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Abstract: Appearance-based gaze estimation is crucial for applications like assistive technology and human-computer
interaction, but high accuracy is challenging due to complex gaze patterns and individual appearance varia-
tions. This paper proposes an Attention-Enhanced Convolutional Neural Network (AE-CNN) to address these
challenges. By integrating attention submodules, AE-CNN improves feature extraction by focusing on the
most relevant regions of input data. We evaluate AE-CNN using the ColumbiaGaze dataset and show that it
surpasses previous methods, achieving a remarkable accuracy of 99.98%. This work advances gaze estimation
by leveraging attention mechanisms to improve performance.

1 INTRODUCTION

One of the most effective ways to read someone’s at-
tention, interest, and even emotions is through their
stare. By enabling robots to dynamically adjust their
behavior in response to user requirements and reac-
tions, the ability to capture and analyze these visual
signals might greatly improve how machines and peo-
ple interact. However, there are several technical is-
sues involved in effectively predicting gaze from still
images or video streams, especially given the variety
of facial looks, different lighting situations, and small
eye movements.

Within this framework, new avenues for the study
of gaze estimation are made possible by developments
in artificial intelligence, particularly the introduction
of convolutional neural networks (CNN) and attention
mechanisms. These advanced models are especially
well-suited to the challenging task of interpreting vi-
sual cues from human gaze because they can learn ex-
tremely abstract representations from raw visual data.

Deep learning (DL) models’ attention mecha-
nisms are modeled after how the human brain han-
dles information, especially regarding gaze estima-
tion. For example, when we look at an image, our
brain automatically focuses on the most crucial as-

∗Corresponding author

pects and filters out irrelevant information, facilitat-
ing our ability to comprehend and analyze the image
more quickly. Along the same lines, the attention pro-
cesses of DL models facilitate the automatic identifi-
cation of the most crucial elements in an input, this
can enhance the model’s functionality for a variety of
applications. By adding gaze estimation into this pro-
cess, models can also be trained to identify important
facial and ocular regions for accurate gaze direction
estimation.

Depending on the kind of model and the particu-
lar objective, different attention strategies are imple-
mented in different deep learning models. Typically,
this method is implemented in attention-based CNNs
by adding a layer that sets the weights for each input
feature. These weights improve the model’s perfor-
mance on the given task by enabling the CNN to con-
centrate on the most pertinent elements in the input.

Attention-based CNNs have demonstrated strong
performance on a range of tasks, such as as image
classification (Wang et al., 2018), natural language
processing (Vaswani, 2017) and object recognition
(Hu et al., 2018). These networks are very skilled at
teaching themselves to concentrate on particular ele-
ments or objects within the provided photos, hence
increasing the classification accuracy of the model.
When applied for gaze estimation tasks, attention-
based CNNs can learn to prioritize significant facial
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characteristics and eye regions linked to head attitude
and gaze direction, hence improving the gaze estima-
tion models’ accuracy.

In particular, our research examines the use of
these novel technologies in an appearance-based gaze
estimate method. We use facial feature analysis to
determine the subject’s gaze direction instead of only
identifying eye positions in an image. A CNN, a spe-
cific kind of neural network intended for pattern iden-
tification in complicated input, like photographs, is
used to make this feasible. Our method improves gaze
estimation accuracy by permitting the model to con-
centrate on the facial regions that are most pertinent
through the integration of attention mechanisms.

Our study’s main goal is to determine whether
adding attention mechanisms to convolutional neu-
ral networks may improve appearance-based gaze es-
timation’s accuracy over alternative techniques. We
take on a number of challenges to address this ques-
tion: managing the wide range of facial features.

The structure of this paper is as follows: Section
2 presents the literature review. Section 3 outlines the
proposed methodology. Section 4 reports the exper-
imental results and their analysis. Finally, Section 5
concludes the paper and offers suggestions for future
research.

