
Together Is Better! Integrating BDI and RL Agents for Safe Learning
and Effective Collaboration

Manuel Parmiggiani1, Angelo Ferrando2 a and Viviana Mascardi1 b

1University of Genoa, Italy
2University of Modena and Reggio Emilia, Italy

Keywords: BDI Model, Reinforcement Learning, Among Us.

Abstract: What happens when symbolic knowledge is injected into the learning process of a sub-symbolic agent? What
happens when symbolic and sub-symbolic agents collaborate? And what happens when they do not? This
paper explores an innovative combination of symbolic – i.e., Belief-Desire-Intention (BDI) – and sub-symbolic
– i.e., Reinforcement Learning (RL) – agents. The combination is achieved at two different logical levels: at
the single agent level, we show how symbolic knowledge may be exploited to drive the learning process of a
RL agent; at the multiagent system level, we show how purely BDI agents and purely RL agents behave in the
complex scenario of the ‘Among Us’ videogame, and – more interestingly – what happens when BDI agents
compete against RL agents, and when BDI and RL agents cooperate to achieve their goals.

1 INTRODUCTION

Multi-Agent Systems (MAS) represent a fascinat-
ing field at the intersection of artificial intelligence,
distributed computing, and complex systems theory.
These systems consist of multiple autonomous agents,
each capable of perceiving their environment, making
decisions, and executing actions to achieve individual
or collective goals. Agents in a MAS can range from
simple rules-based entities to sophisticated learning
algorithms, and interact with each other and their en-
vironment to accomplish tasks that may be beyond the
capabilities of any single agent (Wooldridge, 2009).

One key distinction within the realm of MAS
lies in the approaches used for agent design and
decision-making: symbolic agents and sub-symbolic
agents (Ilkou and Koutraki, 2020). These categories
represent different paradigms for modelling and rea-
soning within MAS, each with its own strengths,
weaknesses, and applications.

Symbolic agents, also known as deliberative
or logical agents, operate based on explicit repre-
sentations of the rules of knowledge and reason-
ing (de Silva et al., 2020; Calegari et al., 2021). These
agents employ symbolic logic, rule-based systems, or
knowledge graphs to represent and manipulate knowl-

a https://orcid.org/0000-0002-8711-4670
b https://orcid.org/0000-0002-2261-9926

edge about their environment, goals, and other agents.
They use formal methods of reasoning, such as deduc-
tive or abductive reasoning to derive conclusions and
make decisions. Symbolic agents excel in domains
where reasoning about abstract concepts, planning,
and high-level decision-making are crucial.

In contrast, sub-symbolic agents, sometimes re-
ferred to as reactive or connectionist agents, rely on
distributed, parallel processing, and statistical learn-
ing techniques to navigate their environment and
make decisions (Ciatto et al., 2024; Calegari et al.,
2020). These agents typically do not rely on ex-
plicit symbolic representations of knowledge; instead,
they learn patterns and associations directly from
data through techniques like neural networks, rein-
forcement learning, or evolutionary algorithms. Sub-
symbolic agents are adept at tasks requiring pattern
recognition, adaptive behaviour, and learning from
experience, making them well-suited for applications
such as robotics, game playing, and autonomous ve-
hicle control.

While symbolic and sub-symbolic approaches
represent distinct paradigms, they are not mutually
exclusive, and hybrid approaches combining ele-
ments from both paradigms are common in MAS
research. The choice between symbolic and sub-
symbolic agents depends on factors such as the com-
plexity of the task, the availability of domain knowl-

48
Parmiggiani, M., Ferrando, A. and Mascardi, V.
Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration.
DOI: 10.5220/0013077000003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 48-59
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

edge, computational resources, and the desired level
of autonomy, adaptability, explainability.

In this paper, we investigate the combination of
symbolic agents conceptualised following the Belief-
Desire-Intention cognitive architecture (BDI (Rao
and Georgeff, 1995; Rao, 1996)) and sub-symbolic
Reinforcement Learning (RL) agents (Sutton and
Barto, 1998). Both are implemented using the Jason
interpreter for the AgentSpeak(L) declarative agent
language (Bordini et al., 2007). The combination is
carried out in two different ways:

1. At the agent level, we demonstrate that the im-
plementation of the safe RL approach based on the
teacher (Garcı́a and Fernández, 2015) only requires
the addition of a few lines of code to the RL agent
implemented in Jason and gives the advantage of full
transparency of the process, explainability, and trace-
ability of the information learnt from the teacher;

2. At the MAS level, we challenge the BDI agents
and RL agents to play together within a very com-
plex environment based on the popular video game
“Among Us”, and show that the teams involving both
BDI and RL agents play better than homogeneous
teams.

