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Abstract: Advanced Human Computer Interaction techniques are commonly used in multiple application areas, from 
entertainment to rehabilitation. In this context, this paper proposes a framework to recognize hand gestures 
using a limited number of landmarks from the video images. This hand gesture recognition system 
comprises an image processing module that extracts and processes the coordinates of 21 hand points called 
landmarks, and a deep neural network module that models and classifies the hand gestures. These landmarks 
are extracted automatically through MediaPipe software. The experiments were carried out over the IPN 
Hand dataset in an independent-user scenario using a Subject-Wise Cross Validation. They cover the use of 
different landmark-based formats, normalizations, lengths of the gesture representations, and number of 
landmarks used as inputs. The system obtains significantly better accuracy when using the raw coordinates 
of the 21 landmarks through 125 timesteps and a light Recurrent Neural Network architecture (80.56 ± 
1.19 %) or the hand anthropometric measures (82.20 ± 1.15 %) compared to using the speed of the hand 
landmarks through the gesture (72.93 ± 1.34 %). The proposed framework studied the effect of different 
landmark-based normalizations over the raw coordinates, obtaining an accuracy of 83.67 ± 1.12 % when 
using as reference the wrist landmark from each frame, and an accuracy of 84.66 ± 1.09 % when using as 
reference the wrist landmark from the first video frame of the current gesture. In addition, the proposed 
solution provided high recognition performance even when only using the coordinates from 6 (82.15 ± 
1.16 %) or 4 (81.46 ± 1.17 %) specific hand landmarks using as reference the wrist landmark from the first 
video frame of the current gesture. 

1 INTRODUCTION 

Hand gesture recognition consists in detecting the 
movement that people perform using their hands. 
This technology could be useful to develop human 
computer interaction systems and could improve the 
user experience across a wide variety of domains. 
For example, it could be seen as the basis for sign 
language understanding and hand gesture control 
applications. For instance, a person could ask to take 
a picture using the front camera of a smartphone by 
opening and closing the hand palm. In these 
applications, it is crucial to accurately recognize the 
hand gesture to perform specific actions with smart 
devices, a computer, or an automatic transmission 
machine. 

Multiple previous works have been focused on 
human activity recognition to optimize the physical 
activity classification using wearables or cameras 
(Gil-Martin, San-Segundo, Fernandez-Martinez, & 
Ferreiros-Lopez, 2020, 2021; Gil-Martín, San-
Segundo, Fernández-Martínez, & de Córdoba, 2020; 
Zhang et al., 2017). However, there exists a lower 
number of works focused on detecting hand poses or 
gestures. Most of these works used images as inputs 
of their systems and follow a hand localization step 
as the first stage. Afterwards, they extracted 
handcrafted features or descriptors (Trindade, Lobo, 
& Barreto, 2012) from the hand and fed them to an 
inference algorithm that classifies the different hand 
poses or gestures. For example, a previous work 
(Mantecon, del-Blanco, Jaureguizar, & Garcia, 2019) 
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segmented the image into the hand in different 
regions and obtained the Histogram of Oriented 
Gradients (HOG) and a Local Binary Pattern (LBP) 
from each region. Afterwards, they combined k-
means and Support Vector Machines (SVM) to 
classify the hand poses, obtaining an F1-score near 
96% using data from 25 subjects and 16 different 
hand poses. Similarly a previous work (Bao, 
Maqueda, del-Blanco, & Garcia, 2017) fed a deep 
Convolutional Neural Network (CNN) to directly 
classify hand poses in images without any previous 
segmentation. They classified the hand pose with 
average accuracy of 97.1% in the images with simple 
backgrounds and 85.3% in the images with complex 
backgrounds. They used a dataset with data from 40 
subjects and seven different hand poses. Another 
work (Gil-Martín, San-Segundo, & de Córdoba, 
2023) used a normalization over the hand landmarks 
to detect the same poses, achieving robust 
performance even when the images had complex 
backgrounds. This approach has the advantage of 
sending less information to the recognition module 
compared to traditional computer vision approaches 
(landmark coordinates vs. a full image). Another 
previous work (Benitez-Garcia, Olivares-Mercado, 
Sanchez-Perez, Yanai, & Ieee Comp, 2021) used the 
raw images to classify hand gestures via training a 
ResNeXt-101 model, achieving a 86.32% of 
accuracy when evaluating 13 subjects. 

