
Software Testing Effort Estimation Based on Machine Learning
Techniques: Single and Ensemble Methods

Mohamed Hosni1 a, Ibtissam Medarhri2 b and Juan Manuel Carrillo de Gea3 c

1MOSI Research Team, LM2S3, ENSAM, Moulay Ismail University of Meknes, Morocco
2MMCS Research Team, LMAID, ENSMR-Rabat, Morocco

1Department of Informatics and Systems, Faculty of Computer Science, University of Murcia, Spain

Keywords: Software Testing, Software Testing Effort, Machine Learning, Ensemble Method, ISBSG.

Abstract: Delivering an accurate estimation of the effort required for software system development is crucial for the
success of any software project. However, the software development lifecycle (SDLC) involves multiple ac-
tivities, such as software design, software build, and software testing, among others. Software testing (ST)
holds significant importance in the SDLC as it directly impacts software quality. Typically, the effort required
for the testing phase is estimated as a percentage of the overall predicted SDLC effort, typically ranging be-
tween 10% and 60%. However, this approach poses risks as it hinders proper resource allocation by managers.
Despite the importance of this issue, there is limited research available on estimating ST effort. This paper
aims to address this concern by proposing four machine learning (ML) techniques and a heterogeneous ensem-
ble to predict the effort required for ST activities. The ML techniques employed include K-nearest neighbor
(KNN), Support Vector Regression, Multilayer Perceptron Neural Networks, and decision trees. The dataset
used in this study was obtained from a well-known repository. Various unbiased performance indicators were
utilized to evaluate the predictive capabilities of the proposed techniques. The overall results indicate that the
KNN technique outperforms the other ML techniques, and the proposed ensemble showed superior perfor-
mance accuracy compared to the remaining ML techniques.

1 INTRODUCTION

The software development life cycle (SDLC) encom-
passes a comprehensive range of activities that cover
multiple aspects of a software project. These activi-
ties include strategic planning, thorough requirements
specification, meticulous analysis and design, pre-
cise programming, rigorous testing, seamless integra-
tion, smooth deployment, and various other support-
ive tasks. Together, they form a cohesive framework
for the successful development and implementation
of high-quality software systems (Radliński, 2023).
Ensuring precise estimation of the effort needed to
accomplish each of these activities is crucial for the
overall success of the project (Charette, 2005). De-
spite the majority of research in the literature focusing
on proposing automated techniques for accurate ef-
fort estimation in software development (Hosni et al.,

a https://orcid.org/0000-0001-7336-4276
b https://orcid.org/0009-0003-0052-8702
c https://orcid.org/0000-0002-3320-622X

2019a; Azzeh and Nassif, 2013), there has been rela-
tively limited research conducted specifically on pre-
dicting the effort required to complete a specific ac-
tivity in the SDLC, such as testing, even though it is
a significant and challenging area. Therefore, this re-
search work attempts to propose a software testing ef-
fort estimation technique based on machine learning
methods.

Recently, a systematic literature review (SLR) was
conducted on the use of ML in software testing (Ajor-
loo et al., 2024). This work systematically analyzes
40 studies published between 2018 and 2024, explor-
ing various ML methods, including supervised, un-
supervised, reinforcement, and hybrid approaches in
software testing. It highlights ML’s significant role
in automating test case generation, prioritization, and
fault detection, but also identifies a critical gap in the
area of software test effort prediction—an important
element for effective resource management, cost es-
timation, and project scheduling. Despite its impor-
tance, the review reveals that few studies specifically
address this area, underscoring the urgent need for

Hosni, M., Medarhri, I. and Carrillo de Gea, J.
Software Testing Effort Estimation Based on Machine Learning Techniques: Single and Ensemble Methods.
DOI: 10.5220/0013072400003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 1: KDIR, pages 517-524
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

517



further research on ML-based models to improve test
effort predictions and enhance overall software test-
ing efficiency.

