
Extracting API Structures from Documentation to Create Virtual
Knowledge Graphs

Maximilian Weigand1 a, Felix Gehlhoff1 b and Alexander Fay2 c

1Institute of Automation Technology,
Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Germany

2Chair of Automation Technology, Ruhr University Bochum, Germany

Keywords: Application Programming Interface (API), Virtual Knowledge Graph, Ontology, Software, Documentation.

Abstract: Semantic Web technologies and standards have emerged as effective solutions for data exchange, also in
engineering contexts. They provide a standardized way to exchange data between different software and
facilitate interoperability. Within this work, we introduce a workflow to systematically analyze the structure
of application programming interfaces (APIs) of software, enabling the efficient transformation of information
available from the API into information models that are structured according to Semantic Web standards. Our
goal is to create a reusable interface for engineering software on top of its API. The approach leverages shared
concepts between object-oriented programming and knowledge graphs to abstract components of the API into
a knowledge graph. The workflow allows to selectively extract relevant API components and automates the
generation of necessary code. To demonstrate the approach, we created an application that implements the
workflow and use it for a Java-based API for a modeling software, showcasing the reduction of manual effort.

1 INTRODUCTION

In modern engineering, engineers rely on a wide
range of software applications. However, data ex-
change between these applications often poses a chal-
lenge due to limited interoperability.

Many of these software applications offer appli-
cation programming interfaces (APIs), which make
the software more open by providing a systematic
and versatile means to extract information (Fay et al.,
2013). However, implementing such functionality is
often time-consuming and tends to be a specialized,
non-reusable solution.

Ontologies and knowledge graphs (KGs), origi-
nating from the Semantic Web, have emerged as ef-
fective means for accurate information modeling and
efficient data exchange in engineering fields, e.g. au-
tomation engineering (Dotoli et al., 2018; Ekaputra
et al., 2017; Sabou et al., 2020). Their standardized
formats make them ideal for defining and exchanging
technical information.

In a previous publication (Weigand and Fay,

a https://orcid.org/0009-0000-1602-4873
b https://orcid.org/0000-0002-8383-5323
c https://orcid.org/0000-0002-1922-654X

2022), we addressed the challenge of data exchange
and interoperability between various software appli-
cations in engineering. We proposed an approach
leveraging Semantic Web technologies to enhance
data exchange by abstracting data available from the
API of a software into a KG.

In recent years, the concept of Digital Twins
(DTs) has gained significant attention in engineering.
A DT is essentially a digital representation of a phys-
ical asset. Ontologies and KGs have been discussed
as potential solutions for DTs, as one of the main
challenges remains creating interoperable and seman-
tically unambiguous DTs from various data sources
(Vogel-Heuser et al., 2021). Our approach can there-
fore support the creation of DTs in engineering by
providing a structured method for extracting and rep-
resenting data from engineering software in a stan-
dardized and reusable way.

In our previous publication (Weigand and Fay,
2022), the interface on top APIs of engineering soft-
ware was described generically, and was adapted for
an exemplary software, to demonstrate its functional-
ity. The adaption requires tasks like specifying a set
of relevant components of the API, i.e. components
that represent information that should be abstracted
into the KG. As the adaption proved to be quite labor-

Weigand, M., Gehlhoff, F. and Fay, A.
Extracting API Structures from Documentation to Create Virtual Knowledge Graphs.
DOI: 10.5220/0013083100003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 2: KEOD, pages 287-294
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

287

intensive, we will show within this publication how
this process can be structurized into a workflow and
can be implemented in a supported manner that is au-
tomated as much as possible.

In Section 2, we will evaluate approaches that uti-
lize the shared concepts of APIs and KGs by inte-
grating them. Section 3 will introduce requirements
for the proposed workflow, which will be presented
in detail in Section 4. Section 5 will demonstrate sev-
eral steps of the workflow through an implementation,
which will be showcased by using it to analyze the
API of an exemplary systems engineering software.
Finally, we will summarize insights from the demon-
strated use case in Section 6 and assess it.