This paper is focused on exploring the impact of 
different landmark-based input formats over the 
gesture recognition task, rather than optimizing the 
deep learning architecture for obtaining the 
maximum performance. This work uses a state-of-
the-art deep learning architecture to understand 
which input formats—specifically raw hand 
landmark coordinates, speed of coordinate 
movement, and anthropometric measures—yield the 
most informative representations for gesture 
recognition. The primary contributions of this 
research are as follows: 
 Analyze different landmark input formats: raw 

coordinates, speed of coordinates movement, 
and anthropometric measures. 

 Investigate the effects of various 
normalization techniques on raw landmark 
coordinates. 

 Minimize the number of landmarks used in the 
recognition process while keeping a high 
recognition performance. 

 
 
 
 

2 MATERIAL AND METHODS 

This section describes the dataset used, the 
landmarks information extraction, and the proposed 
model architecture. 

2.1 Dataset Description 

We have used the public dataset called IPN Hand to 
evaluate our system. 

The IPN Hand dataset (Benitez-Garcia et al., 
2021) includes hand gestures performed by 50 
subjects for interaction with touchless screens. It 
contains 4,218 gesture instances and 800,000 
frames. It includes 13 gestures performed with one 
hand: pointing with one or two fingers, clicking with 
one or two fingers, throwing up/down/left/right, 
opening twice, double-clicking with one or two 
fingers, zooming in, and zooming out. During data 
collection, each subject did different gestures with 
three random breaks in a single video. The subjects 
used their own PC or laptop to collect the RGB 
videos, which were recorded in the resolution of 
640x480 with the frame rate of 30 fps. 

This dataset is a great choice for hand gesture 
recognition due to its extensive and varied content 
regarding instances, gestures and subjects, ensuring 
a diverse representation of hand motions. This 
diversity enhances the dataset's applicability for real-
world human-machine interaction applications, such 
as touchless screens and virtual reality interfaces, 
where accurate gesture recognition is crucial. Its 
realistic data collection, with subjects using their 
own devices to record gestures in varied 
environments, ensures that models trained on the 
dataset can generalize well to practical usage 
scenarios. 

2.2 Landmarks-Based Representations 

The original images from the dataset were processed 
by the MediaPipe library to extract the x and y 
coordinates from specific points of the hand called 
landmarks. MediaPipe (Lugaresi et al., 2019; 
Quinonez, Lizarraga, & Aguayo, 2022) is a powerful 
library with the capacity to track pose and hands 
from input frames or video streams. This framework 
can extract 21 landmarks from the hand (including 
wrist and four points along the five fingers). To 
standardize the input data and ensure consistent 
processing, we applied zero padding at the 
beginning of each gesture sequence, thereby aligning 
all examples to the same length, ranging from 25 to 
250 timesteps. This padding ensures that a uniform 
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length, although it becomes dominant in shorter 
gestures. 

In our gesture recognition pipeline, we leverage 
three distinct types of landmark information formats 
to encapsulate various aspects of hand movements 
and spatial relationships. Firstly, we utilize the raw 
coordinates of landmarks extracted from the hand, 
providing direct spatial information about the hand's 
configuration in each frame of the gesture sequence. 
Secondly, we incorporate the speed derived from the 
computed derivatives of these coordinates, capturing 
the temporal dynamics and velocity of hand 
movements throughout the gesture. Lastly, we 
integrate anthropometric measures (Pheasant & 
Haslegrave, 2006) obtained by computing the 
Euclidean distances between pairs of landmarks, 
enabling us to encode spatial relationships in the 
hand gestures and structural characteristics inherent 
in the hand physiognomy. 