Software testing holds significant importance in
the SDLC as it serves to identify defects, errors,
and inconsistencies within a software system (López-
Martı́n, 2022). The primary objective of this impor-
tant phase is to execute software components or sys-
tems to uncover bugs, verify adherence to specified
requirements, and ensure the overall quality of the
software product. By conducting comprehensive test-
ing, developers can detect and rectify any flaws, en-
suring that the software meets the desired standards
and functions optimally (Radliński, 2023). The test-
ing process plays a critical role in enhancing the reli-
ability, performance, and user experience of the soft-
ware, contributing to the success of the overall devel-
opment project.

Software testing activities play a vital role in eval-
uating the functionality of software and determining
the extent to which it meets stakeholders’ expecta-
tions. Essentially, this phase ensures the software’s
desired quality. In terms of time and cost, soft-
ware testing holds significant importance within the
SDLC. Researchers have made several efforts to esti-
mate the effort required for conducting testing activ-
ities (Radliński, 2023). Typically, the effort needed
to test a software system is measured in person-hours
(López-Martı́n, 2022). During the planning phase of
a project, the overall effort required for the SDLC
is estimated, and a certain percentage is allocated
to account for software testing activities. However,
accurately predicting the effort necessary for testing
poses challenges due to the considerable variability in
the percentage allocation for testing critical software
components. This percentage can vary widely, from
10% to 60% or even higher (López-Martı́n, 2022).
Thus, accurately estimating the effort required for
testing remains a complex task.

ML techniques have been widely employed for
over three decades to estimate software development
effort with a higher degree of accuracy (Hosni and
Idri, 2018). These techniques utilize historical data
from completed projects to uncover complex relation-
ships between various software factors and the ef-
fort required to develop a software system (Ali and
Gravino, 2019; Wen et al., 2012). This enables ML
models to generate more accurate predictions, over-
coming the limitations of traditional software estima-
tion techniques, such as parametric methods. Un-
like traditional approaches, ML techniques can cap-
ture non-linear relationships between the target vari-
able (i.e., effort) and the independent variables. This
flexibility makes ML models well-suited for provid-

ing reliable estimations, which in turn assist project
managers in making informed decisions regarding re-
source allocation and effectively monitoring overall
project progress.

In Software Development Effort Estimation
(SDEE), researchers have extensively explored a
novel approach known as ensemble effort estima-
tion (EEE) (Hosni et al., 2019b; Idri et al., 2016;
d. A. Cabral et al., 2023). This technique involves
combining multiple ML techniques into a single en-
semble model, utilizing a combination rule to gener-
ate predictions. The EEE approach has demonstrated
superior accuracy compared to using a single ML
technique. Extensive literature reports consistently
indicate that EEE outperforms individual ensemble
members in most cases, highlighting the effectiveness
of the ensemble approach in improving the accuracy
of SDEE.

In this paper, our objective is to explore the ap-
plication of well-established ML techniques in SDEE
specifically for estimating the effort required in soft-
ware testing activities. We have selected four widely
used ML techniques: k-nearest neighbor (KNN), Sup-
port Vector Regression (SVR), Multilayer Perceptron
(MLP) Neural Networks, and decision trees (DTs).
Additionally, we propose an ensemble model that
combines these four ML techniques. To obtain the
final estimation from the ensemble, three combiners
are employed: average, median, and inverse ranked
weighted mean.

To conduct our study, we utilized a histori-
cal dataset obtained from the International Soft-
ware Benchmarking and Standards Group (ISBSG)
database, Release 12. In this research work, we ad-
dress three research questions (RQs):

• (RQ1). Among the four ML techniques used,
which one generates the most accurate results?

• (RQ2). Is there any evidence that the proposed
ensemble method performs better than the in-
dividual ML techniques?

• (RQ3). What are the main features that impact
software testing effort (STE) among the input
features used for the ML techniques?
The main features of this paper are as follows:

• Utilizing four well-known ML techniques for es-
timating software testing effort (STE).

• Employing an ensemble method for estimating
STE.

• Evaluating the predictive capabilities of these
STE techniques using unbiased performance mea-
sures.

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

518



• Identifying the most significant features that im-
pact the estimation of STE.

