iris data set and labeled
using example-centric neuron labeling.

unlabeled neurons is not strongly correlated to poor

label quality (van Heerden and Engelbrecht, 2016).

While unlabeled neurons do not negatively

impact the quality of map characterization, the

missing labels often hamper SOM-based ex-

ploratory data analysis performed by human experts

(van Heerden and Engelbrecht, 2016). This is

because the labeled map is broken up by uncharacter-

ized areas, which obscure a broader overview of the

model characteristics.

The outcomes of the labeling algorithms un-

der investigation are shown using an example SOM

that was trained on the well-known Iris data set

(Fisher, 1936). Figure 3 shows the example SOM la-

beled using example-centric neuron labeling. The la-

bels “SET”, “VER”, and “VIR” respectively represent

the Iris Setosa, Iris Versicolor, and Iris Virginica clas-

sifications present in the data set. The abundance of

empty circles in this visualization clearly illustrates

the large number of unlabeled neurons left by the al-

gorithm, which account for 38.8% of the map.

3.2 Weight-Centric Neuron Labeling

Weight-centric neuron labeling is outlined in Algo-

rithm 3. In contrast to example-centric neuron la-

beling, weight-centric neuron labeling maps neurons

to data examples from a labeling set. Each neuron’s

weight vector is mapped to the closest labeling exam-

train a SOM, map, with Y×X neurons

forall nyx in map do

use Equation (8) to find BME,~ze , for ~wyx

find class, Acls , associated with~ze

label nyx with Acls

end

Algorithm 3: Weight-centric neuron labeling.
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Figure 4: A SOM trained on the Iris data set and labeled
using weight-centric neuron labeling.

ple,~ze , which is called the best matching example (or

BME), and is defined as follows:

‖~wyx −~ze‖2 = min
∀s

{

‖~wyx −~zs‖2

}

(8)

The neuron currently under consideration is then la-

beled with the classification of its BME.

Weight-centric neuron labeling is simpler than

example-centric neuron labeling, and does not require

the storage and searching of mapped labeling exam-

ple sets. Additionally, the algorithm guarantees a la-

bel for every neuron on a map, facilitating easier in-

terpretation for human data analysts.

Unfortunately, neurons will receive poor weight-

centric labels if the BME match is not close. This re-

sults in a tendency for weight-centric neuron labeling

to produce less accurate labels than example-centric

neuron labeling (van Heerden, 2017).

Figure 4 depicts the result of performing weight-

centric neuron labeling on the previously-mentioned

example SOM trained on the Iris data set. It is clear

that every neuron on the map has received a label,

making the map more interpretable when compared

to the example-centric neuron labeling in Figure 3.

4 THE PROPOSED ALGORITHM

The proposed algorithm is referred to as example-

centric neuron labeling with weight-centric finaliza-

tion, and hybridizes example-centric neuron labeling

with weight-centric neuron labeling. The objective is

to generate labels that are accurate, while also guar-

anteeing labels for every neuron on a map.

Algorithm 4 represents the proposed technique,

which is a two-phase process. The first phase per-

forms a normal example-centric neuron labeling, in

which neurons that are BMUs at least once are la-

beled. This phase will typically produce high-quality
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train a SOM, map, with Y×X neurons

forall nyx in map do

define empty mapped example set, Myx

end

forall labeling examples~zs do

use Equation (1) to find BMU, nba , for~zs

add~zs to Mba

end

forall nyx in map do

find most common class, Acls , within Myx

label nyx with Acls

end

forall nyx in map do

if nyx has no associated label then

use Equation (8) to find BME,~ze , for ~wyx

find class, Acls , associated with~ze

label nyx with Acls

end

end

Algorithm 4: Example-centric neuron labeling with weight-

centric finalization.

labels for only a subset of the map neurons. The

second phase then iterates over only the neurons that

have remained unlabeled, assigning a weight-centric

label to each. For each of these neurons, the classi-

fication of its BME becomes the neuron label. The

labels produced by the second phase will be of lower

quality, but will ensure a complete set of labels.

The labeling for the example Iris data set SOM,

which is produced by the proposed algorithm, is

shown in Figure 5. When comparing this labeling to

the standard weight-centric neuron labeling shown in

Figure 4, it is clear that the labelings are very simi-

lar. The maps only differ in terms of two neuron la-

bels: the second from the left on the top row, and the

third from the right on the bottom row. By consulting

Figure 3 it is clear that these differences are due to

the example-centric neuron labeling performed dur-

ing the first labeling phase. It is hypothesized that

such differences constitute more accurate labels than

those produced by example-centric neuron labeling.

