
Would Microsoft Azure Stream Analytics Be a Suitable Foundation
for an Event Processing Network Model?

Arne Koschel1 a, Anna Pakosch1 b, Christin Schulze1,
Irina Astrova2, Christian Gerner1 and Matthias Tyca1

1Hochschule Hannover, DataH, University of Applied Sciences and Arts, Hannover, Germany
2Department of Software Science, School of IT, Tallinn University of Technology, Tallinn, Estonia

Keywords: Event Processing Network (EPN), Event Processing Network Model, Azure Stream Analytics.

Abstract: This article looks at a proposed list of generalized requirements for a unified modelling of event processing
networks (EPNs) and its application to Microsoft Azure Stream Analytics. It enhances our previous work in
this area, in which we recently analyzed Apache Storm, Amazon Kinesis Data Analytics and earlier also the
EPiA model, the BEMN model, and the RuleCore model. Our proposed EPN requirements look at both: The
logical model of EPNs and the concrete technical implementation of them. Therefore, our article provides
requirements for EPN models based on attributes derived from event processing in general as well as existing
models. Moreover, as its core contribution our article applies those requirements by an in depth analysis of
Microsoft Azure Stream Analytics as a concrete implementation foundation of an EPN model.

1 INTRODUCTION

Intelligent data management and processing has
changed: Collecting large amounts of data from var-
ious sources happens in every company today, of-
ten called ’Big Data’. It is not longer sufficient to
store data in relational DBs, log files or events sep-
arately. Information from data combined from dif-
ferent sources is important for the competitiveness of
enterprises.

Batch Processing is an established approach for
processing ’Big Data’. At its core data is collected
and processed ’in batches’ (Shaikh, 2019). Therefore,
data is collected for a certain period of time before be-
ing processed. The drawback is that no real-time pro-
cessing is possible. First, data is collected for some
time, before processing takes place.

Recently, (Event) Stream Processing joined the
field (Shaikh, 2019). An approach to process data di-
rectly after generation. Through this near real-time
processing, an action can happen immediately after
processing. Enterprises can react faster to changes.

For the implementation of Stream Processing a
modeling technique called (complex) Event process-
ing network (EPN) found its way into practice. This

a https://orcid.org/0000-0001-5695-2893
b https://orcid.org/0009-0001-6867-4488

approach gives a guideline, included components and
also requirements, how such a Stream Processing
should occur.

Along with the rise of Stream Processing tools
were developed to model and implement EPNs.
Therefore, we contribute here an evaluation of differ-
ent recent tools, which support EPN realization as au-
tomatically as possible. The evaluation also addresses
the following questions: What are EPns and which
requirements are important to provide them? A de-
tailed look is taken at Apache Storm, Amazon Kinesis
Data Analytics and – in this paper – Microsoft Azure
Stream Analytics.

The following article enhances our work from
(Schulze et al., 2023) and (Koschel et al., 2023) and
provides the following contributions: First, we briefly
look at our – compared to our work from (Koschel
et al., 2017) – more formally structured list of general-
ized EPN model requirements (as shown in (Schulze
et al., 2023) in detail). Second, we provide – as the
key contribution of the present article – an in-depth
evaluation of Microsoft Azure Stream Analytics with
respect to our EPN model requirements. Moreover,
we also briefly compare Microsoft Azure Stream An-
alytics to Apache Storm and Amazon Kinesis Data
(AKD) Analytics.

The remainder of this paper is structured as fol-
lows: After discussing related work in Section 2 we

Koschel, A., Pakosch, A., Schulze, C., Astrova, I., Gerner, C. and Tyca, M.
Would Microsoft Azure Stream Analytics Be a Suitable Foundation for an Event Processing Network Model?.
DOI: 10.5220/0013073000003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 15-22
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

15



place a brief introduction to the topic and provide our
EPN model requirements in Section 3. Next, we take
an in-depth look at Microsoft Azure Stream Analyt-
ics in Section 4 followed by a brief comparison to
Apache Storm and Amazon Kinesis Data (AKD) An-
alytics in Section 5. Finally, Section 6 summarizes
our results and leads to a conclusion.