The organization of the remaining parts of this pa-
per is as follows: Section 2 presents a comprehensive
analysis of previous studies. Section 3 provides the
list of the ML techniques employed in this research.
Section 4 outlines the methodology implemented, in-
cluding the materials utilized. Section 5 discusses the
significant findings derived from the study. Lastly,
the concluding section summarizes the paper and pro-
poses future research directions.

2 RELATED WORK

This section presents some related work conducted in
the literature of STE estimation and defines the EEE
approach.

López-Martı́n (López-Martı́n, 2022) carried out
an empirical study to explore the use of ML tech-
niques for predicting software testing effort (STE) in
the software development lifecycle (SDLC). The re-
search examined five ML models—case-based rea-
soning, artificial neural networks (ANN), support
vector regression (SVR), genetic programming, and
decision trees (DTs)—to assess their accuracy in es-
timating software development effort (SDEE). The
models were trained and evaluated using datasets
from the ISBSG, which were chosen based on fac-
tors such as data quality, development type, platform,
programming language, and resource level. The find-
ings revealed that support vector regression (SVR)
provided the most accurate predictions, particularly
when evaluated using mean absolute error (MAE).

Labidi et al. (Labidi and Sakhrawi, 2023) con-
ducted an empirical study aimed at predicting soft-
ware testing effort (STE) using ensemble methods.
The proposed approach combined three machine
learning techniques: ANN, SVR, and DTs, with each
model optimized through grid search. The ISBSG
dataset was employed after a preprocessing step for
empirical evaluation. Results indicated that the en-
semble model outperformed the individual ML tech-
niques based on performance metrics such as root
mean square error (RMSE), R-squared, and MAE.
However, the study lacks specific details about the
dataset used for training and testing, only mentioning
that 17 features were used as inputs for the predic-
tive models. To the best of the authors’ knowledge,
this study, along with another, represents the limited
research exploring ML techniques for predicting soft-
ware testing effort.

In the last decade, there has been significant in-
vestigation into the ensemble approach in the context

of SDEE. This approach involves predicting the ef-
fort needed to develop a software system by using
multiple estimators. Ensembles can be categorized
into two types (Azzeh et al., 2015; Elish et al., 2013):
homogeneous and heterogeneous. Homogeneous en-
sembles combine at least two variants of the same es-
timation technique or combine one estimation tech-
nique with a meta-learner such as Bagging, Boosting,
or Random Subspace. Heterogeneous ensembles, on
the other hand, involve combining at least two differ-
ent techniques. A review conducted by Idri et al. (Idri
et al., 2016) identified 16 SDEE techniques that have
been used to construct EEE techniques. The review
revealed that the homogeneous type of ensemble was
the most frequently investigated. In terms of combin-
ers, the review identified 20 different combiners that
were adopted to merge the individual estimates pro-
vided by the ensemble members. It was found that
linear rules were the most commonly used type of
combiner.

3 MACHINE LEARNING

Four ML techniques were employed in this study :
KNN (Altman, 1992), MLP (Simon, 1999), SVR (Si-
mon, 1999), and DT (Jeffery et al., 2001), besides an
heterogeneous ensemble consisting of the four ML
techniques using three combiners: average, median,
and inverse ranked weighted mean.

4 EMPIRICAL DESIGN

This section outlines the experimental design adopted
to conduct the experiments presented in this paper.
It begins by specifying the performance metrics and
statistical tests used to assess the accuracy of the
proposed predictive models. Next, it details the use
of the grid search hyperparameter optimization tech-
nique to fine-tune the parameter settings of the pre-
dictive models. It then provides information on the
dataset chosen for empirical analysis. Finally, it de-
scribes the methodology employed for building the
predictive models.

4.1 Performance Metrics and Statistical
Test

To evaluate the accuracy of the proposed techniques,
we employed a set of eight widely used performance
criteria commonly found in the SDEE literature.
These criteria include Mean Absolute Error (MAE),

Software Testing Effort Estimation Based on Machine Learning Techniques: Single and Ensemble Methods

519



Mean Balanced Relative Error (MBRE), Mean In-
verted Balanced Relative Error (MIBRE), along with
their respective median values, Logarithmic Standard
Deviation (LSD), and Prediction at 25% (Pred(25))
(Miyazaki, 1991; Minku and Yao, 2013; Foss et al.,
2003).