2 LITERATURE REVIEW

In recent years, the literature has reported numerous
remote gaze estimation algorithms, which fall into
two categories: appearance-based and model-based
techniques. Appearance-based methods focus on ana-
lyzing the visual appearance of the eyes and surround-
ing regions to infer gaze direction, often leveraging
machine learning algorithms like convolutional neu-
ral networks (CNNs). Conversely, model-based ap-
proaches rely on geometric models of the eye, head,
and scene geometry to estimate gaze direction, re-
quiring precise calibration and modeling of eye and
head movements. This classification framework is
commonly used to categorize gaze estimation tech-
niques. Each category offers unique strengths and
limitations, with appearance-based methods proving
robust to variations in lighting and head movements,
while model-based techniques can provide more ac-
curate estimates under controlled conditions. By un-
derstanding and exploring both categories, we aim to
contribute to the advancement of remote gaze track-
ing technology.

2.1 Appearance-Based Techniques for
Gaze Estimation

CNNs, or convolutional neural networks, were em-
ployed by (Choi et al., 2016) in order to estimate head
posture with driver gaze area categorization (the left
window, the center rearview mirror, and the right and
left sections of the windshield). Their system attains
a 95% accuracy rate, and They’ve created a unique
dataset comprising both male and female drivers, even
in scenarios where they are donning spectacles.

The gaze tracking study by (Konrad et al., 2016)
was conducted in a highly restricted setting, with the
camera positioned 51 cm away from the subject’s
face. They created a data set consisting of five sub-
jects’ images and used it to devolop their CNN neu-
ral networks. Although the results show promise, to
properly train the CNN, a substantial amount of data
is needed.

An altered form of the Viola-Jones formula is
used by George and Routray’s algorithm (George and
Routray, 2016) to identify faces in an image. Fa-
cial landmarks and geometric relations are used to
identify the rough eye region. Next, the classifica-
tion of gaze direction is performed using a convolu-
tional neural network. This algorithm performs well
in terms of computational complexity when tested on
the Eye Chimera data set, making it a viable option
for smart devices.

To enhance appearance-based gaze esti-
mate,(Chen and Shi, 2018) suggested using dilated
convolutions. When compared to traditional net-
works, the results demonstrate notable improvements
in accuracy. On the MPIIGaze and Columbia Gaze
datasets, the study uses Dilated-Nets to attain cutting-
edge performance. This development could enhance
human-machine interaction by using eye tracking to
identify user intentions.

A method for detecting eye contact was proposed
by (Omori and Shima, 2020) in 2020. It involved us-
ing both an SVM and a CNN that had been trained
beforehand for both eye area images. Furthermore,
instead of creating eye images, tests revealed that a
CNN pre-trained on object photo datasets could be
utilized as an extractor of features for both eye re-
gions. Utilized was the Cave dataset, which includes
5880 images of 56 individuals. According to exper-
iments, picture augmentation can enhance the preci-
sion of the two-class eye contact classification. Ad-
ditionally, the statistics show that the peak 86% accu-
racy rate with glasses was 5% lower than the detection
accuracy of 91.04 percent without spectacles.

(Ewaisha et al., 2020) proposed a multitasking
convolutional neural network to enhance gaze region
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accuracy. Realizing the value of recording the un-
derlying distance between gaze regions, they intro-
duced regression-based forecasting of gaze yaw and
pitch angles. Furthermore, their model used multi-
task learning to predict head posture angles and gaze
simultaneously. An evaluation using the database
Columbia Gaze, which has 5880 high-resolution im-
ages of 56 participants, showed remarkable accuracy
of 78.2% in between-subjects tests and 95.8% on the
test set, proving that the model is generally applicable
and robustness over head attitude variations.

In 2024, (Karmi et al., 2024) developed a new neu-
ral network architecture named ”CoGaze-Net”, which
exploits the concepts of cascade and bilinearity to im-
prove both the originality and efficiency of the re-
sults. Their innovative architecture is composed of
multiple cascading processing layers, each dedicated
to performing a specific transformation on the input
data. By integrating cascading, bilinearity and their
lightweight and efficient architecture, they achieved
exceptional results, reaching 96% accuracy, which
capture complex information in the input data. The
scientists used the Columbia Gaze database, compris-
ing 5,880 photos.
Critical Analysis of Existing Methods and Gaps.
Existing appearance-based gaze estimation methods,
while robust to variations in lighting and head poses,
often struggle with accurately capturing subtle eye
movements. Furthermore, these methods face chal-
lenges in generalizing across diverse facial appear-
ances and environmental conditions, due to limited
exposure to varied training scenarios. Model-based
techniques, on the other hand, demand precise cal-
ibration and are highly sensitive to imaging condi-
tions, limiting their practical applicability. An often-
overlooked aspect in prior works is the strategic use of
data augmentation, which can significantly enhance
model robustness without introducing distortions that
compromise gaze estimation accuracy.