2 RELATED WORK

The basis of our project builds on authors in the
scope of EPN and Complex Event Processing (CEP)
for example, Dunkel and Bruns (Dunkel & Bruns,
2015) and (Bruns & Dunkel, 2010). We also used
foundations from our earlier work on EPNs, namely
(Koschel et al., 2017), (Koschel et al., 2018) and (As-
trova et al., 2019). There we more informaly establish
the requirements for EPNs and apply them to different
EPN modeling approaches and tools (EPiA, BEMN,
RuleCore). With the present paper we extend our
work with slightly refined and more formally struc-
tured requirements as well as a deep look at more
recent tools, here in particular at Microsoft Azure
Stream Analytics.

Compared to our earlier work, here we cast the re-
quirements into a template from (Rupp & Pohl, 2021)
that means we somewhat formalize them. We use a
template to define the requirements in a standardized
form and to show their importance. To ensure the
quality of the requirements, we validated them against
the quality criteria from (IEE, 1998).

Furthermore, we use the IEEE830-1998 stan-
dard (IEE, 1998) for quality criteria for requirements.
There exists a newer standard IEEE/ISO/IEC29148-
2011, which describes the quality criteria from
IEEE830-1998 in more summarized form. We still
meet all the quality criteria from both versions,
except for the singularity. That one is new in
IEEE/ISO/IEC29148-2011.

For the description and evaluation of the differ-
ent tools we used the documentation of the publishers.
Apache offers large documentation in (Str, 2021a) for
Apache Storm, Amazon Web Services provides in-
formation in (Str, 2021b) for Amazon Kinesis Data
(AWD) Analytics and Microsoft introduces Microsoft
Azure Stream Analytics in (Microsoft, 2021b).

In contrast to other publications, we distinguish
ourselves by standardizing and validating the require-
ments of EPNs and by evaluating various tools with
different open or closed source characteristics, ef-
fort, and costs. With this variety, we aim to give an
overview of different tools and support the decision
for an individually suitable tool.

3 EPNs AND REQUIREMENTS

This section curtly presents the basics of EPNs and
the requirements for this kind of systems.

According to (Luckham, 2002) an event is a sig-
nificant change of state. Event Processing Networks
(EPNs) can be seen as generalized software systems
that allow the processing of events. However, EPN
models lack standardization, which is where our work
aims to contribute.

3.1 Basics of Event Processing
Networks

EPNs are build on the basis of the Event-Driven Ar-
chitectures (EDA) and Complex Event Processing
(CEP). These both approaches

’[...] represent a new style of enterprise ap-
plications that places events at the center of
the software architecture - event orientation as
an architectural style.’ — Dunkel and Bruns
(Bruns & Dunkel, 2010, p. 4)

In this context, EDA is more about the design of
event-driven architectures as a design style. CEP de-
scribes a technology for dynamic processing of large
datasets (Bruns & Dunkel, 2010). Thus, CEP is a
part of an EDA, which can be used for processing
data within it. In detail CEP describes the dynamic
processing of large data streams (also called event
streams) in real-time. An event is any happening in
the system. Here the change of state of a fact or an
object is represented (Bruns & Dunkel, 2010).

The processing of events within a CEP is realized
by using rules. These rules contain knowledge about
handling events or event sequences (Dunkel & Bruns,
2015). For the realization of these rules and the pro-
cessing of the data CEP contains Event Processing
Agents (EPA).

An EPN is a set of EPAs, which are intercon-
nected and exchange information during and about
processing of the data (Dunkel & Bruns, 2015). An
EPN can be interpreted as a graphical tool for mod-
eling the flow of events for event processing systems
(Koschel et al., 2017). Thus, the main components
of EPN are EPAs in order to be able to perform CEP.
EPAs contain various components like Event Model,
(Event) Rules, and Event Procession Engine (Dunkel
& Bruns, 2015).