Additionally, to determine whether the investi-
gated STEE techniques outperformed random guess-
ing, we utilized standardized accuracy (SA) and effect
size as additional evaluation measures (Shepperd and
MacDonell, 2012). The mathematical formulas for
these performance indicators are provided in Equa-
tions (1)-(8).

AEi = |ei − êi| (1)

Pred(0.25) =
100
n

n

∑
i=1

{
1 if AEi

ei
⩽ 0.25

0 otherwise
(2)

MAE =
1
n

n

∑
i=1

AEi (3)

MBRE =
1
n

n

∑
i=1

AEi

min(ei, êi)
(4)

MIBRE =
1
n

n

∑
i=1

AEi

max(ei, êi)
(5)

LSD =

√
∑

n
i=1(λi +

s2

2 )
2

n−1
(6)

SA = 1−
MAEpi

MAE p0

(7)

△ =
MAEpi −MAE p0

Sp0

(8)

where:

• ei and êi denote the actual and predicted effort,
respectively, for the ith project.

• The average mean absolute error from numerous
random guessing trials is represented by MAE p0 .
It is computed by randomly sampling (with equal
probability) from the remaining n− 1 cases and
setting êi = er, where r is a randomly selected
value from 1 to n, excluding i. This randomiza-
tion method is robust as it does not rely on any
assumptions about the population.

• The mean of absolute errors for a given prediction
technique i, denoted as MAEpi , corresponds to the
standard deviation of the sample derived from the
random guessing approach.

• λi is determined by taking the natural logarithm
of ei and subtracting the natural logarithm of êi.

• The term s2 is used as an estimator of the residual
variance associated with λi.

The predictive models were built using the Leave-
One-Out Cross-Validation (LOOCV) technique.

To assess the statistical significance of the pro-
posed technique based on AE, the Scott-Knott (SK)
test was employed. The SK test is a statistical method
used to compare and rank different approaches or
techniques based on their performance metrics. It
helps determine whether there are significant dif-
ferences in performance between the evaluated ap-
proaches.

4.2 Hyperparameters Optimization

Several papers in the SDEE literature have discussed
hyperparameter settings in detail (Song et al., 2013;
Hosni et al., 2018; Hosni, 2023). These studies
have highlighted the importance of optimization tech-
niques in enhancing the accuracy of predictive mod-
els. It has been observed that the performance of ML
techniques in SDEE can vary significantly across dif-
ferent datasets. Consequently, using the same param-
eter settings for a given technique may result in an
incorrect assessment of its predictive capability. To
address this issue, we employ the grid search opti-
mization method to determine the optimal parameter
values for the selected models. Table 1 presents the
predefined search space, specifying the range of opti-
mal parameter values for each ML technique.

4.3 Datasets

The predictive analysis conducted in this paper uti-
lized the dataset from the International Software
Benchmarking Standards Group (ISBSG). This com-
prehensive dataset includes over 6,000 projects and
more than 120 features covering aspects such as
project size, effort, schedule, development type, and
application environment. Prior to building the ma-
chine learning models, the dataset undergoes prepro-
cessing. This process starts with selecting software
projects with high data quality, adhering to the guide-
lines established by the ISBSG group. The selection
criteria are based on the standards outlined in (Hosni
et al., 2019a; Labidi and Sakhrawi, 2023).

Afterwards, we selected attributes that, according
to the authors’ knowledge, have a clear influence on
the STE. As a result, we selected nine numerical fea-
tures along with the target variable ’Effort Test’. The
input features used for our predictive models are listed
in Table 2. It is worth noting that any data rows with
missing values were removed from the dataset.

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

520



Table 1: Range of parameters values for each ML technique.