Our proposed AE-CNN addresses these critical is-
sues by combining appearance-based learning with
tailored data augmentation techniques. Unlike prior
methods, our approach emphasizes the following:

• Targeted Data Augmentation. By simulat-
ing realistic variations in zoom, cropping, and
brightness, our method exposes the model to a
broader range of conditions, enhancing general-
ization while avoiding artificial distortions such as
rotations that can misrepresent natural gaze orien-
tations.

• Incorporation of Attention Mechanisms. At-
tention modules within the CNN architecture fo-
cus on the most relevant eye and facial features,
ensuring precise capture of gaze cues even under

challenging conditions.

• Improved Robustness and Generalization. By
addressing the diversity of facial appearances and
environmental conditions, our method overcomes
the limitations of previous approaches, providing
superior performance for practical applications.

Through this combination of innovations, our method
effectively bridges the gap between the robustness of
appearance-based techniques and the need for fine-
grained gaze estimation, setting a new benchmark in
gaze estimation research.

2.2 Model-Based Techniques for Gaze
Estimation

Model-based approaches to gaze estimation require
accurate detection of facial features like eye centers
or corners,Poulopoulos and Psarakis presented Deep-
Pupil Net, a fully convolutional neural network (FCN)
designed to accurately localize eye centers. Using
an encoder-decoder architecture, the model performs
image-to-heatmap regression to map eye regions onto
heat maps corresponding to eye center positions. A
novel loss function is introduced to penalize inaccu-
rate localizations and improve accuracy. The model
achieves real-time performance and outperforms ex-
isting techniques in eye center localization accuracy.
Evaluations on three public databases show signifi-
cant improvements, making it a promising solution
for low-cost eye tracking devices (Poulopoulos and
Psarakis, 2022), and they rely on fitting a geomet-
ric model of the eye to the image of the eye; Park
et al (Park et al., 2018) presented a novel gaze esti-
mation method suitable for real-world, unconstrained
environments. Their approach relies on a machine
learning model that accurately localizes landmarks in
the eye region using synthetic data for training. This
model outperforms existing methods in terms of iris
localization and eye shape registration on real im-
ages. The detected landmarks are then used as the
basis for lightweight, iterative model-based gaze esti-
mation methods. This method outperforms traditional
and appearance-based methods, even in the presence
of variations in postures, facial expressions, and light-
ing. (Wang and Ji, 2018) presented a novel model-
based 3D gaze estimation method that overcomes the
limitations of personal calibration techniques. Their
approach uses four natural constraints for implicit cal-
ibration, without requiring intrusive calibration. The
constraints are: (1) consistency between two differ-
ent gaze estimation methods, (2) the principle of the
center of the screen where the majority of fixations
are concentrated, (3) the concentration of gaze in the
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screen region for console-based interactions, and (4)
the anatomical limits of eye parameters. These con-
straints are embedded in an unsupervised regression
problem solved by an iterative hard-EM algorithm.
Experiments conducted on everyday interactions such
as web browsing and video watching demonstrate
the effectiveness of this implicit calibration method.
However, image resolution and lighting play a ma-
jor role in their accuracy, which can lead to subpar
performance in practical scenarios. Numerous geo-
metric techniques involved either directly fitting a 3D
face-eye deformable model (Chen and Ji, 2008), in
2015, Sun et al.(Sun et al., 2015) presented a novel,
low-cost, non-intrusive, and easy-to-implement eye
tracking system using a consumer-grade depth cam-
era (Kinect) instead of infrared lights and high-quality
cameras. Using a 3D eye model and a parametric iris
model, this system can estimate gaze direction with
an accuracy of 1.4 to 2.7 degrees, even in the pres-
ence of natural head movements. Two real-time ap-
plications, a chess game and text input, demonstrate
the robustness and feasibility of the system. In the
future, the goal is to develop a version using a sim-
ple webcam and explore new applications, (Rahmany
et al., 2018),or anchoring the result to a stationary
point on the face, Wang and Ji (Wang and Ji, 2017)
proposed a novel 3D model-based gaze direction es-
timation method, enabling accurate and real-time eye
tracking using a single webcam. Using a deformable
3D model of the eye and face, the system can effi-
ciently estimate gaze direction from 2D facial land-
marks. The model is pre-trained offline using data
from multiple subjects, facilitating fast and efficient
calibration for each user without requiring additional
hardware. Experimental results show that this method
outperforms existing approaches in terms of accuracy,
while providing simplified setup and the ability to
achieve natural head movements. Some techniques
((Venkateswarlu et al., 2003), (Wood and Bulling,
2014), (Aboudi et al., 2023)), fit an ellipse to the
observed iris and compute the position to obtain the
gaze. We have showcased the most advanced meth-
ods currently available for estimating gaze. Most gaze
estimate techniques rely on one of two approaches:
appearance-based techniques or model-based tech-
niques. Table 1 shows the prior research done on es-
timating glance direction.