For the first approach of landmark information 
(raw landmark coordinates), we applied two 
normalization techniques at the landmark level to 
consider hand translation. The first normalization 
method involved using the wrist landmark from each 
frame of the gesture sequence as a reference point. 
This process entailed subtracting the coordinates of 
the wrist landmark from those of all other landmarks 
within the same frame, aligning them relative to the 
position of the wrist. The second normalization 
technique employed the wrist landmark from the 
first frame of the gesture sequence as a constant 
reference point throughout. Regardless of 
subsequent frames, the coordinates of all landmarks 
were adjusted relative to the wrist landmark from the 
initial frame, ensuring uniformity and consistency in 
spatial representations across the entire gesture 
sequence. The formulas related to these 
normalizations are described in Equation (1) and 
Equation (2), respectively, where 0 landmark 
corresponds to the wrist, i ranges from 1 to 20 (for 
the other landmarks) and t refers to a specific frame 
in the gesture sequence. These normalization 
approaches could contribute to reduce variability 
and enhance the interpretability of landmark 
coordinates for the modeling and recognition 
architecture. We also evaluated the possibility of 
performing a scaling normalization, but no 
improvement was obtained. A possible reason for 
this is that the distance between the subjects and 
their laptops was relatively consistent across the 
dataset. 

 
 
 

𝑥ᇱ,௧ = 𝑥,௧ − 𝑥,௧  𝑦ᇱ,௧ = 𝑦,௧ − 𝑦,௧ (1)𝑥ᇱ,௧ = 𝑥,௧ − 𝑥, 𝑦′,௧ = 𝑦,௧ − 𝑦, (2)

2.3 Model Architecture 

The deep learning architecture used in this work 
learns the evolution pattern from landmark-based 
inputs using a Long Short-Term Memory (LSTM) 
layer of 100 neurons and classifies the examples 
using a Dense layer of 13 neurons, corresponding to 
the number of classes. The input shape of the 
architecture was bidimensional, including the 
timesteps of the gesture (from 25 to 250) and the 
number of channels (for example, 42 when using x 
and y coordinates from the 21 landmarks). The 
architecture included a dropout layer (0.3) after the 
LSTM layer to avoid overfitting during training. The 
last layer used a softmax activation function to offer 
the predictions of each class for every analysis 
gesture. We used categorical cross-entropy as loss 
metric and the root-mean-square propagation 
method as optimizer (Weiss, 2017). We adjusted the 
epochs and batch size of the deep learning structure: 
50 and 25, respectively. Since the objective of this 
work is not optimizing the deep learning 
architecture, its configuration is a sample of a state-
of-the-art RNN useful for modeling pattern sequence 
(Goodfellow, 2016), which is the case of gesture 
recognition task. 

3 RESULTS AND DISCUSSION 

To evaluate the system using the whole dataset in a 
subject-independent scenario, we followed a 
Subject-Wise Cross-Validation (SW-CV) alternative 
as data distribution. In this 10-fold CV methodology, 
the given data are divided into 10 groups or folds to 
train and test a system with different data subsets in 
such a way that the data from one subject is only 
contained in one subset. This process is repeated by 
changing the training and testing folds and the 
results are the average of the partial results obtained 
for all repetitions. This methodology simulates a 
realistic scenario where the system is evaluated with 
recordings from subjects different to those used for 
training. 

As evaluation metrics, we used accuracy, which 
is defined as the ratio between the number of 
correctly classified samples and the number of total 
samples. This way, for a classification problem with 
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N testing examples and C classes, accuracy is 
defined in Equation (3). Accuracy = 1N  P୧୧େ

୧ୀଵ  (3)

To show statistical significance values, we used 
confidence intervals, which include plausible values 
for a specific metric. We will assure that there exists 
a significant difference between results of two 
experiments when their confidence intervals do not 
overlap. Equation (4) represents the computation of 
confidence intervals attached to a specific metric 
value and N samples for 95% confidence level. 