Other components, for example producers, are
also further elements of EPNs and can be taken from
(Dunkel & Bruns, 2015) and (Koschel et al., 2017).
The next part explains the requirements for EPNs.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

16



3.2 Requirements

We evaluate the selected tools following an identical
set of requirements, which we have put into a stan-
dardized form as shown next.

3.2.1 Handling the Requirements

The set of requirements origins from our work in
(Koschel et al., 2017). We have standardized the form
of these requirements in (Schulze et al., 2023) by ap-
plying (Rupp & Pohl, 2021) and (IEE, 1998). The
reason was that the original requirements were just
described as bullet points, had no formal structure and
were partially a little ambiguous.

To address these issues, we evaluated various re-
quirement templates how they address issues such as
writeability, readability and learnability and common
use (Robertson & Robertson, 2012). We have chosen
(Rupp & Pohl, 2021) because it provides a straight-
forward structure for requirements.

In addition, we apply the quality criteria of IEEE
830-1998 (IEE, 1998) to achieve high quality require-
ments in structure and content. Specification of the
quality criteria according to (IEE, 1998) are require-
ments, that are correct, unambiguous, complete, con-
sistent, verifiable, modifiable, traceable and ranked
for importance and/or stability.

The requirements are formulated according to a
template and fulfill all quality criteria. Those tem-
plates achieve writeability, readability and learnabil-
ity and are therefore efficient. This also satisfies the
modifiable criteria from IEEE 830-1993.

Correctness, unambiguousness and completeness
are achieved by splitting, expanding and substitut-
ing specialist terms. Requirements are checked to be
consistent, verifiable, traceable and they are ranked
by importance (see more details in (Schulze et al.,
2023)).

3.2.2 The Requirements

Our standardized requirements are as follows:

• EPNR1. The tool shall offer the developer to
model events with their inherent attributes as the
central component of the engine.

• EPNR2. The tool shall map real world descrip-
tions to events as scenarios.

• EPNR3. The tool shall offer event structures as
simple, complex or aggregated. Simple events can
be created and used independently. In addition,
complex events have dependencies and references
to other events. Also, aggregated events can be
grouped logically.

• EPNR4. The tool shall offer possibilities to ex-
press the relativity of events and their temporal
and causal relationships, e.g. sequence, precondi-
tions and postconditions.

• EPNR5. The tool shall process and show the flow
of events through the system.

• EPNR6. The tool shall offer the modeling of EPN
by components, their properties and used patterns.

• EPNR7. The tool shall offer the modeling of
components outside the system boundary and the
behavior between inside and outside components.

• EPNR8. The tool should be expressive in usage,
about readability, writability, learnability and effi-
ciency.

• EPNR9. The tool should offer the developer fur-
ther possibilities to create the model, e.g. IDE,
graphical event programming.

In (Schulze et al., 2023) we evaluated Apache
Storm (Str, 2021a) and in (Koschel et al., 2023) we
evaluated Amazon Kinesis Data Analytics. As the
major contribution of the present paper we will eval-
uate Microsofts Azure Stream Analytics against our
requirements.

4 MICROSOFT AZURE STREAM
ANALYTICS

In this section, Microsoft Azure Stream Analytics is
examined and evaluated. It was chosen by the au-
thors for its closed source characteristics and because
of Microsofts significant position in the market.

4.1 Overview of Microsoft Azure
Stream Analytics

Azure Stream Analytics is a real-time CEP engine
that is designed to analyze and process high volumes
of fast streaming data. Data can be obtained from
multiple sources simultaneously. It can be catego-
rized as a Platform-as-a-Service (PaaS) and thus it is
fully managed within Azure (Microsoft, 2021b).

Azure Stream Analytics guarantees exactly-once
event processing semantics and at-least-once event
delivery, to avoid losing events. It also provides built-
in checkpoints to maintain the status of your job and
delivers repeatable results (Microsoft, 2021a).