2 FUNDAMENTALS AND
RELATED WORK

2.1 Fundamentals

An API generally serves as a mechanism for a client
software component to interact with a supplier soft-
ware component by offering key functions of the sup-
plier software while concealing their underlying im-
plementation details (Reddy, 2011). In the simplest
form, this may be providing a subset of the supplier
software’s source code, typically in the form of a li-
brary, and is therefore often called a library API. The
term API is currently more commonly used to refer to
web APIs. In the context of this publication, the term
API specifically refers to library APIs of engineering
software, such as systems engineering or mechanical
design software. These software often provide APIs
to enable developers to extend the software’s func-
tionality. Our focus is on APIs within the object-
oriented programming (OOP) paradigm, as it is the
prevailing approach in software development.

A KG is a graph-based data structure intended to
represent real-world knowledge by representing enti-
ties of that knowledge as nodes and relations in be-
tween entities as edges (Hogan et al., 2021). The
Resource Description Framework (RDF) (Cyganiak
et al., 2014) is a standard model for representing data
on the Semnatic Web using subject-predicate-object
triples. RDF Schema (RDFS) (Brickley and Guha,
2014) extends RDF by providing a basic vocabulary
for describing relationships and hierarchies, while the
Web Ontology Language (OWL) (Hitzler et al., 2012)
builds on RDF and RDFS to enable more complex se-
mantic relationships within the knowledge. Typically,
a KG is an RDF graph using RDFS or OWL vocabu-
lary. Within this publication, the term KG specifically
refers to RDF graphs using RDFS vocabulary.

2.2 Shared Concepts of Knowledge
Graphs and Object-Oriented Data

KGs and data models within the OOP paradigm share
several foundational concepts, primarily focused on
representing information. Examples are classes in
OOP and RDFS (rdfs:Class), objects in OOP and
resources in RDFS (rdfs:Resource) or methods in
OOP and properties in RDF (rdf:Property).

Within a previous publication (Weigand and Fay,
2022), we created an interface that utilizes these
shared concepts to abstract the data available through
an API of a software as a KG. The KG resulting from
this abstraction retains the advantages of KGs, e.g., it
can be queried using SPARQL (Harris and Seaborne,
2013), a standardized query language to retrieve in-
formation from KGs systematically. The meta data,
e.g. the class structure of the API, is also contained
in the KG, making it possible to query what data is
available from the API. In our approach, the KG is not
materialized, i.e. access to the API data and the ab-
straction into a KG occur only at the time of the query,
making it a virtual KG (VKG). In summary, the VKG
proposed in our previous publication abstracts:

• Classes of the API are abstracted as rdfs:Class

• Class hierarchies are abstracted as
rdfs:subClassOf properties

• The definition of public methods with no
arguments (get-methods) are abstracted
as rdf:Property, including associated
rdfs:domain and rdfs:range properties

• Instances of classes are abstracted as
rdfs:Resource, including a rdf:type property
to the associated class and superclasses

• Instances that are returned if get-methods of
other instances are executed are abstracted as a
rdf:Property to a rdfs:Resource or to literals

In the previous publication, the concept of the VKG
abstraction was explained, and we introduced a
generic version of the VKG interface. This generic
version includes key components such as the logic to
execute a query over the VKG and is intended to be
adapted to a specific software. While some adaptions
must be done manually, others can be largely auto-
mated, though they were implemented manually in
the initial demonstration in our previous publication.
For instance, as shown earlier, each class of the API
is abstracted as a class in the KG. Our goal within this
work is to develop a structured approach to automate
the extraction of such information from the API to re-
duce manual implementation effort.

DTO 2024 - Special Session on Ontologies for Digital Twin

288

2.3 Related Work

The shared concepts of OOP and KGs have been
leveraged by other approaches, which will be sum-
marized in this section.