5 EXPERIMENTAL RESULTS

To explore the hypothesized advantages of example-

centric neuron labeling with weight-centric finaliza-

tion, a series of experiments were conducted. These

experiments compared the performance of the novel

algorithm against basic example-centric and weight-

centric neuron labeling, when the algorithms were

used in SOM-based data classification tasks.
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Figure 5: A SOM trained on the Iris data set and labeled
using the proposed algorithm.

The standard stochastic training algorithm pro-

duced SOMs for several benchmark data sets. Six

data sets were drawn from the UCI Machine Learning

Repository, namely the Iris data set (Fisher, 1936), the

ionosphere data set (Sigillito et al., 1989), the three

monk’s problems data sets (Wnek, 1993), and the

glass identification data set (German, 1987). It should

be noted that the third monk’s problem set has 5%

classification noise added to the training data. The

data sets were preprocessed by using one-hot encod-

ing for nominal attributes (Bishop, 2006), and scaling

all attribute values to a [0.0,1.0] range using min-max

normalization (Han et al., 2012).

The classification task was executed using the au-

thor’s open-source SOM and labeling algorithm col-

lection (van Heerden, 2024), which is based on Ko-

honen’s original SOM PAK reference implementa-

tion (Kohonen et al., 1996). Square maps were used

throughout, and all weight vectors were initialized

using hypercube initialization (Su et al., 1999). The

SOM’s main stopping condition was a limit of 0.0001

on a 30-iteration moving average of the standard de-

viation computed for the map’s quantization error

(van Heerden, 2017). To ensure termination, training

was also stopped after 100 000 iterations.

Following map training, the appropriate neuron

labeling algorithm was applied. Finally, classifica-

tions were performed by mapping a data example to

its BMU. The label of the BMU was then applied as

the classification of the data example. Each classifi-

cation was compared to the actual classes of the data

example, and a misclassification occurred if a match

was not found. If the BMU was unlabeled, the data

example remained unclassified.

Hyperparameter tuning was performed separately

for the three neuron labeling algorithms applied to

each of the benchmark data sets. The tuning proce-

dure (van Heerden, 2017; Franken, 2009) used Sobol’
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Table 1: Optimal hyperparameters per data set for example-centric neuron labeling.

Parameter Iris Ionosphere Monks 1 Monks 2 Monks 3 Glass

Y and X 5 7 14 15 11 6

η(0) 5.488 3.848 6.055 8.867 9.941 0.449

τ1 1 432.617 1 209.961 849.609 1 365.234 577.148 430.664

σ(0) 2.119 1.818 10.445 1.348 3.029 1.948

τ2 77.539 59.570 9.766 31.641 83.008 7.617

Table 2: Optimal hyperparameters per data set for weight-centric neuron labeling.

Parameter Iris Ionosphere Monks 1 Monks 2 Monks 3 Glass

Y and X 12 17 14 15 19 11

η(0) 4.609 0.918 6.563 8.867 9.629 0.508

τ1 574.219 594.727 46.875 1 365.234 61.523 1 236.328

σ(0) 10.781 14.045 4.813 1.348 4.639 1.904

τ2 96.094 87.305 34.375 31.641 67.383 5.859

Table 3: Optimal hyperparameters per data set for example-centric neuron labeling with weight-centric finalization.

Parameter Iris Ionosphere Monks 1 Monks 2 Monks 3 Glass

Y and X 11 15 15 16 14 13

η(0) 7.266 8.945 8.867 2.480 1.836 7.910

τ1 363.281 908.203 1 365.234 1 391.602 1 060.547 1 163.086

σ(0) 6.273 1.934 1.348 0.719 5.414 1.082

τ2 16.406 58.984 31.641 2.930 55.078 75.195

sequences (Sobol’, 1967) to generate configurations

that sample the parameter space uniformly. Ta-

bles 1 to 3 present the optimal hyperparameters for

example-centric neuron labeling, weight-centric neu-

ron labeling, and example-centric neuron labeling

with weight-centric finalization, respectively.