Technique Search space

KNN
’n neighbors’: [1,11],
’weights’: [’uniform’, ’distance’],
’metric’: [’euclidean’, ’manhattan’, ’cityblock’, ’minkowski’]

SVR

’kernel’: [’rbf’, ’poly’],
’C’: [5, 10, 20, 30, 40, 50, 100],
’epsilon’: [0.0001, 0.001, 0.01, 0.1],
’degree’: [2, 3, 4, 5, 6],
’gamma’: [0.0001, 0.001, 0.01, 0.1]

MLP

’hidden layer sizes’: [(8,), (8,16), (8, 16, 32), (8,16,32,64)],
’activation’: [’relu’, ’tanh’, ’identity’, ’logistic’],
’solver’: [’adam’, ’lbfgs’, ’sgd’],
’learning rate’: [’constant’, ’adaptive’, ’invscaling’],

DT
’criterion’: [’squared error’, ’friedman mse’, ’absolute error’,
’poisson’],’max depth’: [None] + [1, number of feature
space],’max features’: [None, ’sqrt’, ’log2’]

Table 2: Selected features.

Feature Importance score
Enquiry count 0.131424

File count 0.12467
Output count 0.121829

Adjusted function points 0.12108
Input count 0.120946

Max team size 0.120207
Interface count 0.103466

Value adjustment factor 0.083748
User base - locations 0.07263

Effort test -

4.4 Evaluation Methodology

This subsection outlines the experimental design em-
ployed to develop and evaluate the proposed STE
techniques in this paper.

• Step 1: Four ML algorithms: KNN, SVR, MLP
and DT, were trained and optimized using grid
search with 10-fold cross-validation to identify
the best hyperparameters.

• Step 2: Optimal hyperparameter values were se-
lected for each model based on the lowest Mean
Absolute Error (MAE).

• Step 3: The models were then retrained using the
identified optimal parameters and evaluated using
LOOCV.

• Step 4: The validity of the optimized mod-
els was assessed through Standardized Accuracy
(SA) and effect size analysis, comparing their
performance against the 5% quantile of random
guessing.

• Step 5: Performance was measured using a com-
prehensive set of indicators: Mean Absolute Error
(MAE), Median Absolute Error (MdAE), Mean
Inverted Balanced Relative Error (MIBRE), Me-
dian Inverted Balanced Relative Error (MdIBRE),
Mean Balanced Relative Error (MBRE), Median
Balanced Relative Error (MdBRE), Logarithmic
Standard Deviation (LSD), and Prediction at 25%
(Pred(25)).

• Step 6: A heterogeneous ensemble was created
by integrating the four models using three combi-
nation methods: average (AVR), median (MED),
and inverse rank-weighted mean (IRWM).

• Step 7: The ensemble’s performance was evalu-
ated using the same metrics outlined in Step 5.

• Step 8: The software effort estimation methods
were ranked using the Borda count voting system,
considering all eight performance metrics.

• Step 9: The Scott-Knott statistical test was ap-
plied to group the estimation techniques into sta-
tistically similar categories based on AE, iden-
tifying those with comparable predictive perfor-
mance.

5 EMPIRICAL RESULTS

This section presents the empirical findings derived
from the experiment conducted in this paper. The
experiments were executed using various tools, with
Python and its associated libraries being used to run
the experiments. Additionally, the R programming
language was utilized to perform the SK test.

Software Testing Effort Estimation Based on Machine Learning Techniques: Single and Ensemble Methods

521



5.1 Single Techniques Assessment

In this phase, the first step involves identifying the
optimal parameters that yield improved estimates for
each individual technique. To achieve this, multiple
rounds of preliminary experiments were conducted
using the grid search optimization technique. The
hyperparameters were varied within the range val-
ues specified in Table 1 for the four selected ML
techniques: KNN, SVR, MLP, and DT. The evalua-
tion was performed using the 10-fold cross-validation
technique. The objective function targeted for mini-
mization was the MAE criterion. The rationale behind
selecting MAE is its unbiased nature as a performance
measure.