For realizing the stream processing, Azure Stream
Analytics provides the following components (Mi-
crosoft, 2021b):

Would Microsoft Azure Stream Analytics Be a Suitable Foundation for an Event Processing Network Model?

17



4.1.1 Jobs

The core of Azure Stream Analytics are jobs. Jobs
have to be created by developers themselves and con-
sist of Input, Query Processing Engine and Output
(see Figure 1). A job is a self-contained unit. How-
ever, jobs can be attached to each other so that the
output of a previous job would be the input of the
following job. This allows complex events to be pro-
cessed in multiple stages. Furthermore, a job can have
multiple inputs and outputs.

4.1.2 Input

As Input Azure Stream Analytics provides IoT Hubs,
Event Hubs, Azure Blob Storage or Azure Data Lake
Storage. Hubs and Storages also provide an interface
for external producers to transfer data into a job. Hubs
are classic message queues that collect data, store it
temporarily, and transmit it to the Query Processing
Engine on demand.

4.1.3 Output

The Output can provide Azure resources for storage
and archiving, data warehousing, dynamic visualiza-
tion or sending alerts and executing actions. Azure
resources are possible as output, however these can
transfer the output to external targets.

4.1.4 Query Processing Engine

Azure Stream Analytic and its Query Processing En-
gine is built on Trill – a streaming query processor de-
veloped by Microsoft Research (Chandramouli et al.,
2014). In order to examine the Query Processing En-
gine it is necessary to take a closer look at Trill, since
the engine is subject to the concept.

Trill (Trillion events per day) is an in-memory
streaming analytics engine, which reads input data
exactly once. It is designed to handle a wide range
of data, both real-time and offline, and is based on a
temporal data and query model. Trill can be used as a
streaming engine, a lightweight relational in-memory
engine, and a progressive query processor.

In addition, Trill was developed to address the
following specific requirements (Chandramouli et al.,
2014):

• Query Model. A Stream Analytics Engine must
be able to process various data. On one hand, of-
fline data should be processed, such as logs; on
the other hand, real-time data should be processed
in order to immediately publish warnings in case
of possible problems. Real-time data should be
able to be processed with historical data to detect

correlations. Finally, progressive data should be
processed to provide fast and continuous informa-
tion.

• Fabric & Language Integration. A Stream Ana-
lytics Engine must be easily usable by a high-level
language (HLL) in order for the engine to be used
by an application. HLLs such as Java and C# offer
a rich volume of data types, libraries and custom
logic that must be supported by the engine.

• Performance. Processing large offline data sets
requires high throughput, while real-time moni-
toring requires low latency.

Trill meets all the above requirements with the help of
the hybrid system architecture (Chandramouli et al.,
2014). There are two modes of Trill defined as Li-
brary mode and Multi-core mode. In Library mode,
which is the default, Trill is only executed in one
thread and can thus be integrated into other applica-
tions. Compared to the Library mode, higher perfor-
mance is achieved in Multi-core mode. Here sev-
eral threads are executed in parallel. It supports a
new two-level streaming temporal MapReduce oper-
ation, executed using a lightweight optional sched-
uler (Chandramouli et al., 2014).

Trill offers a query language called Trill-LINQ.
This language enables CEP and also forms the ba-
sis of Query Processing Engine. The following core
concepts are provided by Trill-LINQ (Chandramouli
et al., 2015):

• Filtering and Projection. Similar to SQL, the pro-
jection of an event can be complete or transform
e.g. selected attributes. Furthermore, events can
be filtered based on conditions.

• Windowing. Time intervals within the processing
are defined so that each event is assigned to a time
window and processed inside of it. Events always
contain a timestamp since they are processed by
Trill strictly non-decreasing. Based on the length
of the time intervals the developer controls the
size of the batches and thus also the performance
with latency and throughput. There are several
windows, which are described in the context of
Azure Stream Analytics.

• Aggregation. Close to SQL aggregation can be
used to combine events and transform them into
new values, e.g., number of events.