Object Triple Mapping (OTM) libraries integrate
KGs into the data models of OOP applications. There
are very mature OTM solutions, such as Alibaba
which offers a range of features and good perfor-
mance (Ledvinka and Křemen, 2020). To use OTM
libraries, a mapping between the OOP data model and
the KG has to be defined within the source code of the
application, for example by using code annotations. It
then can be used to store the application data in the
form of a KG in a triple store. This allows the appli-
cation to store data persistently, while also enabling
other applications or end-users to access it indepen-
dently. OTMs are deeply integrated into the appli-
cation and must therefore be implemented during the
development of the application.

If parts of the source code are intended for pub-
lication as an API, the code is typically documented.
A popular built-in tool of Java Development Kits is
Javadoc. Javadoc converts parts of the code including
information given in comments into documentation,
typically in HTML format, though the format can be
chosen by selecting a specific module called doclet.
Similar tools exist for other OOP languages, as well
as multi-language tools like Doxygen1.

The doclet ontlet leverages this principle to extract
the semantics of a Java library as an OWL ontology.
This ontology facilitates understanding the semantic
similarities between different libraries, aiding in code
migration efforts. While the approach does not re-
quire modifying the source code, it does necessitate
the source code to be available. (Ancona et al., 2012)

An alternative approach to create an ontology for a
Java project is parsing it to generate an Abstract Syn-
tax Tree (AST) and then converting the AST into RDF
triples (Atzeni and Atzori, 2017). Unlike the previous
approach, this approach can handle Java bytecode,
meaning it accepts compiled code as input.

If an API to extend a software exists, the API doc-
umentation is usually available. Although API docu-
mentation is primarily created to be human-readable,
it is machine-readable due to its standardized struc-
ture. Consequently, a viable solution is using a
mapping language like the RDF Mapping Language
(RML) (De Meester et al., 2024), which maps various
structured data sources (like CSV or JSON) into RDF
formatted data. Using this rule-based approach, the
complete API structure can be mapped.

1www.doxygen.nl

3 REQUIREMENTS

The following requirements outline considerations
and constraints for the steps of a structured approach
to support and automate creating a VKG interface.
R1 (Brownfield Development Context): As outlined
in the state of the art, various OTM approaches exist
that enable mapping an OOP data model within the
source code of an API to a KG. These approaches are
well-established, having been the subject of extensive
previous research, and there are multiple mature im-
plementations available. However, these existing ap-
proaches are generally designed for greenfield soft-
ware development processes, where the source code
is under development, i.e. it is accessible and modi-
fiable. In contrast, the proposed approach (Weigand
and Fay, 2022), is tailored for use with an existing
library API, placing it in a brownfield software devel-
opment context. In this context, the source code is
not accessible and cannot be modified. Only a sub-
set of components, specifically the API, is usable, but
also not accessible as source code. It is however doc-
umented, for example with tools like Javadoc. R1 re-
stricts the input of the developed workflow to be a
structured documentation of the API.
R2 (Selective Extraction of Relevant Compo-
nents): As the API documentation is a structured
data source, it can be transformed fully automatically
using a rule-based approach. For example, by map-
ping each class of the API to an rdfs:Class. How-
ever, given that the API likely includes an extensive
amount of components, including some that represent
irrelevant information, it is crucial to focus on extract-
ing only specific components that are relevant for ex-
change via the VKG interface. In the context of en-
gineering, e.g. mechanical design, a relevant class of
the API might be one that represents geometrical fea-
tures of a part, while an irrelevant class might be one
that handles notifications of the user interface of the
software. As the relevance of API components can-
not be determined automatically, the selection of rel-
evant API components must be carried out manually.
However, selection steps in the workflow should be
supported and facilitated as much as possible.
R3 (Automation): In contrast to the steps that must
be performed manually due to R2, the remainder of
the extraction process should be automated to the
greatest extent possible. Automation serves two key
purposes: first, to reduce implementation effort, such
as automatically establishing subclass relationships
when the developer adds a class and its subclass to
the set of relevant classes; and second, to mitigate po-
tential errors, such as verifying that when a developer
adds a method, the class returned by the method is