For each algorithm and data set, a 30-fold cross-

validation was performed, and performance measures

were recorded. To test whether performance mea-

sure differences were statistically significant, two-

tailed non-parametric Wilcoxon signed-rank hypoth-

esis tests (Wilcoxon, 1945) were performed with a

confidence level of 0.05. A Bonferroni correction

(Miller, 1981) was applied, to counteract the multi-

ple comparisons problem. The results tables that fol-

low report the mean and standard deviation for each

performance measure, as well as a hypothesis test p-

value. When a p-value indicates a significant perfor-

mance difference, the mean and standard deviation of

the better-performing algorithm are marked in bold.

Tables 4 and 5 respectively compare the overall

training set error performance of the proposed ap-

proach against example-centric neuron labeling and

weight-centric neuron labeling. These errors could

be due to a combination of misclassified and unclas-

sified training set data examples. The tables clearly

illustrate that the proposed algorithm outperforms

example-centric neuron labeling in all instances, and

weight-centric neuron labeling in all but one case

(for the third monk’s problem, which included train-

ing data noise, weight-centric neuron labeling outper-

formed the proposed algorithm). The proposed ap-

proach generally did not outperform example-centric

neuron labeling by a very large margin, except in the

case of the ionosphere and glass identification data

sets. In contrast, weight-centric neuron labeling un-

derperformed by a substantial amount in the cases of

the ionosphere, glass identification, and the first two

monk’s problems data sets.

To gain a deeper insight into whether any type of

classification error was more prevalent, Tables 6 and 7

summarize the training set errors due only to misclas-

sified data examples, when comparing the proposed

algorithm to example-centric and weight-centric neu-

ron labeling, respectively. The performance differ-

ences were exactly the same as those observed for the

overall training set error, indicating that all classifica-

tion errors were due to incorrect classifications.

Tables 8 and 9 respectively present the differences

in performance when comparing the novel algorithm

Neuron Labeling for Self-Organizing Maps Using a Novel Example-Centric Algorithm with Weight-Centric Finalization
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Table 4: Overall training error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

ET ST ET ST

Iris 1.724 0.594 3.655 0.705 3.725× 10−9

Ionosphere 3.647 0.845 10.137 1.221 1.863× 10−9

Monks 1 17.049 1.108 18.126 1.084 0.001

Monks 2 15.056 0.854 15.766 0.657 0.001

Monks 3 22.225 1.224 23.828 1.792 0.001

Glass 11.449 1.518 26.28 1.531 1.863× 10−9

Table 5: Overall training error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

ET ST ET ST

Iris 1.724 0.594 2.575 0.700 2.265× 10−6

Ionosphere 3.647 0.845 15.216 1.626 1.863× 10−9

Monks 1 17.049 1.108 27.974 2.416 1.863× 10−9

Monks 2 15.056 0.854 23.947 2.693 1.863× 10−9

Monks 3 22.225 1.224 19.769 1.873 5.307× 10−6

Glass 11.449 1.518 27.778 2.720 1.863× 10−9

Table 6: Training misclassified error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

ETM STM ETM STM

Iris 1.724 0.594 3.655 0.705 3.725× 10−9

Ionosphere 3.647 0.845 10.137 1.221 1.863× 10−9

Monks 1 17.049 1.108 18.126 1.084 0.001

Monks 2 15.056 0.854 15.766 0.657 0.001

Monks 3 22.225 1.224 23.828 1.792 0.001

Glass 11.449 1.518 26.28 1.531 1.863× 10−9

Table 7: Training misclassified error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

ETM STM ETM STM

Iris 1.724 0.594 2.575 0.700 2.265× 10−6

Ionosphere 3.647 0.845 15.216 1.626 1.863× 10−9

Monks 1 17.049 1.108 27.974 2.416 1.863× 10−9

Monks 2 15.056 0.854 23.947 2.693 1.863× 10−9

Monks 3 22.225 1.224 19.769 1.873 5.307× 10−6

Glass 11.449 1.518 27.778 2.720 1.863× 10−9
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Table 8: Training unclassified error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

ETU STU ETU STU

Iris 0.000 0.000 0.000 0.000 N/A

Ionosphere 0.000 0.000 0.000 0.000 N/A

Monks 1 0.000 0.000 0.000 0.000 N/A

Monks 2 0.000 0.000 0.000 0.000 N/A

Monks 3 0.000 0.000 0.000 0.000 N/A

Glass 0.000 0.000 0.000 0.000 N/A

Table 9: Training unclassified error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