• Grouped Computation. Similar to SQL a group-
ing is performed, where the result of a sub-
operation is provided to a specific key.

• Correlation and Set Difference. Trill allows to
perform temporary join operations on different

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

18



streams or datasets and merge them. Any combi-
nation of real-time data, historical data or offline
data is possible.

• Data-Dependent Windowing. The windows are
selected based on the data. The window can be a
time interval, as in classic windowing, or an event
that can occur and thus shorten the time interval.

Trill has only been described rudimentarily, tai-
lored to the article to explain Azure Stream Analytics.
A detailed description would exceed the scope of this
paper, but can be found in (Chandramouli et al., 2014)
and (Chandramouli et al., 2015).

By incorporating Trill as a library, Azure Stream
Analytics was up and running within 10 months.
Queries are created using Transact SQL and then
translated into Trill expressions by a SQL compiler
(Terwilliger, 2018).

Since Trill is designed for high compatibility with
high-level languages and their numerous data types,
the Query Processing Engine can process data in
JSON, AVRO or csv format. Due to the possible
nesting of JSON and AVRO, events of arbitrary struc-
ture and complexity can be processed. This flexibil-
ity means, that Transact SQL can be extended with
JavaScript and C# user-defined functions (Microsoft,
2021c). As known from SQL, this language also has
operations to easily filter, sort, aggregate, and join
streaming data.

As in Trill time is important since it is essential
in CEP. Thus, it must be ensured that it is easy to
work with this time component. Windowing was in-
troduced for this case. In Azure Stream Analytics
events are also processed based on their timestamp.
In total there are five different time windows in Azure
Stream Analytics (Microsoft, 2022):

• Tumbling Window. Divide into disjoint time in-
tervals, events, whose time stamps are greater than
the interval start and less than or equal to the in-
terval end, are assigned to this interval. E.g. 12:00
PM – 12:05 PM window will include events that
happened exactly at 12:05 PM, but will not in-
clude events that happened at 12:00 PM.

• Hopping Window. Intervals of fixed length over-
lapping and offset by one HOP parameter. E.g.,
interval length is 10 minutes and HOP parameter
is 5 minutes, which means the first interval is from
12:00 PM - 12:10 PM and the second interval is
from 12:05 PM - 12:15 PM. Events whose times-
tamp is 12:06 PM - 12:10 PM are in both intervals.

• Sliding Window. A fixed length interval is shifted
using the time axis. In order not to generate an
infinite number of possible shifts, a new window

is only created when events have left or joined this
window.

• Session Window. The intervals depend on the
arrival of the events and the maximum interval
length. It is defined by a timeout and the inter-
val length. If no further event occurs within the
timeout after the arrival of an event, the interval is
closed. As soon as a new event arrives, a new in-
terval is opened. However, even with permanently
arriving events, the interval length is never longer
than the maximum length.

• Snapshot Window. All events with the same
timestamp are assigned to one snapshot.

In addition to windowing, queries can be nested. So,
it is possible to define sub-queries and process them
within the query of a job. Within the sub-queries, dif-
ferent sources can be used and correlated.

The Query Processing Engine offers multiple
functions through Trill to process streams. Beside
the windowing and the accompanying division of the
streams, events can be processed with a SQL based
query language. Queries can be nested to structure
the queries as needed. Functions can be created to
make the processing more precise. Finally, jobs can
be attached to each other. In addition to the stream,
other data such as historical, reference, or scoring can
be used to implement processing or correlate relation-
ships (see Figure 1).

This part introduced the functionality of Azure
Stream Analytics and Trill. By using a SQL-based
language, streams can be examined and analyzed.
The next part examines the requirements.

4.2 Evaluation of Microsoft Azure
Stream Analytics for Modeling EPN

This part will argue, which requirements are fulfilled
or not fulfilled by Microsoft Azure Stream Analytics.

• EPNR1 - fulfilled:
Events can be processed in JSON, AVRO or csv
format. Both, JSON and AVRO data, can be struc-
tured and contain some complex types such as
nested objects (records) and arrays.