3 APPROACH

Using labeled data, our approach seeks to precisely
identify and categorize an individual’s gaze direction.
Fig. 1 illustrates how the model incorporates an at-

tention submodule along with basic CNN pipelines.
Targeting areas of high human activity enhances their
influence while removing irrelevant and potentially
disruptive information from other portions of the sen-
sor data. This is an advantage of the integrated at-
tention mechanisms. When fully labeled data is used
for supervised learning, this method works especially
well. Our approach is specifically tailored to reli-
ably identify gaze direction from labeled data, which
is frequently encountered in practical applications.
It is able to reduce classification errors and effec-
tively filter out background noise signals by concen-
trating attention on pertinent components of the sen-
sor data sequence. Additionally, we present a novel
method for converting compatibility densities from
compatibility scores. This approach is customized
to the unique properties of sensor data, which are
structurally and characteristically different from im-
age data. Our approach enables precise gaze direction
localization by converting compatibility scores into
compatibility densities, which enhances the model’s
overall performance in practical circumstances.

Figure 1: Our AE-CNN architecture.

Our approach aims to accurately estimate an indi-
vidual’s gaze direction using labeled data. To provide
a clear overview of our methodology, Figure 2 illus-
trates the research framework, detailing all the steps
involved from input data to model evaluation.

The key steps in our methodology are as follows:
1. Input Data. We utilize labeled images from
the publicly available Columbia Gaze dataset, which
provides detailed annotations specifically designed
for gaze estimation tasks.
2. Data Preprocessing.

• Normalization. The images are resized and stan-
dardized to ensure uniform and consistent input
for the model.

• Data Augmentation. To enhance the robustness
of our model, we applied data augmentation tech-
niques such as zooming, cropping, and brightness
adjustment, which simulate realistic variations in
shooting conditions. However, we avoided trans-
formations like rotation, as they can distort the
natural alignment of the eyes and face, potentially
introducing errors, especially in models that rely
on facial geometry and gaze direction.
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Table 1: Review of the literature on gaze estimation methods.

Authors Year Method Database Result
Choi et al.
(Choi et al., 2016)

2016 CNNs Own dataset created 95%

Konrad et al.
(Konrad et al., 2016)

2016
fundamental CNN model (based on the
LeNet design)

Tablet Gaze Calibration
Eye Dataset

6.7°

George and Routray
(George and Routray, 2016)

2016

Viola-Jones modification for fast face
detection, facial cues to localize
eye region, and CNN to classify gaze
direction.

Eye Chimera
Dataset

—

Chen and Shi
(Chen and Shi, 2018)

2018 Dilated-CNN Columbia Gaze 62%

Omori and Shima
(Omori and Shima, 2020)

2020 SVM, CNN Columbia Gaze 91.04%

Ewaisha et al.
(Ewaisha et al., 2020)

2020 Multitask Learning Columbia Gaze 95.8%

Karmi et al.
(Karmi et al., 2024)

2024 CoGaze-Net Columbia Gaze 96.88%

Poulopoulos and Psarakis
(Poulopoulos and Psarakis, 2022)

2022 DeepPupil Net

MUCT,
(Milborrow et al., 2010)
BioID
(Jesorsky et al., 2001)
and Gi4E
(Villanueva et al., 2013)

8.5°

Wang and Ji
(Wang and Ji, 2018)

2018
hard-Expectation
Maximization (hard-EM)