ETU STU ETU STU

Iris 0.000 0.000 0.000 0.000 N/A

Ionosphere 0.000 0.000 0.000 0.000 N/A

Monks 1 0.000 0.000 0.000 0.000 N/A

Monks 2 0.000 0.000 0.000 0.000 N/A

Monks 3 0.000 0.000 0.000 0.000 N/A

Glass 0.000 0.000 0.000 0.000 N/A

to the standard example-centric and weight-centric

methods, in terms of the training set error due only to

unclassified data examples. Here, it is observable that

no training examples were left unclassified by any of

the algorithms. All the labeling approaches therefore

fully modeled the underlying training data.

In terms of algorithm analysis, training set per-

formance is not a realistic representation of the real-

world behavior that can be expected from an algo-

rithm. As a result, the next three sets of comparisons

focus on test set error, computed from data examples

that were not presented during SOM training.

The differences in overall test set classification

performance, when contrasting the new algorithm

and the basic example-centric and weight-centric la-

beling techniques, are illustrated in Tables 10 and

11. No statistically significant differences in test er-

ror performance were observed when comparing the

proposed method to example-centric neuron label-

ing. This implies that example-centric neuron la-

beling with weight-centric finalization classifies ex-

amples as well as example-centric labeling alone.

This is expected, because the first phase of the hy-

brid technique is based on example-centric labeling.

The weight-centric finalization thus does not inter-

fere with classification accuracy. Weight-centric la-

beling performed significantly worse than the novel

algorithm by large margins in half of the data sets

(the ionosphere and first two monk’s problems). In

the other three data sets, no significant performance

difference was observed. The example-centric basis

of the hybrid method is responsible for this behavior.

Tables 12 and 13 juxtapose the test set error due

to only misclassifications. While very small perfor-

mance differences were observable when comparing

the novel approach to example-centric labeling, none

were statistically significant. The comparison against

weight-centric labeling produced very similar results

to those observed for the overall test error.

The test set error due to unclassified examples is

compared in Tables 14 and 15. No statistically sig-

nificant differences were observed when comparing

the new algorithm against either example-centric or

weight-centric neuron labeling. This supports the ob-

servation that classification errors were due mostly to

misclassifications, which was made when considering

the training set error performance.

Finally, Tables 16 and 17 compare the percentage

of neurons that were left unlabeled by the algorithms.

The example-centric method produced significantly

more unlabeled neurons than the proposed algorithm.

The observed differences were generally large, with

example-centric neuron labeling leaving nearly half

the neurons for the first two monk’s problems unchar-

acterized. The combined approach and weight-centric

labeling of course both left no neurons unlabeled.

When viewed holistically, example-centric label-

ing with weight-centric finalization classified data ex-
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Table 10: Overall test error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

EG SG EG SG

Iris 2.667 6.915 4.000 8.137 0.688

Ionosphere 8.788 9.086 11.515 10.923 0.124

Monks 1 19.286 12.178 20.000 12.358 0.532

Monks 2 19.762 10.559 20.238 10.116 0.866

Monks 3 26.190 9.807 26.429 12.178 0.959

Glass 25.714 14.236 31.905 18.639 0.187

Table 11: Overall test error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

EG SG EG SG

Iris 2.667 6.915 3.333 7.581 1.000

Ionosphere 8.788 9.086 15.152 12.016 0.002

Monks 1 19.286 12.178 31.667 11.817 2.365× 10−4

Monks 2 19.762 10.559 29.762 9.395 3.052× 10−5

Monks 3 26.190 9.807 27.619 12.118 0.842

Glass 25.714 14.236 33.333 17.729 0.024

Table 12: Test misclassified error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

EGM SGM EGM SGM

Iris 2.667 6.915 3.333 7.581 1.000

Ionosphere 8.788 9.086 11.212 10.319 0.191

Monks 1 19.286 12.178 18.810 12.226 0.965

Monks 2 19.762 10.559 19.524 9.177 0.971

Monks 3 26.190 9.807 25.952 12.082 0.734

Glass 25.714 14.236 30.476 19.031 0.314

Table 13: Test misclassified error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