The paper is organised in the following way: Sec-
tion 2 introduces the BDI model, the SARSA algo-
rithm for RL, and the notion of ‘safe RL’; Section
3 describes SafeRLJ, our implementation of safe RL
agents in Jason; Section 4 describes the ‘Among Us’
case study and how BDI and RL agents where im-
plemented to play that game; Section 5 illustrates ex-
perimental results; Section 6 compares SafeRLJ with
the related literature; finally, Section 7 concludes and
outlines the future directions of our work.

2 BACKGROUND

2.1 The BDI Model and the Jason
Language

The Belief-Desire-Intention (BDI) Architecture,
started with the philosophical work of Bratman (Brat-
man, 1987) and pioneered by Rao and Georgeff (Rao
and Georgeff, 1995), is renowned for its deliber-
ative nature while also accommodating reactive
components.

Developed to model intelligent agents capable of
goal-directed behaviour while remaining responsive
to their environment, the BDI architecture combines
reactive components for swift responses to stimuli
with deliberative components supporting higher-level
reasoning and decision-making.

AgentSpeak(L) is a logic programming language
that provides an abstract framework for programming
BDI agents (Rao, 1996). In the following, we provide
a simplified description of the main constructs of Ja-
son (Bordini et al., 2007), a widely used interpreter
for AgentSpeak(L). Elements of the language that are
not relevant for our work are omitted.

The beliefs of an agent determine what an agent
currently knows about itself, the other agents in the
system, and the environment. They are defined as
atomic formulae. The beliefs defined by the program-
mer at design time make up for the initial belief base.
Other beliefs may be added dynamically during the
agent’s lifetime either because the agent generated a
new belief for itself, or as the result of perception of
the environment, or as the effect of communication.

An achievement goal in Jason is specified as !at
where at is an atomic proposition.

Finally, actions may include user-defined actions
that have some effects on the environment, imple-
mented as a Java class in Jason, or library actions like
.send, used to send a KQML message (Finin et al.,
1994) to another agent, . f indall used to store in a list
all the solutions to a predicate call, as customary in
Prolog, .random to generate a random number, .max
to identify the maximum value in a list.

Plans are used to define the course of action for
the agent to achieve its goals. A plan looks like

te : ctxt← h.
where te is a trigger event that triggers the execu-

tion of the plan; ctxt is the context that indicates the
conditions that must be met to consider the plan ap-
plicable; and h is the body consisting of a sequence
of steps to be executed. The trigger event may be the
addition (resp. deletion) of a belief b, and the addi-
tion (resp. deletion) of a goal g. A plan is relevant
for a triggering event if the event can be unified with
the plan’s head. A plan is considered applicable if a
condition ctxt holds as a logical consequence of the
agent’s belief. Note that the environment and other
agents, via communication, can add new beliefs into
one agents’ mind, hence triggering the execution of
applicable plans. The body of a plan is made up of
actions (a), belief updates (+b,−b), and achievement
goals (!g).

2.2 The Q-Learning RL Algorithm and
Safe RL

Q-Learning is a reinforcement learning algorithm that
is used to learn the optimal action selection policy for
a given environment. It falls under the category of
model-free reinforcement learning methods, meaning
that it does not require prior knowledge of the envi-

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

49

ronment’s dynamics.
In Q-Learning, an agent interacts with an environ-

ment by taking actions and receiving rewards. The
goal is for the agent to learn a policy that maximises
the cumulative reward over time. At each time step
t, the agent selects an action at based on the current
state st . Upon taking action at , the agent transitions
to a new state st+1 and receives a reward rt+1.

The Q-value, denoted as Q(s,a), represents the ex-
pected cumulative reward the agent will receive by
taking action a in state s and following the optimal
policy thereafter.