• EPNR2 - fulfilled:
Due to the freely selectable structure of JSON and
AVRO data, things of the real world can be de-
scribed and mapped in scenarios.

• EPNR3 - fulfilled:
Events can be grouped and aggregated by queries.
In addition, real-time data can be correlated with
historical data to identify patterns. Finally, there
is the windowing concept, in which groupings can
be created based on time intervals.

Would Microsoft Azure Stream Analytics Be a Suitable Foundation for an Event Processing Network Model?

19



Figure 1: Stream processing concept in Azure (based on
(Microsoft, 2021b)).

• EPNR4 - fulfilled:
Events can be processed causally on multiple lev-
els. Several jobs can be executed in sequence,
furthermore within one job there can be several
queries and processing steps.

• EPNR5 - fulfilled:
Events are processed in a granular manner using
at-least-once delivery and exactly-once process-
ing. Job diagrams within the Azure interface vi-
sualize the flow of events from exactly one job.

• EPNR6 - fulfilled:
The given components in Azure can be used to
model an EPN. As described, there are Input,
Query Stream Processing and Output. In essence,
the Query Stream Processing offers the possibility
of processing using the Stream Analytics Query
Language. Extensions are supported by user-
defined functions.

• EPNR7 - fulfilled:
Event producers do not need to be part of the sys-
tem. Any kind of data can be imported from out-

side, e.g. from IoT devices, weather data, proto-
cols.

• EPNR8 - fulfilled:
Various tutorials, from step-by-step beginner to
advanced concepts and examples for end to end
scenarios.

• EPNR9 - fulfilled:
Implementation is possible in Azure Portal or Vi-
sual Studio (Code), Azure CLI, Terminals.

Azure Stream Analytics also meets all the require-
ments for modeling an EPN. Due to the PaaS charac-
ter, developers contain a platform that enables them
to specifically implement the use cases of stream pro-
cessing. However, the given functions and features of
Azure Stream Analytics, even though it is SQL-based,
are very complex and can be a barrier to entry.

5 COMPARISON

In this article, we analyzed Microsoft Azure Stream
Analytics in Section 4 in-depth with respect to our
standardized set of requirements from Section 3.2.2.
As we stated there, Microsoft Azure Stream Analyt-
ics nicely fullfils our requirements and thus it is well
suited for the realization of EPNs.

Mainly the collected information for the presenta-
tion of Microsoft Azure Stream Analytics (as well as
other tools) was taken from the documentation of the
publishers or developers of the tools. For this reason,
some information may be presented subjectively, as
companies would like to widely distribute their tool
in any case. Moreover, – in contrast to Apache Storm
– Amazon and Microsoft Azure are costly tools, so
an advertising factor within the documentation can-
not be ruled out. Furthermore, information may be
incomplete, because companies want to keep their im-
plementations private.

To provide some more distinctive criteria to other
tools we took in particular a more developer-oriented
perspective. The result is summarized in table 1,
which briefly compares all three tools under evalu-
ation, namely Apache Storm, Amazon Kinesis Data
(AKD) Analytics and Microsoft Azure Stream Ana-
lytics. Developers may use this table to identify the
most important criteria that argue for or against a tool.
In particular open source nature, price, convenience,
and potential vendor lock in some distinctive factors.

While Apache Storm is open source and free of
charge, Amazon Kinesis Data (AKD) Analytics and
Microsoft Azure Stream Analytics are not. However,
while Apache Storm has to be maintained by one
selves, Amazon Kinesis Data (AKD) Analytics and

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

20



Table 1: Tools Criteria and Characteristics.