Subsequently, we constructed our predictive mod-
els using the optimal parameters identified in the pre-
vious step, employing the LOOCV technique for val-
idation. This approach was selected for its ability to
provide low bias and high variance estimates, enhanc-
ing the replicability of the study.

We then evaluated the reasonability of our STE
techniques by comparing them to a baseline estima-
tor suggested by Shepperd and MacDonell (Shepperd
and MacDonell, 2012), which constructs an estimator
through multiple runs of random guessing.

The evaluation was carried out using the Stan-
dardized Accuracy (SA) metric and effect size (∆),
as proposed by the authors. As shown in Table 3,
all four ML techniques significantly outperformed
random guessing, showing substantial improvement
with effect sizes greater than 0.8 (∆ > 0.8). Notably,
all techniques exceeded the 5% quantile of random
guessing. Among the techniques, KNN ranked high-
est in both SA and effect size improvement, while
SVR ranked lowest.

Table 3: SA and effect size value of the constructed tech-
niques.

Technique SA Delta
SA5%= 0.2061

KNN 0.981245 -7.134
SVR 0.384077 -2.79237
MLP 0.548538 -3.98806
DT 0.554524 -4.03159

We then assessed the accuracy of the four ML
techniques using the eight chosen performance met-
rics. The evaluation results are summarized in Ta-
ble 4.

The KNN technique demonstrated the highest ac-
curacy among the four ML techniques used in this
study, consistently ranking first across all eight per-
formance metrics. DT and MLP followed, frequently

alternating between second and third positions across
several indicators. SVR consistently ranked lowest
across all performance measures.

These results suggest that the proposed approach
provides satisfactory accuracy, with KNN standing
out as the most effective technique for estimating STE
among those evaluated.

5.2 Ensemble Methods

This step involves constructing the proposed hetero-
geneous ensemble using the four ML techniques.
The ensemble produces the final estimation through
three combiners: AVR, MED, and IRWM based
on the MAE. This approach is grounded in SDEE
literature, which indicates that ensembles typically
achieve higher accuracy than individual estimation
techniques.

Performance metrics of the constructed ensemble,
based on the eight selected indicators, are presented
in Table 5. The ensemble with the IRWM combiner
(EIRWM) consistently outperformed the others, rank-
ing first across all performance metrics. The ensem-
bles with AVR (EAVR) and MED (EMED) combiners
ranked second and third, respectively. The consistent
rankings of the ensemble techniques across all perfor-
mance indicators demonstrate their reliable and stable
accuracy.

5.3 STE Techniques Comparison

In this step, we ranked all the proposed techniques
using the eight accuracy measures. The final rank-
ing was determined through the Borda count voting
system, which considers all eight performance met-
rics. This approach was chosen because the accu-
racy of a technique can depend on the selected per-
formance indicators, potentially leading to conflicting
results as different metrics may produce varying rank-
ings for each technique (Myrtveit et al., 2005; Mittas
and Angelis, 2013). Table 6 presents the final rank-
ings obtained through the Borda count system. As
shown, the KNN technique achieved the top position,
followed by the three heterogeneous ensembles, with
SVR ranked last.

To validate these results, we conducted the SK
statistical test to identify techniques with statistically
similar predictive capabilities. The SK test was per-
formed based on the AE of the proposed techniques.
Table 6 shows the content of clusters identified by the
SK test.

The first cluster contained only the KNN tech-
nique, while the second cluster included the proposed
ensemble methods. The last cluster was comprised

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

522



Table 4: Performance metrics for the four ML techniques.

Technique MAE MdAE MBRE MdBRE MIBRE MdIBRE PRED LSD
KNN 17.66399 0 0.168228 0 0.019629 0 95.55556 0.320259
SVR 580.0858 336.8311 112995.8 1.602058 0.523648 0.615689 17.77778 3.649184
MLP 425.1941 313.952 106435.1 0.753829 0.456234 0.429819 24.44444 3.235486
DT 419.5556 225 75112.29 0.836956 0.453273 0.455621 24.44444 3.418981

Table 5: Accuracy performance of the ensemble methods.