Extracting API Structures from Documentation to Create Virtual Knowledge Graphs

289

within the set of relevant classes.
R4 (Usability): During the manual or guided steps
of the workflow, the developer should be able to
work within a familiar environment. This necessi-
tates reusing the graphical representation of the docu-
mentation, with minimal modifications to its appear-
ance. Modifications should only introduce the re-
quired functions, such as the ability to add a class to
the set of relevant classes.

4 DEVELOPED WORKFLOW

The workflow described within this section is a sys-
tematic approach to develop a VKG interface for an
API. Its steps are displayed in Figure 1 using BPMN
2.0 (Object Management Group, 2011) and will be
explained in detail subsequently.
S1 (Analyze Class Structure): In this initial step, the
complete class structure of the API is analyzed. The
input for this step is the structured documentation of
the API (R1). Since it is structured, this step can be
fully automated and is modeled as a BPMN Service
Task. A comprehensive analysis of the inheritance
structure of all classes described in the API documen-
tation is performed. The output of this step is a list
of all classes, each with references to its superclasses.
Inheritance relations are crucial information, are part
of the VKG and will be introduced in S2.2.
S2 (Add Components from API Documentation):
In this step, the developer will be assisted in select-
ing relevant classes and methods of the API. The en-
tire step is a BPMN Loop Sub-Process, meaning
the contained sub-steps (S2.1 to S2.4) can be repeated
multiple times as needed.
S2.1 (Select Relevant Classes): In this step, the de-
veloper selects relevant API classes from the entire
class structure. The relevance of a class is determined
based on whether it describes information that should
be exchangeable via the new VKG interface. As de-
tailed in R2, the relevance of a class must be deter-
mined by the developer, therefore the developer is as-
sisted by a tool during this step, which is modeled as a
BPMN User Task. According to R4, the tool reuses
the graphical representation of the API documenta-
tion, e.g. the HTML Javadoc of a Java API. Only
minimal modifications are made to introduce controls
for adding classes to the set of relevant classes.
S2.2 (Add Superclass Relation): In this step, super-
class relations are automatically added. A superclass
relationship originates from one class and points to
its superclass. Subclass relationships are not explic-
itly extracted, as they can be inferred from existing
superclass relations. Superclass relations are added

when a class is added and a superclass or subclass of
that class has already been added. If the relationship
spans multiple classes, and the intermediate classes
are not added, the relationship is created directly be-
tween the added classes. These indirect superclass
relationships are corrected if an intermediate class is
added later. The entire class hierarchy, extracted in
Step 1, serves as the input for this process, which is
executed each time a class is added. Consequently,
this step is fully automatable (R3) and is modeled as
a BPMN Service Task.
S2.3 (Select Relevant Methods): Similar to classes
in S2.1, public methods of classes are now selected
and added by the developer. The selection is restricted
to methods without arguments as they can be mapped
directly to an RDF triple. A triple represents a di-
rected relationship between two entities and is the
fundamental data model of an RDF graph. If a method
has arguments, it would imply a parametrization of
the relationship, which cannot easily be represented
in RDF. Therefore, methods with arguments cannot
be selected. As with S2.1 and in accordance with R2,
the developer must determine which methods repre-
sent relevant relationships. Therefore, this step is also
modeled as a BPMN User Task. According to R4,
the functionality for adding a method must also be in-
tegrated into the existing graphical representation of
the API documentation.
S2.4 (Add Missing Classes): If the class of the in-
stance that the method added in the previous step re-
turns is not within the set of selected classes, it will
be added automatically in this step. This step is based
on information available from previous steps and will
be executed fully automatically each time a method is
added (R3). Consequently, this step is modeled as a
BPMN Service Task.
S3 (TBox Generation): Once S2 has been com-
pleted, the TBox of the VKG is fully defined. Al-
though the TBox can later be queried via the VKG
interface, an early export at this stage is possible and
can be performed optionally. The TBox can be ex-
ported in standard formats such as RDF/XML. The
export process relies entirely on the information de-
fined in the previous steps. While the developer de-
cides whether to initiate the export, the remainder of
this step is executed automatically. Consequently, this
step is modeled as a BPMN Service Task.
S4 (Code Generation): In this step, parts of the code
for the VKG interface are generated. The VKG in-
terface operates using two lists. One list includes all
classes, which is primarily created in S2.1. Each class
specifies its direct superclasses as established in S2.2.
The other list contains methods, as specified in S2.3.
Each method indicates the class it originates from and