Apache Storm Amazon Kinesis
Data Analytics

Microsoft Azure
Stream Analytics

Basis MapReduce MapReduce Trill

Support no support Plattform-as
-a-Service (PaaS)

Plattform-as
-a-Service (PaaS)

Costs no costs costs based on usage costs based on usage
Effort high low average

Eventformat Tuple Tuple JSON, AVRO, csv
Environment JVM AWS Azure

Language topology in Java,
others arbitrary

Java, Scala,
Python, SQL

SQL based,
JavaScript or C#

user-defined functions

Distribution Thread-based Thread-based in
Apache Flink no details

Maximum Processing Rate over one million tuples
per second and per node real-time real-time

Reliability guaranteed by spouts guaranteed by AWS 99.9% promised

Data protection own realization Server location can
be set

Server location can
be set

Security own realization provided by AWS provided by Azure

Microsoft Azure Stream Analytics are nicely hosted
and maintained by Amazon and Microsoft and possi-
bly easier to be used.

Thus, there is no clear winner between the three
tools, but more a question of individual developer
taste and skills as well as company preferences. For
example, if a company prefers open source tools and
has good development and hosting skills in house,
then Apache Storm seems to be more suitable. If a
company is an AWS shop anyway, wants likely less
maintenance effort and is able to pay the costs for Ki-
nesis, then Kinesis could be more favorable. Like-
wise Microsoft Azure Stream Analytics could be the
favourite option, if a company is a strong Microsoft
Azure user anyway.

6 CONCLUSION

In this article we had a deep look at Event Process-
ing Network Models as a foundation of Event Stream
Processing tools (cf. (Schulze et al., 2023)) and pre-
sented our enhanced (compared to our earlier work)
standardized set of requirements for EPN models in
Section 3.2.2.

As the key contribution of this article we apply
those requirements, in order to have an in-depth look
at Microsoft Azure Stream Analytics in Section 4. It
turns out that Microsoft Azure Stream Analytics is a
well suited tool for modeling and implementation of
EPNs. Additionally we summarized our comparison

of Microsoft Azure Stream Analytics, Amazon Kine-
sis Data Analytics (Koschel et al., 2023), and Apache
Storm (Schulze et al., 2023) in Section 5.

Since all those tools mostly fulfilled our require-
ments comparisons may need other criteria as well.
The suitability of a tool depends on more individual
circumstances, such as which kind of ’shop’ you are
– for example, Amazon vs. Microsoft –, but also how
high the own development and administration effort
should be.

Therefore, the decision for a suitable tool is based
on the effort, the control and the costs involved. For
these reasons, no absolute recommendation can be
made. Rather the authors recommend examining each
individual use case or at least a set of typical ones, in
order to select the ideal tool. Since the field of event
processing is more important than ever, we will con-
tinue to evaluate upcoming tools in this space within
future work of ours.

REFERENCES

(1998). IEEE Recommended Practice for Software Re-
quirements Specifications. IEEE Std 830-1998, (pp.
1–40).

(2021a). Apache Storm. Apache Software Foundation. On-
line: https://storm.apache.org/ [retrieved: 04, 2022].

(2021b). Streaming Data Solutions on AWS. Amazon Web
Services Inc. Online: https://docs.aws.amazon.com/
whitepapers/latest/streaming-data-solutions-amazon-
kinesis/welcome.html [retrieved: 04, 2022].

Would Microsoft Azure Stream Analytics Be a Suitable Foundation for an Event Processing Network Model?

21



Astrova, I., Koschel, A., Kobert, S., Naumann, J., Ruhe, T.,
& Starodubtsev, O. (2019). Evaluating RuleCore as
Event Processing Network Model. In Proc. 15th In-
ternational Conference on Web Information Systems
and Technologies (WEBIST 2019) (pp. 297–300). Vi-
enna, Austria: SCITEPRESS -– Science and Technol-
ogy Publications.

Bruns, R. & Dunkel, J. (2010). Event-Driven Archi-
tecture - Softwarearchitektur für ereignisgesteuerte
Geschäftsprozesse (Software architecture for event-
driven business processes). Springer.

Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R.,
Fisher, D., Platt, J. C., Terwilliger, J. F., & Werns-
ing, J. (2014). Trill: A high-performance incremental
query processor for diverse analytics. Proceedings of
the VLDB Endowment, 8(4), 401–412.