EGM SGM EGM SGM

Iris 2.667 6.915 3.333 7.581 1.000

Ionosphere 8.788 9.086 15.152 12.016 0.002

Monks 1 19.286 12.178 31.667 11.817 2.365× 10−4

Monks 2 19.762 10.559 29.762 9.395 3.052× 10−5

Monks 3 26.190 9.807 27.619 12.118 0.842

Glass 25.714 14.236 33.333 17.729 0.024
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Table 14: Test unclassified error comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

EGU SGU EGU SGU

Iris 0.000 0.000 0.667 3.651 1.000

Ionosphere 0.000 0.000 0.303 1.660 1.000

Monks 1 0.000 0.000 1.190 3.294 0.125

Monks 2 0.000 0.000 0.714 2.179 0.250

Monks 3 0.000 0.000 0.476 1.812 0.500

Glass 0.000 0.000 1.429 4.359 0.250

Table 15: Test unclassified error comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

EGU SGU EGU SGU

Iris 0.000 0.000 0.000 0.000 N/A

Ionosphere 0.000 0.000 0.000 0.000 N/A

Monks 1 0.000 0.000 0.000 0.000 N/A

Monks 2 0.000 0.000 0.000 0.000 N/A

Monks 3 0.000 0.000 0.000 0.000 N/A

Glass 0.000 0.000 0.000 0.000 N/A

Table 16: Unlabeled neuron percentage comparison between the proposed algorithm and example-centric neuron labeling.

EC-WC EC
p-value

EU SU EU SU

Iris 0.000 0.000 19.467 3.104 1.863× 10−9

Ionosphere 0.000 0.000 3.810 1.912 3.725× 10−9

Monks 1 0.000 0.000 43.469 3.065 1.863× 10−9

Monks 2 0.000 0.000 49.807 1.885 1.863× 10−9

Monks 3 0.000 0.000 32.700 4.967 1.863× 10−9

Glass 0.000 0.000 8.241 3.961 7.451× 10−9

Table 17: Unlabeled neuron percentage comparison between the proposed algorithm and weight-centric neuron labeling.

EC-WC WC
p-value

EU SU EU SU

Iris 0.000 0.000 0.000 0.000 N/A

Ionosphere 0.000 0.000 0.000 0.000 N/A

Monks 1 0.000 0.000 0.000 0.000 N/A

Monks 2 0.000 0.000 0.000 0.000 N/A

Monks 3 0.000 0.000 0.000 0.000 N/A

Glass 0.000 0.000 0.000 0.000 N/A
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amples no worse than basic example-centric label-

ing, and had better classification performance than

normal weight-centric labeling. At the same time,

example-centric labeling with weight-centric finaliza-

tion clearly maintained a higher percentage of labeled

neurons than example-centric neuron labeling.

The proposed algorithm underperformed in terms

of training misclassification error on the single data

set with injected noise (the third monk’s problem),

when compared to weight-centric neuron labeling.

This type of performance shortfall is, however, not

clear when considering test error. A more thorough

investigation into the performance of the algorithms

in the presence of noise is deferred to future studies.

6 CONCLUSIONS

This paper introduces a novel supervised neuron la-

beling algorithm that successfully combines the ad-

vantages of both example-centric and weight-centric

neuron labeling. If only label quality is important, the

proposed technique is largely equivalent to example-

centric labeling, with the latter being preferable due

to a less complex algorithm. However, if humans are

to analyze a SOM’s labels, the proposed hybrid ap-

proach is preferable because it maintains a fully la-

beled map while offering high-quality labels.

Future work will focus on alternative ways in

which high-quality complete SOM labelings can be

achieved. Three approaches are under consideration:

• An approach (Li and Eastman, 2006) that has

been briefly proposed, but not experimentally ex-

plored, characterizes each unlabeled neuron us-

ing the mean distance between the weight vector

of the unlabeled neuron and the weight vectors

of neuron groups that are labeled with the same

class. The unlabeled neuron receives the label of

the class with the smallest mean distance.

• The propagation of labels from characterized neu-

rons to adjacent uncharacterized neurons will be

investigated. A possible basis for this is neuron

proximity graphs (Herrmann and Ultsch, 2007).

• Semi-supervised SOMs learn the distribution of

classification attributes across the map, without

biasing training (Kiviluoto and Bergius, 1997).

Labels will be based on the learned classification

attributes for each neuron.

Finally, the general performance characteristics of the

supervised labeling algorithms will be investigated in

greater depth. The scalability of supervised labeling

algorithms to very large datasets and maps will be of

interest. It will also be informative to analyze the per-

formance characteristics of the algorithms in the pres-

ence of classification and attribute noise.