DTO 2024 - Special Session on Ontologies for Digital Twin

290

Figure 1: Steps of the developed workflow.

the class or the type of literal it returns. This infor-
mation is transformed into a specific code format, as
defined by the implementation of the generic version
of the VKG interface, which is publicly available on
GitHub2. Since the required information is provided
by the previous steps and the existing code, this step is
fully automated and is therefore modeled as a BPMN
Service Task.
S5 (Code Completion): In this step, the developer
completes parts of the code that cannot be automati-
cally generated. Completion involves creating imple-
mentations of abstract classes defined by the generic
version of the VKG interface. The required comple-
tions, such as the functionality to identify the class
of an instance, are therefore specified by the generic
version of the VKG interface. However, the imple-
mentation of these completions is highly dependent
on the specific software being used. As a result, this
step cannot be automated or supported by a tool and
relies entirely on the developer’s input. Therefore, it
is modeled as a BPMN Manual Task.
S6 (Code Compilation): The code now consists of
the generic version of the VKG interface, the auto-
matically generated code from S4, and the manually
added code from S5. The compilation is performed
automatically by a compiler within this step, which is
modeled as a BPMN Service Task.
S7 (Deployment): This final step involves deploying
the compiled VKG interface. This may include tasks
such as copying the VKG interface to a dedicated add-
on folder or creating additional descriptive files that
enable the software to recognize the VKG interface

2github.com/mxweigand/vmax core

as an add-on. The specific actions required are highly
dependent on the software in question. It is therefore
modelled as a BPMN Manual Task.

5 IMPLEMENTATION

To demonstrate our approach, we implemented a tool
that automates and supports several steps of the devel-
oped workflow. This includes steps S1, S2, and S4, as
well as all sub-steps of step S2 (S2.1 to S2.4). Step
S3 was omitted as it is optional. Step S5 was omitted
because it involves manual input and is intended to be
completed by the developer working directly on the
source code of the VKG interface. Step S6, which
is fully automated and handled by a compiler, was
also excluded, as we did not integrate the compiler
into our tool. Step S7 was also omitted because it is
a manual task. Blue borders in Figure 1 indicate the
implemented steps, while grey borders represent the
steps that were not implemented.

The tool is built around the HTML API docu-
mentation of a Java API, which was generated by
Javadoc. Our implementation utilizes NestJS3, a
Node.js4 framework typically used to build server-
side applications, particularly for the backends of web
applications, using TypeScript. NestJS can also be
used to serve HTML documents as a frontend, in our
case the Javadoc HTML documents of the API docu-
mentation. Before serving each document, the tool in-

3docs.nestjs.com
4nodejs.org

Extracting API Structures from Documentation to Create Virtual Knowledge Graphs

291

OVERVIEW PACKAGE CLASS DEPRECATED INDEX HELP SAVECLEARGENERATE⚙
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: Search

Modifier and Type Method Description

Collection <ActivityNode C - > get_activityNodeOfRedefinedNode() M + Returns the value of the 'activity Node Of
Redefined Node' reference list.