Real data and
synthetic data

1.3°

Park et al.
(Park et al., 2018)

2018
CNN and Support Vector Regression
(SVR) based on landmarks

Columbia and
EYEDIAP

7.1°

3. Attention-Enhanced Convolutional Neural Net-
work (AE-CNN). Our primary model, AE-CNN,
leverages attention mechanisms to enhance the net-
work’s ability to focus on critical regions of interest
for gaze estimation.
4. Attention Mechanisms. Attention mechanisms
allow the model to automatically identify relevant re-
gions within the images, such as the eyes and other
key facial features, thereby improving prediction ac-
curacy.
5. Feature Extraction. The AE-CNN extracts hier-
archical representations of facial and ocular regions.
These features are used to model the relationship be-
tween the input data and the gaze angles.
6. Gaze Estimation. Using the extracted features,
the model predicts both gaze angles and head orienta-
tion. These predictions are made within a supervised
learning framework using labeled data.
7. Model Evaluation.

• The model’s performance is assessed using stan-
dard metrics such as the mean angular error.

• We compare the performance of the AE-CNN
with other state-of-the-art methods to demonstrate
its superiority.

This research framework provides a comprehen-
sive and structured overview of our methodology.
It highlights the innovative integration of attention

mechanisms into the AE-CNN, which significantly
enhances the accuracy of gaze estimation.

Figure 2: Flow Diagram of the AE-CNN Gaze Estimation
Method.
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3.1 Attention Submodule

Our attention method, which is shown in Fig. 1, pri-
marily emphasizes carrying out a compatibility cal-
culation connecting the locally generated feature vec-
tors at intermediate CNN pipeline layers to the vec-
tor of global features that was previously sent into the
pipeline’s final levels of linear classification (Jetley
et al., 2018). The collection of extracted feature vec-
tors at a specific convolutional layer t ∈ {1,2, . . . ,T}
is denoted by Lt = {lt

1, l
t
2, l

t
3, . . .}, where in the re-

gion’s feature vector Lt , lt
j represents the j-th feature

array of m total spatial places.
Previously supplied into the last set of fully linked

layers to obtain classification results, a compatibility
function C now combines local characteristic vectors
Lt with the general feature vectors H produced by data
input that navigates whole CNN streams. There are
several methods to define the compatibility function
C as stated in (Bahdanau, 2014), (Xu et al., 2015),
we can apply a measure of the weight vector’s point-
product across U and lt

j +H to concatenate the H and
lt

j:

ct
j = ⟨U, lt

j⟩+H, j ∈ {1, . . . ,m} (1)

where ct
j is the compatibility score and U repre-

sents the weight vector. In this case, U can help learn
the universal collection of characteristics that are per-
tinent to the several categories of activity within the
sensor’s data. Furthermore, we may evaluate the com-
patibility of H and lt

j using the dot product:

ct
j = ⟨lt

j,H⟩, j ∈ {1, . . . ,m} (2)
Following the computational process, we ob-

tain a collection of compatibility scores C(Lt ,H) =
{ct

1,c
t
2, . . . ,c

t
3}, which are subsequently standardized

into which are subsequently standardized into At =
{at

1,a
t
2,a

t
3} by a softmax function.

at
j =

exp(ct
j)

∑
m
i=1 exp(ct

i)
(3)

Or the tanh function :

at
j =

exp(ct
j)− exp(−ct

j)

exp(ct
j)+ exp(−ct

j)
(4)

The At standardized compatibility scores are uti-
lized in order to generate a unique vector ht through
element-wise weighted averaging for every layers.

ht =
m

∑
j=1

at
j · lt

j (5)

Most importantly, globally descriptive feature of
the input data H of the incoming information can

now be substituted with the ht . The newly created
global vectors, are provided as input to the classifi-
cation phase after being connected to form a single
vector h = [h1,h2, . . . ,ht ].

3.2 Basic CNN

Our core CNN, which is the foundation upon
which the attention submodules are built, consists
of fully connected, pooling, and convolutional lay-
ers. The summary is as follows, as shown in Fig.1
: Conv(32); Conv(64); Conv(128); Pol ; Conv(128);
Pol; Conv(128); Pol; FC(128) ; softmax, in which
Conv(Lt) stands for a Lt feature map-equipped con-
volutional layer s, Maximum Pooling Layer Pol, A
layer of m units that is fully connected is denoted by
FC(m) and a softmax classifier by softmax. In addi-
tion, a ReLU activation function is used to alter each
layer’s output.