CI(95%) = ±1.96ඨmetric · (100 − metric )N  (4)

Regarding the experiments, we firstly analyzed 
the effect of different landmark-based input formats: 
raw landmark coordinates, landmarks speed and 
anthropometric measures. In these experiments we 
used the 21 available landmarks and different 
lengths for each gesture (25, 50, 75, 100, 125, 150, 
175, 200, 225 and 250 timesteps). Figure 1 shows 
the evolution of accuracy considering the length of 
the gestures and the different landmark-based input 
formats. 

This figure shows how a saturation of 
performance is achieved when increasing the length 
of the gestures, reaching a competitive performance 
for each landmark representation at 125 timesteps, 
which is close to the mean of duration of the 
gestures in the dataset (140 timesteps). For example, 
at this gesture length, the system obtains an accuracy 
of 80.56 ± 1.19 % when using the raw coordinates, 
72.93 ± 1.34 % when using their speed and 82.20 ± 
1.15 % when using the hand anthropometric 
measures. As observed in the figure, when it comes 
to modeling gestures, finding the right balance in the 
amount of real data is crucial. Using too few points 
fails to capture the nuances of gestures adequately, 
potentially cutting off crucial information or having 
too much padding. Conversely, padding sequences 
unnecessarily lengthens them, posing challenges for 
recurrent layers to process efficiently. 

Results also suggest that the raw landmark 
coordinates and the anthropometric measures offer 
significantly better performance compared to the 
landmark speed along the different timestep 
configurations. 

Raw coordinates serve as fundamental building 
blocks for hand gesture recognition, offering direct 
spatial information about the positions of hand 
landmarks. Anthropometric measures derived from 
hand landmarks  provide  valuable  insights  into  the 

 
Figure 1: Accuracy depending on the number of timesteps 
used per gesture and the landmark format. 

structural characteristics and spatial relationships 
within gestures. This way, relative positions of hand 
key points could be useful to learn features based on 
the spatial arrangement of landmarks, facilitating the 
discrimination of complex gestures with subtle 
variations. However, landmark speed might not 
provide enough contextual information for 
understanding the hand gestures, because features 
such as direction, acceleration, and spatial relations 
between landmarks could be lost in this 
representation, which may struggle to accurately 
distinguish the hand gestures. 

Second, we performed some experiments 
applying different landmark-based normalization 
over the raw coordinates. Figure 2 shows the 
evolution of accuracy considering the length of the 
gestures and the landmark normalization used. 

This figure shows a tendency of performance 
improvement when applying a landmark 
normalization over the raw coordinates, which 
becomes significant when using 125 or 150 
timesteps. For example, at 125 timesteps length, the 
accuracy of 80.56 ± 1.19 % obtained with the raw 
landmark coordinates is significantly improved until 
83.67 ± 1.12 % when normalizing through the wrist 
landmark from the current frame, and until 84.66 ± 
1.09 % when using as reference the wrist landmark 
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from the first video frame of each gesture. 
Normalizing the coordinates using the wrist 
landmark as reference removes the variability in the 
inputs among users. One of the reasons for this 
improvement is that thanks to these types of 
normalizations, the representation of examples of the 
same gesture become similar independently of the 
location of the hand through the images. For 
example, the representation of a hand gesture 
consisting in clicking with one finger could differ 
when the person performs the gesture at the right or 
left side of the image. However, thanks to 
normalizing using the wrist landmark, both 
representations become standardized since both use 
the coordinate origin as reference. Table 1 shows a 
summary of the results from the previous 
experiments using 125-timestep gesture length. 

 
Figure 2: Accuracy depending on the number of timesteps 
used per gesture and the landmark normalization used over 
the raw landmark coordinates. 

Comparing the state-of-the-art works, it is fair to 
highlight that the hand pose recognition usually gets 
higher performance because it deals with fixed 
images, which are more stable and easier to 
recognize. In contrast, the hand gesture recognition 
involves sequences of images of varying lengths, 
requiring normalization and handling of temporal 
dynamics, which complicates the recognition task. 
 

Table 1: Accuracy for different landmark-based input 
formats using 125-timestep gesture length. 