REFERENCES

Azcarraga, A., Hsieh, M.-H., Pan, S.-L., and Setiono, R.
(2008). Improved SOM labeling methodology for
data mining applications. In Soft Computing for
Knowledge Discovery and Data Mining, pages 45–75.
Springer. doi:10.1007/978-0-387-69935-6 3.

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.

Bowen, F. and Siegler, J. (2024). Self-organizing maps:
A novel approach to identify and map business clus-
ters. Journal of Management Analytics, 11(2):228–
246. doi:10.1080/23270012.2024.2306628.

Corradini, A. and Gross, H.-M. (1999). A hy-
brid stochastic-connectionist architecture for gesture
recognition. In Proceedings of ICIIS, pages 336–341.
doi:10.1109/ICIIS.1999.810286.

Deboeck, G. (1999). Public domain vs. commercial tools
for creating neural self-organizing maps. PC AI,
13(1):27–33.

Engelbrecht, A. P. (2007). Computational Intelli-
gence: An Introduction. Wiley, 2nd edition.
doi:10.1002/9780470512517.

Fisher, R. A. (1936). Iris data set. UCI Machine Learning
Repository. doi:10.24432/C56C76.

Franken, N. (2009). Visual exploration of algorithm param-
eter space. In Proceedings of CEC, pages 389–398.
doi:10.1109/CEC.2009.4982973.

Galvan, D., Effting, L., Cremasco, H., and Conte-Junior,
C. A. (2021). The spread of the COVID-19 out-
break in Brazil: An overview by Kohonen Self-
Organizing Map networks. Medicina, 57(3):1–19.
doi:10.3390/medicina57030235.

German, B. (1987). Glass identification data set. UCI Ma-
chine Learning Repository. doi:10.24432/C5WW2P.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann, 3rd edition.
doi:10.1016/C2009-0-61819-5.

Herrmann, L. and Ultsch, A. (2007). Label prop-
agation for semi-supervised learning in Self-
Organizing Maps. In Proceedings of WSOM.
doi:10.2390/biecoll-wsom2007-113.

Javed, A., Rizzo, D. M., Lee, B. S., and Gramling, R.
(2024). SOMTimeS: Self organizing maps for time
series clustering and its application to serious illness
conversations. Data Mining and Knowledge Discov-
ery, 38:813–839. doi:10.1007/s10618-023-00979-9.

Kaski, S., Kangas, J., and Kohonen, T. (1998). Bibliography
of Self-Organizing Map (SOM) papers: 1981–1997.
Neural Computing Surveys, 1:102–350.

Kiviluoto, K. and Bergius, P. (1997). Analyzing financial
statements with the Self-Organizing Map. In Proceed-
ings of WSOM, pages 362–367.

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

518



Kohonen, T. (1982). Self-organizing formation of topolog-
ically correct feature maps. Biological Cybernetics,
43(1):59–69. doi:10.1007/BF00337288.

Kohonen, T. (1989). Self-Organization and As-
sociative Memory. Springer, 3rd edition.
doi:10.1007/978-3-642-88163-3.

Kohonen, T. (2001). Self-Organizing Maps. Springer-
Verlag, 3rd edition. doi:10.1007/978-3-642-56927-2.

Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J.
(1996). SOM PAK: The Self-Organizing Map pro-
gram package. Technical Report A31, Helsinki Uni-
versity of Technology.

Lagus, K. and Kaski, S. (1999). Keyword selection
method for characterizing text document maps. In
Proceedings of ICANN, volume 1, pages 371–376.
doi:10.1049/cp:19991137.

Li, Z. and Eastman, J. R. (2006). The nature and clas-
sification of unlabelled neurons in the use of Ko-
honen’s Self-Organizing Map for supervised clas-
sification. Transactions in GIS, 10(4):599–613.
doi:10.1111/j.1467-9671.2006.01014.x.

Miller, Jr, R. G. (1981). Simultaneous Statisti-
cal Inference. Springer-Verlag, 2nd edition.
doi:10.1007/978-1-4613-8122-8.

Oja, M., Kaski, S., and Kohonen, T. (2003). Bibliography
of Self-Organizing Map (SOM) papers: 1998–2001
addendum. Neural Computing Surveys, 3:1–156.
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