Activity C + getActivity() M + Returns the value of the 'Activity' container
reference.

Collection <ActivityEdge C - > getIncoming() M + Returns the value of the 'Incoming' reference list.

Collection <ActivityGroup C + > getInGroup() M + Returns the value of the 'In Group' reference list.

Collection
<InterruptibleActivityRegion C
+ >

getInInterruptibleRegion() M + Returns the value of the 'In Interruptible
Region' reference list.

Collection <ActivityPartition C
+ >

getInPartition() M + Returns the value of the 'In Partition' reference
list.

StructuredActivityNode C + getInStructuredNode() M + Returns the value of the 'In Structured Node'
container reference.

Collection <ActivityEdge C - > getOutgoing() M + Returns the value of the 'Outgoing' reference list.

Collection <ActivityNode C - > getRedefinedNode() M + Returns the value of the 'Redefined Node'
reference list.

✕✕Class/Interface CallAction (Package
com.nomagic.uml2.ext.magicdraw.actions.mdbasicactions)

Status: added

Added Superclasses

ActivityNode (Package
com.nomagic.uml2.ext.magicdraw.activities.mdfundamentalactivities)

Added Subclasses

No subclasses added yet

Added Methods/Attributes

No methods/attributes added yet

Figure 2: Method section of the Javadoc API documentation of a class with additional control elements.

tercepts and modifies it by injecting additional HTML
components and JavaScript functions. These modi-
fications enhance the document with interactive ele-
ments needed for the workflow. After these changes,
the document is sent to the web browser, which dis-
plays it with the new components integrated. In addi-
tion to the frontend, which serves the modified HTML
documents, we also set up a backend. The backend
handles tasks such as executing S1, which involves
analyzing the entire API documentation, or, when the
developer selects a class in S2.1, adding the class to
a class list and automatically executing subsequent
steps of the workflow, such as S2.2.

For the demonstration, we used an example soft-
ware for which we had already developed and tested
the VKG interface in a previous publication (Weigand
and Fay, 2022). In that earlier work, the inter-
face was created manually, which proved to be a
time-consuming process. The software used in the
prior study was Cameo Systems Modeler by Das-
sault Systèmes. In this demonstration, we utilized a
very similar software version: Magic Systems of Sys-
tems Architect (MSOSA). MSOSA is a multi-purpose
modeling software that supports various modeling
languages, including SysML. This software provides
a suitable environment to showcase our tool’s abil-
ity to streamline the VKG interface creation process,
improving efficiency compared to the fully manual
approach previously employed. MSOSA features a
Java API that allows for modification of the soft-
ware’s functionality. This API can also be leveraged
for our purpose: extracting engineering information.

The API is documented using Javadoc, which forms
the basis for our tool. We developed a prototypical
tool5 that implements the previously outlined steps
(S1, S2 and S4), using the Javadoc API documenta-
tion of MSOSA to automate parts of the process and
simplify the extraction of relevant information.

Pages of Javadoc documentation typically display
information about a particular class, including its pub-
lic methods. Figure 2 shows an exemplary page of the
API documentation of MSOSA which was modified
by our tool. The original API documentation is pub-
licly available online6. At the top right of the page,
within the navigation bar, general tools are available,
e.g. to generate code for the interface based on the
currently added API components (GENERATE). Af-
ter each link that leads to a page detailing another
class, two buttons are added. The first button, marked
with C, indicates that the link directs to a class. Click-
ing this button opens an informational dialog, as il-
lustrated on the right side of Figure 2. The second
button (+ or -) allows developers to add or remove
the class from the list of relevant classes. After each
link leading to a method of the class, a similar button,
marked with M is added. On the right side of Figure 2
the informational dialog that appears when a devel-
oper clicks on the class information button is shown.
It shows whether the class has been added to the list,
along with all subclasses and superclasses, including
implicit ones. Additionally, the dialog displays all

5github.com/mxweigand/vmax api doc browser
6jdocs.nomagic.com/2024x

DTO 2024 - Special Session on Ontologies for Digital Twin

292

Figure 3: Example robotic process modeled in a SysML
Activity Diagram (element types indicated in grey boxes).