Technique MAE MdAE MBRE MdBRE MIBRE MdIBRE PRED LSD
EAVR 306.2841 190.1564 73635.61 0.555469 0.374774 0.3571069 35.55556 3.103686
EMED 333.5098 207.3907 90773.51 0.710584 0.394308 0.4154042 35.55556 3.236895
EIRWM 244.7196 156.9293 55120.18 0.439571 0.327887 0.3053485 42.22222 2.971071

Table 6: Rank obtained by Borda Count Voting System, and
identified Clusters.

Rank Models Cluster
1 KNN 1
2 EIRWM 2
3 EAVR 2
4 EMED 2
5 DT 3
6 MLP 3
8 SVR 4

solely of the SVR technique. Notably, the clusters
identified by the SK test correspond closely with the
rankings obtained through the Borda count method.
This confirms that the KNN technique remains sta-
tistically the most superior, while the three proposed
ensemble methods consistently outperform the other
individual techniques.

5.4 Features Importance

An important aspect of our investigation was assess-
ing feature importance in explaining the target vari-
able, Effort Test. We employed the ExtraTreesClas-
sifier, which uses multiple decision trees to evalu-
ate and rank the significance of features within the
dataset.

Table 2 shows the importance scores for each fea-
ture used in our predictive models. The results con-
firm that all features contribute to the target variable,
aligning with our manual feature selection process
on the original ISBSG dataset. Notably, the ISBSG
dataset contains over 100 features, suggesting that
incorporating additional relevant features could en-
hance the predictive models’ accuracy.

It is important to note that there is currently no
literature specifically addressing which software fea-
tures are most effective for predicting software testing
activities. Therefore, a more comprehensive analysis

is required to identify the most impactful features for
this purpose.

6 CONCLUSIONS AND FURTHER
WORK

This empirical study explored the effectiveness of ML
techniques in estimating the effort required for soft-
ware testing activities within the SDLC. Four ML
techniques and three heterogeneous ensembles were
examined, with hyperparameters optimized using grid
search. The evaluation employed the Leave-One-Out
Cross-Validation (LOOCV) technique and eight unbi-
ased performance metrics. The key findings related to
each research question are summarized below:

• (RQ1). The KNN technique consistently outper-
formed the other three ML techniques across all
eight performance metrics.

• (RQ2). Results indicated that the ensemble meth-
ods did surpass the accuracy of the individual
techniques (SVR, DT, and MLP) and show less
performance than KNN. This conclusion was sup-
ported by the SK test.

• (RQ3). All features used in training the ML
techniques were identified as important; however,
integrating additional features could further en-
hance the models’ predictive capabilities.

Ongoing research is focused on exploring alter-
native ensemble methods, particularly homogeneous
ensembles, which were not covered in this study. Ef-
forts are also underway to improve the selection of
ensemble components. Additionally, acquiring more
relevant datasets for STE is a key priority, as this will
contribute to the development of more robust and ac-
curate STE models.

Software Testing Effort Estimation Based on Machine Learning Techniques: Single and Ensemble Methods

523



REFERENCES

Ajorloo, S., Jamarani, A., Kashfi, M., Kashani, M. H., and
Najafizadeh, A. (2024). A systematic review of ma-
chine learning methods in software testing. Applied
Soft Computing, page 111805.

Ali, A. and Gravino, C. (2019). A systematic literature
review of software effort prediction using machine
learning methods. J. Softw. Evol. Process, 31(10):1–
25.

Altman, N. S. (1992). An introduction to kernel and
nearest-neighbor nonparametric regression. Am. Stat.,
46(3):175–185.

Azzeh, M. and Nassif, A. B. (2013). Fuzzy model tree for
early effort estimation. In 2013 12th International
Conference on Machine Learning and Applications,
pages 117–121.

Azzeh, M., Nassif, A. B., and Minku, L. L. (2015). An
empirical evaluation of ensemble adjustment methods
for analogy-based effort estimation. J. Syst. Softw.,
103:36–52.