Chandramouli, B., Goldstein, J., Barnett, M., & Terwilliger,
J. F. (2015). Trill: Engineering a library for diverse
analytics. IEEE Data Eng. Bull., 38(4), 51–60.

Dunkel, J. & Bruns, R. (2015). Complex Event Processing
- Komplexe Analyse von massiven Datenströmen mit
CEP (Complex analysis of massive data streams with
CEP). Springer Vieweg.

Koschel, A., Astrova, I., Kobert, S., Naumann, J., Ruhe, T.,
& Starodubtsev, O. (2017). Towards Requirements for
Event Processing Network Models. In Proc. 8th In-
ternational Conference on Information, Intelligence,
Systems, Applications (IISA 2017) (pp. 27–30). Lar-
naca, Cyprus: IEEE.

Koschel, A., Astrova, I., Kobert, S., Naumann, J., Ruhe,
T., & Starodubtsev, O. (2018). On Requirements
for Event Processing Network Models Using Business
Event Modeling Notation. In Proc. 2018 Conf. Intelli-
gent Computing. Advances in Intelligent Systems and
Computing (SAI 2018) (pp. 756–762). London, UK:
Springer.

Koschel, A., Astrova, I., Pakosch, A., Gerner, C., Schulze,
C., & Tyca, M. (2023). Is Amazon Kinesis Data Ana-
lytics Suitable as Core for an Event Processing Net-
work Model? In Proc. 16th International Confer-
ence on Agents and Artificial Intelligence (ICAART
2024) (pp. 1036–1043). Rome, Italy: INSTICC,
SCITEPRESS.

Luckham, D. (2002). The Power of Events. Addison Wes-
ley, USA.

Microsoft (2021a). Event Delivery Guarantees (Azure
Stream Analytics). Microsoft Documentation.
Online: https://docs.microsoft.com/en-us/stream-
analytics-query/event-delivery-guarantees-azure-
stream-analytics [retrieved: 09, 2024].

Microsoft (2021b). Introduction to Azure Stream
Analytics. Microsoft Documentation. Online:
https://docs.microsoft.com/en-us/azure/stream-
analytics/stream-analytics-introduction [retrieved:
04, 2022].

Microsoft (2021c). Parse JSON and Avro data in Azure
Stream Analytics. Microsoft Documentation. On-
line: https://docs.microsoft.com/en-us/azure/stream-
analytics/stream-analytics-parsing-json [retrieved:
04, 2022].

Microsoft (2022). Windowfunctions (Azure Stream
Analytics). Microsoft Documentation. Online:
https://docs.microsoft.com/de-de/stream-analytics-
query/windowing-azure-stream-analytics [retrieved:
09, 2024].

Robertson, S. & Robertson, J. (2012). Mastering the
Requirements Process: Getting Requirements Right.
Addison-Wesley Professional.

Rupp, C. & Pohl, R. (2021). Basiswissen Requirements En-
gineering (Basic knowledge Requirements Engineer-
ing). dpunkt.verlag.

Schulze, C., Gerner, C., Tyca, M., Koschel, A., Pakosch,
A., & Astrova, I. (2023). Analyzing Apache Storm
as Core for an Event Processing Network Model.
In Proc. International Conference Intelligent Systems
(IntelliSys 2023), LNNS 824 (pp. 397–410). Amster-
dam, Netherlands: Springer, Cham.

Shaikh, T. (2019). Batch Processing — Hadoop Ecosys-
tem. K2 Data Science and Engineering. Online:
https://blog.k2datascience.com/batch-processing-
hadoop-ecosystem-f6da88f11cae [retrieved: 04,
2022].

Terwilliger, J. (2018). Microsoft open sources
Trill to deliver insights on a trillion events
a day. Micro-soft Blog Developer. Online:
https://azure.microsoft.com/de-de/blog/microsoft-
open-sources-trill-to-deliver-insights-on-a-trillion-
events-a-day/ [retrieved: 09, 2024].

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

22