Figure 4: Extracted API structure.

methods of the class that have been added, along with
their return types. Links to the corresponding meth-
ods or classes are provided, allowing easy navigation
within the Javadoc documentation.

To demonstrate the effectiveness of the tool, we
selected a specific set of classes and methods using
the tool and then generated the corresponding code
for the VKG interface. In our previous publication
(Weigand and Fay, 2022), we introduced a generic
version of the VKG interface, which is available on

SELECT ?name WHERE {
?action a ex:CallBehaviorAction .
?action ex:getName ?name .

}

RESULTS

| name |
======================================
| "move arm to target position" |
| "move platform" |
| "move arm to object position" |
| "detect object" |
| "open gripper" |
"close gripper"

Listing 1: Exemplary SPARQL query to extract names of
CallBehaviorActions. Prefixes were omitted to save space.

GitHub7. This generic version includes key compo-
nents such as the logic to execute a query over the
VKG and is intended to be adapted to a specific soft-
ware. The adaption to MSOSA is also available on
GitHub8. As an example, we used a SysML Activ-
ity Diagram created in MSOSA, shown in Figure 3.
The diagram shows a simple pick-and-place process
for a robotic manipulator on a movable platform. The
objective was to extract all information represented
by the diagram elements via the VKG interface. In-
formation contained in the description of this pick-
and-place process might be relevant in further engi-
neering phases, such as programming the robotic ma-
nipulator that executes the shown process. The re-
sulting UML class diagram, shown in Figure 4, il-
lustrates the TBox of the VKG. In Figure 3, the di-
agram element types are also indicated using grey
boxes. The TBox of the VKG was ultimately created
by selecting the 10 classes and 3 methods shown in
Figure 4 by browsing the Javadoc with the developed
tool and adding classes and methods, which was car-
ried out within a few minutes. The generated code
amounted to 6 lines of code per class and 7 lines of
code per method, i.e. a total of 81 lines of code.
Subsequently, additional steps were taken to com-
plete and compile the entire VKG interface. A sam-
ple SPARQL query (see Listing 1) was created. The
query retrieves the names (?name) of all resources
that are of type ex:CallBehaviorAction and have
a property ex:getName. As shown in Figure 4, the
getName method of the API is defined by the class
NamedElement. The class CallBehaviorAction
of the API is a subclass of this class and inherits
the method. The results of the query, also shown

7github.com/mxweigand/vmax core
8github.com/mxweigand/vmax plugin msosa

Extracting API Structures from Documentation to Create Virtual Knowledge Graphs

293

in Listing 1, correctly included the names of all 6
CallBehaviorAction instances shown in Figure 3.
Instances of other subclasses, e.g. the InitialNode
named init, were not returned by the query.

6 CONCLUSION AND FUTURE
WORK

The objective of this publication was to develop a
workflow to automate and support the creation of a
VKG interface for the API of an engineering soft-
ware. Several steps of the developed workflow were
implemented in a tool that significantly simplified the
implementation effort for the VKG interface. The
process was streamlined by displaying the documen-
tation as true to the original as possible, with the addi-
tional required features added in a minimalist and in-
tuitive way. The navigational functions of the Javadoc
were preserved, ensuring a familiar environment for
the developer. Automated steps reduced manual effort
while minimizing errors, ensuring an efficient and ac-
curate workflow for the VKG interface creation. Sev-
eral steps not covered in the tool’s implementation but
included in the developed workflow were carried out
manually. As discussed earlier, these steps are not au-
tomated due to their complexity and the need for cus-
tomization. However, creating guidelines and defin-
ing requirements for these manual steps would still
be beneficial. Such guidelines would assist in check-
ing prerequisites ahead of time to determine whether
the workflow is applicable to a particular API. They
would also help streamline the manual steps, making
them more efficient, while reducing the likelihood of
errors during the process. This will be a focus of fu-
ture research aimed at enhancing the workflow.