Landmark-based input Accuracy (%)
Raw Coordinates + No 

Normalization 80.56 ± 1.19 

Raw Coordinates + Wrist of Current 
Frame Norm. 83.67 ± 1.12 

Raw Coordinates + Wrist of First 
Frame Norm. 84.66 ± 1.09 

Landmarks Speed 72.93 ± 1.34
Anthropometric Measures 82.20 ± 1.15

For example, a previous work (Benitez-Garcia et 
al., 2021) used 37 subjects from this dataset to train 
a ResNeXt-101 model with 47.56 million parameters 
and evaluating the remaining 13 subjects, achieving 
an 86.32% accuracy. This potentially allows for 
overfitting, where the model performs well on the 
test data because it has been optimized for it. Using 
the same setup, the proposed approach of using the 
raw coordinates and the wrist of first frame 
normalization obtained an 86.38 ± 2.03 % accuracy 
using a significantly lighter model with only 58,614 
parameters. In addition, this work offers a 
competitive 84.66 ± 1.09 % accuracy evaluating a 
larger and more diverse set of 50 subjects, making 
the task more challenging and the model's 
generalization performance more critical. 

Finally, we analyzed if using a limited number of 
landmarks was informative enough to provide a high 
performance. Analyzing the nature of the dataset 
gestures, we observed that all the 13 classes 
compromised the movement of the thumb, index and 
middle fingers, and the ring and little fingers were 
slightly used in the gestures. This supports the idea 
that we observed in a previous study (Luna-Jimenez 
et al., 2023), indicating that for example the variance 
of the index finger was higher (𝜎2 =0.031) than the 
one of the little finger (𝜎2 =0.019). This way, we 
used the wrist and all fingertips landmarks (6 
landmarks) and the wrist, and fingertips from thumb, 
index and middle fingers (4 landmarks) to perform 
the experiments. In this case, the anthropometric 
measures were computed using only these 
landmarks (Euclidean distances between those pairs 
of landmarks). Figure 3 shows the accuracy 
depending on the landmark-based input format and 
the number of landmarks per hand. 

We observed that using the wrist and the 
fingertips landmarks could be enough to obtain a 
high recognition performance when using raw 
landmark coordinates as inputs. For example, when 
using the raw coordinates and the normalization 
using the first video frame, the system achieved 
82.15 ± 1.16 % and 81.46 ± 1.17 % when using 6 
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and 4 landmarks, respectively. However, there exists 
a performance decrease when using the 
anthropometric measures and reducing the number 
of landmarks. This could be due to a loss of spatial 
relationships between the different landmarks (from 
210 when using 21 landmarks to 15 and 6 when 
using 6 and 4 landmarks, respectively). 

 
Figure 3: Accuracy depending on the landmark-based 
input format and the number of landmarks used per 
gesture. 

4 CONCLUSIONS 

This paper proposes a system to detect hand gestures 
using a limited number of landmarks from images. 
The proposed approach automatically extracts 21 
MediaPipe landmarks (x and y coordinates of 
specific points) from the hand and feeds a deep 
neural architecture to model and recognize different 
hand gestures in a subject-independent scenario. 
This system analyzes the effect of using different 
landmark-based representations as inputs to a light 
RNN. It obtains significantly better accuracy when 
using the raw coordinates of the 21 landmarks or the 
hand anthropometric measures compared to using 
the speed of the hand landmarks. In addition, a 
performance tendency improvement is observed 
when using landmark-based normalizations over the 
raw coordinates. Moreover, using a limited number 
of hand landmarks (the ones with higher variance 

along the gestures) provides competitive gesture 
recognition performance. 

As future work, it would be interesting to apply 
Multi-Modal Large Language Models to recognize 
gestures by feeding the models with the original 
images and landmarks representation. In addition, it 
would be interesting to apply this framework using 
other landmark detection models like OpenPose and 
for other datasets with a wider variety of gestures or 
microgestures (Chan et al., 2016) and/or related to 
sign language recognition. Finally, a real-time 
system that infers the prediction from a stream of a 
camera could be an application on a real use case of 
the proposed method. 
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