Charette, R. N. (2005). Why software fails? IEEE Spectr.,
42(9):42–49.

d. A. Cabral, J. T. H., Oliveira, A. L. I., and da Silva, F. Q. B.
(2023). Ensemble effort estimation: An updated and
extended systematic literature review. J. Syst. Softw.,
195:111542.

Elish, M. O., Helmy, T., and Hussain, M. I. (2013). Em-
pirical study of homogeneous and heterogeneous en-
semble models for software development effort esti-
mation. Math. Probl. Eng., 2013.

Foss, T., Stensrud, E., Kitchenham, B., and Myrtveit, I.
(2003). A simulation study of the model evaluation
criterion mmre. IEEE Trans. Softw. Eng., 29(11):985–
995.

Hosni, M. (2023). Encoding techniques for handling cat-
egorical data in machine learning-based software de-
velopment effort estimation. In KDIR, pages 460–467.

Hosni, M. and Idri, A. (2018). Software development effort
estimation using feature selection techniques. In Fron-
tiers in Artificial Intelligence and Applications, pages
439–452.

Hosni, M., Idri, A., and Abran, A. (2019a). Evaluating fil-
ter fuzzy analogy homogenous ensembles for software
development effort estimation. J. Softw. Evol. Process,
31(2).

Hosni, M., Idri, A., and Abran, A. (2019b). Improved ef-
fort estimation of heterogeneous ensembles using fil-
ter feature selection. In ICSOFT 2018 - Proceedings of
the 13th International Conference on Software Tech-
nologies, pages 405–412. SciTePress.

Hosni, M., Idri, A., Abran, A., and Nassif, A. B.
(2018). On the value of parameter tuning in hetero-
geneous ensembles effort estimation. Soft Comput.,
22(18):5977–6010.

Idri, A., Hosni, M., and Abran, A. (2016). Systematic map-
ping study of ensemble effort estimation. In Proceed-
ings of the 11th International Conference on Evalua-
tion of Novel Software Approaches to Software Engi-
neering, pages 132–139.

Jeffery, R., Ruhe, M., and Wieczorek, I. (2001). Using pub-
lic domain metrics to estimate software development
effort. In Seventh International Software Metrics Sym-
posium. METRICS 2001, pages 16–27.

Labidi, T. and Sakhrawi, Z. (2023). On the value of parame-
ter tuning in stacking ensemble model for software re-
gression test effort estimation. J. Supercomput., page
0123456789.

López-Martı́n, C. (2022). Machine learning techniques for
software testing effort prediction. Softw. Qual. J.,
30(1):65–100.

Minku, L. L. and Yao, X. (2013). An analysis of multi-
objective evolutionary algorithms for training ensem-
ble models based on different performance measures
in software effort estimation. In Proceedings of the
9th International Conference on Predictive Models in
Software Engineering - PROMISE ’13, pages 1–10.

Mittas, N. and Angelis, L. (2013). Ranking and cluster-
ing software cost estimation models through a multi-
ple comparisons algorithm. IEEE Trans. Softw. Eng.,
39(4):537–551.

Miyazaki, Y. (1991). Method to estimate parameter values
in software prediction models. Inf. Softw. Technol.,
33(3):239–243.

Myrtveit, I., Stensrud, E., and Shepperd, M. (2005). Re-
liability and validity in comparative studies of soft-
ware prediction models. IEEE Trans. Softw. Eng.,
31(5):380–391.

Radliński, Ł. (2023). The impact of data quality on software
testing effort prediction. Electron., 12(7).

Shepperd, M. and MacDonell, S. (2012). Evaluating predic-
tion systems in software project estimation. Inf. Softw.
Technol., 54(8):820–827.

Simon, H. (1999). Neural networks: a comprehensive foun-
dation. MacMillan Publishing Company, 2nd edition.

Song, L., Minku, L. L., and Yao, X. (2013). The impact of
parameter tuning on software effort estimation using
learning machines. In Proceedings of the 9th Interna-
tional Conference on Predictive Models in Software
Engineering.

Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Sys-
tematic literature review of machine learning based
software development effort estimation models. Inf.
Softw. Technol., 54(1):41–59.

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

524