ACKNOWLEDGEMENTS

This research is part of the project iMOD which
is funded by dtec.bw – Digitalization and Technol-
ogy Research Center of the Bundeswehr. dtec.bw is
funded by the European Union – NextGenerationEU.

REFERENCES

Ancona, D., Mascardi, V., and Pavarino, O. (2012).
Ontology-based documentation extraction for semi-
automatic migration of Java code. In The 27th Annual
ACM Symposium on Applied Computing.

Atzeni, M. and Atzori, M. (2017). CodeOntology: RDF-

ization of source code. In The Semantic Web – ISWC
2017.

Brickley, D. and Guha, R. (2014). RDF Schema
1.1. W3C Recommendation. http://www.w3.org/TR/
rdf11-schema/ .

Cyganiak, R., Wood, D., and Lanthaler, M. (2014). RDF
1.1 Concepts and Abstract Syntax. W3C Recommen-
dation. http://www.w3.org/TR/rdf-concepts/ .

De Meester, B., Heyvaert, P., and Delva, T. (2024). RDF
Mapping Language (RML) Unofficial Draft 20 June
2024. https:// rml.io/specs/rml/ .

Dotoli, M., Fay, A., Miśkowicz, M., and Seatzu, C. (2018).
An overview of current technologies and emerging
trends in factory automation. International Journal
of Production Research, 57(15-16).

Ekaputra, F. J., Sabou, M., Serral, E., Kiesling, E., and Biffl,
S. (2017). Ontology-Based Data Integration in Multi-
Disciplinary Engineering Environments: A Review.
Open Journal of Information Systems, 4(1).

Fay, A., Biffl, S., Winkler, D., Drath, R., and Barth, M.
(2013). A method to evaluate the openness of automa-
tion tools for increased interoperability. In IECON
2013 - 39th Annual Conference of the IEEE Industrial
Electronics Society.

Harris, S. and Seaborne, A. (2013). SPARQL 1.1 Query
Language. W3C Recommendation. https://www.w3.
org/TR/sparql11-query/ .

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F.,
and Rudolph, S. (2012). OWL 2 Web Ontology Lan-
guage Primer (Second Edition). W3C Recommenda-
tion. https://www.w3.org/TR/owl2-primer/ .

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo,
G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L.,
Navigli, R., Neumaier, S., et al. (2021). Knowledge
graphs. ACM Computing Surveys (Csur), 54(4).

Ledvinka, M. and Křemen, P. (2020). A comparison of
object-triple mapping libraries. Semantic Web, 11(3).

Object Management Group (2011). Business Process
Model and Notation (BPMN) Version 2.0. https:
//www.omg.org/spec/BPMN/2.0/PDF.

Reddy, M. (2011). API Design for C++. Morgan Kauf-
mann.

Sabou, M., Biffl, S., Einfalt, A., Krammer, L., Kastner,
W., and Ekaputra, F. J. (2020). Semantics for Cyber-
Physical Systems: A Cross-Domain Perspective. Se-
mantic Web, 11(1).

Vogel-Heuser, B., Ocker, F., Weiß, I., Mieth, R., and Mann,
F. (2021). Potential for combining semantics and data
analysis in the context of digital twins. Phil. Trans. R.
Soc. A, 379:20200368.

Weigand, M. and Fay, A. (2022). Creating Virtual Knowl-
edge Graphs from Software-Internal Data. In IECON
2022 - 48th Annual Conference of the IEEE Industrial
Electronics Society.

DTO 2024 - Special Session on Ontologies for Digital Twin

294