In order to guarantee an improved resolution for
the local feature maps extracted from the three con-
volutional layers Conv(128) that are used to estimate
attention, After the initial two convolutional layers,
there is neither pooling layer. In order to prevent map-
ping distinct feature vector dimensionalities to the
same one, which could result in additional processing
costs, we purposefully designed the global features H
and the local features Lt (both of which are 128) to
have the identical dimensions.

Finally, we employed the Location Function. In
a basic CNN design, the class prediction probabili-
ties are typically generated by a fully connected layer
after a global characteristic description H has been
calculated from the input dataset. For the classes
to be able to be divided from one another linearly,
the information needs to be translated into a high-
dimensional space in order to clarify H with discrete
dimensions that reflect significant higher-order data
concepts. The attentional method adds filters early
in the CNN pipeline so that it can discover mappings
that are comparable and work with the original de-
sign to produce H. The compatibility rating Conv(Lt ,
H) ought to only be elevated when the fraction of the
dominant data category is present in the related patch,
as a result of our model’s attention mechanism.

4 EXPERIMENT AND RESULTS

The experiments conducted in this study aim to evalu-
ate the effectiveness of the proposed AE-CNN model
for appearance-based gaze estimation. By leverag-
ing the Columbia Gaze dataset, we assess the perfor-
mance of our approach in comparison to prior state-
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of-the-art methods. The evaluation process is struc-
tured into three key components: the dataset charac-
teristics and preprocessing steps, the architecture and
experimental setup of the proposed model, and the
analysis of the obtained results. This section presents
a detailed breakdown of these elements to demon-
strate the robustness and accuracy of the proposed ap-
proach.

4.1 Data SET for Gaze Estimation

The Columbia Gaze dataset (Smith et al., 2013) is one
of the most varied datasets that was collected in a con-
trolled setting and uses degrees to describe pitch and
yaw. A comprehensive set of eye gaze data with vary-
ing gaze directions and head positions is provided by
the 5,880 photographs of 56 individuals. This dataset
outperforms other eye gazing datasets that were avail-
able to the public at the time of release in terms of the
quantity of individuals. Almost half of the sample’s
participants wear glasses, which is an essential char-
acteristic given their diverse ethnic backgrounds.

This dataset’s high-quality images all have a res-
olution of 5184 x 3456 pixels, which is excellent for
forecasting the dataset itself but not indicative of the
typical camera used for these kinds of images, thus
it doesn’t enable the training model to predict data
more accurately under different situations. An addi-
tional limitation of this dataset is that the lighting is
nearly constant across the images, which reduces the
robustness of the trained models in varying lighting
conditions. Fig. 3 shows a sample of the dataset with
varying head positions.

Figure 3: An excerpt from the Columbia Gaze dataset
(Smith et al., 2013).

We selected the Columbia Gaze dataset as our pri-
mary dataset due to its diversity in individual partici-
pants and head positions, which makes it well-suited
for testing appearance-based gaze estimation models.

4.2 Model and Experimental Setup

In our study on gaze tracking, we adopted an empir-
ical method to explore the effectiveness of convolu-
tional neural networks (CNNs), by integrating an at-
tention mechanism. The inclusion of attention mech-
anisms aims to improve the model’s ability to focus
on relevant features during gaze estimation.

Python is used to implement our model, and the
Tensor Flow machine learning technology is used.
We used the ”fit()” function from the Keras library to
train our models, setting hyperparameters such as the
”adam” optimizer the categorical-crossentropy Loss
function. The rate of learning was set to 0.001 and
the input batch size was 128, the number of epochs
was set to 10. To evaluate our approch, we split our
data into validation and training sets, with 20% being
used for validation and 80% being used for training.

4.3 Performance Comparison

Our appearance-based gaze estimation method per-
forms better than previous methods, as Table 2 il-
lustrates. To assess the effectiveness of the AE-
CNN model, we conducted a one-tailed z-test on the
Columbia Gaze dataset. This statistical test was cho-
sen as it is well-suited for evaluating performance im-
provements over established benchmarks.

When we compare the outcomes, we see that
performance has significantly improved over time.
Although the Dilated-CNN method used by Chen
and Shi (Chen and Shi, 2018) demonstrated a very
modest accuracy of 62%, significant increases were
noted with subsequent methods. While Omori and
Shima (Omori and Shima, 2020) used SVM and
CNN to reach an accuracy of 91.04%, Ewaisha et
al. (Ewaisha et al., 2020) included multi-task learn-
ing and achieved an amazing accuracy of 95.8%.
With the introduction of the CoGaze-Net by Karmi
et al. (Karmi et al., 2024), the accuracy was raised
to 96.88%. However, our suggested method,a CNN
based on attention for gaze estimation, surpassed all
prior methods with an exceptional 99.98% accuracy.

In terms of relative improvement, the AE-CNN
model outperformed the Dilated-CNN by 37.98%,
Multitask Learning by 4.18%, SVM-CNN by 8.94%,
and CoGaze-Net by 3.1%. These improvements are
statistically significant, with p-values of < 0.01 and
< 0.05 for the comparisons with the previous meth-
ods. This demonstrates that the observed performance
gains are not due to random chance but result from the
superior feature extraction capability of the attention-
based CNN architecture.

This development suggests that adding attention

Enhancing Appearance-Based Gaze Estimation Through Attention-Based Convolutional Neural Networks

21



Table 2: Evaluation of the suggested method’s outcomes in relation to earlier approaches using the ”columbia Gaze” data set.

Author Method
Batch
size

Epochs
Opti
mizer

Classif
icateur

Accuracy

Chen and
Shi (2018)

Dilated
-CNN

64 8000 Adam Softmax 62%

Ewaisha et
al. (2020)

Multitask
Learning

- - - - 95.8%

Omori and
Shima, (2020)

SVM,
CNN

- - SGD - 91.04%

Karmi et
al. 2024

CoGaze
-Net

128 50 Adam Softmax 96.88%

Proposed
method

AE
-CNN

128 10 Adam Softmax 99.98%

mechanisms to CNNs has a significant potential to
enhance appearance-based gaze estimating systems’
functionality, marking a significant advancement in
the field. As shown in Fig.4, the outcomes are also
evaluated by comparing the loss functions from the
validation and learning phases, as well as by track-
ing the evolution of the validation precision values in
relation to the training values.

Figure 4: The two example graphs showing the accuracy
and loss function evolution for the suggested technique.

5 CONCLUSION

Our exploration of an attention-based CNN for gaze
direction estimation image classification was fruitful.
The experimental result we obtained clearly demon-
strates that our proposed attention model results in
a clear improvement in accuracy compared to previ-
ous approaches, as we observed on the ColumbiaGaze
dataset. This finding highlights the effectiveness
of our attention mechanisms regarding appearance-
based gaze estimate. In conclusion, this study re-
inforces the credibility of our attention-based con-
volutional neural networks as powerful tools to in-
crease precision and reliability of estimation of gaze
systems, thus paving the way for further advances
in fields like human-computer interaction and visual
recognition.

For future work, several promising avenues are
open to improve appearance-based gaze direction es-

timation. A first approach would be to refine our
model by integrating more advanced learning tech-
niques, such as more complex attention mechanisms
or hybrid neural network architectures, which could
more accurately capture subtle variations in eye and
facial appearance under various lighting conditions
and angles.

Furthermore, it would be interesting to extend our
research to other datasets, particularly those contain-
ing a wider variety of subjects, facial expressions, and
environmental contexts, to assess the robustness and
generalization ability of our approach. This could in-
clude using data from real-world scenarios, such as
videos captured in dynamic environments or mobile
applications, to test and improve the model’s perfor-
mance in real-world situations.

Furthermore, we envision generating novel meth-
ods by combining appearance-based gaze direction
estimation with transfer learning or meta-learning
techniques, which would reduce the need for anno-
tated data and improve the model’s effectiveness on
new domains. Creating models that can quickly adapt
to new users or changing conditions, without requir-
ing manual recalibration, would represent a signifi-
cant advance in the field.

Finally, exploring new data sources, such as those
synthesized by generative neural networks, could
also provide opportunities to increase the diversity of
training data and improve model performance in chal-
lenging scenarios where real-world data are limited.
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