The Q-value of a state-action pair (s,a) is updated
iteratively using the Bellman equation:

Q(s,a)← (1−α)Q(s,a)+α(r+ γmaxa′Q(s′,a′))
where Q(s,a) is the Q-value of taking action a in

state s, α is the learning rate, controlling the impact of
new information, r is the immediate reward obtained
after taking action a in state s, γ is the discount factor,
determining the importance of future rewards, s′ is the
next state after taking action a, and a′ is the possible
actions in state s′. The algorithm implementing the
iteration on the Bellman equation is named SARSA,
for State–Action–Reward–State–Action.

The Q-table is a data structure that stores the Q-
values for all possible state-action pairs. Each row of
the Q-table corresponds to a state, and each column
corresponds to a possible action. Thus, the Q-table
serves as a lookup table for the agent to determine the
best action to take in a given state.

Unfortunately, what is learnt by the agent via the
Q-learning algorithm may be suboptimal, in some
cases even wrong, or very dangerous in the long run
although very rewarding in the short run. In other
words, it may be unsafe.

According to Garcı́a and Fernández (Garcı́a and
Fernández, 2015)

“Safe Reinforcement Learning can be defined
as the process of learning policies that max-
imise the expectation of return in problems in
which it is important to ensure reasonable sys-
tem performance and/or respect safety con-
straints during the learning and/or deploy-
ment processes.”

In their survey, they consider two ways to inject
safety into the RL process: by modifying the opti-
mality criterion to introduce the concept of risk and
by modifying the exploration process to avoid ex-
ploratory actions that can lead the learning system to
undesirable or catastrophic situations. W.r.t. this sec-
ond category of approach, they further identify two
ways to achieve the goal: (i) through the incorpo-
ration of external knowledge, (i.a) providing initial
knowledge, (i.b) deriving a policy from a finite set of

demonstrations, and (i.c) providing teach advice, and
(ii) through the use of a risk-directed exploration.

In this paper, we are interested in improving the
safety of the RL exploration process by taking ad-
vantage of external knowledge. Thanks to the Jason
framework we adopt, knowledge can be represented
in a symbolic way, making the approach transparent
and interpretable, and possibly taught by a teacher
agent, making it very realistic and close to how hu-
mans learn.

3 SafeRLJ: IMPLEMENTING
SAFE RL AGENTS IN JASON

A natural way to port the notion of Q-value into an
AgentSpeak(L) learning agent is as a set of beliefs.
Specifically, as shown in Figure 1, each Q-value can
be assigned to a term st act(S,A,V) that establishes
a relationship between states, actions, and their ex-
pected reward.

The Bellman equation can be implemented in
AgentSpeak(L) to iteratively update the Q-value be-
liefs as a result of the execution of actions in the en-
vironment, that is implemented to send a belief to
the agent, with the reward due to the action’s exe-
cution, and with the new state resulting from it. To
store the hyperparameters, the following beliefs are
used: learn rate(α) (learning rate), disc f actor(γ)
(discount factor), epsilon(ε) (used to drive the learn-
ing process).

LA Plan 1 in the learning agent’s code is trig-
gered by the addition of the st(S) belief. This belief
determines the current state of the agent and its addi-
tion triggers a new update iteration of the associated
Q-value.

(LA Plan 1) +st(S) :⊤←
.random(R); . f indall((V,A),st act(S,A,V),L);

!select act(R,L,Action);+my act(Action);
execute act(Action,S).

Considering the state S under evaluation,
LA Plan 1 first generates a random value between 0
and 1 (.random action). Then, thanks to . f indall, it
retrieves all the tuples (V,A) associated with state S
from the belief base, where A is an action that can be
performed in S and V is the currently associated value
(i.e., the expected reward of performing A in S). The
!select act achievement goal is executed and when,
due to its completion, the Action variable has been
unified with one value, the my act(Action) belief is
added to the belief base. Action is hence executed in
the Java environment associated with the Jason MAS
thanks to the user-defined execute act(Action,S)

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

50

Figure 1: Mapping of the Q-Learning state-action matrix into a set of AgentSpeak(L) beliefs.

Jason action.
Upon completion of LA Plan 1’s execution, the

environment adds a belief in the agent’s belief base,
that is new st(S). To handle such a belief, the agent
has two mutually exclusive plans.

(LA Plan 2) +new st(S2,Rew) :
st(S1)∧my act(A)∧ st act(S1,A1,V1)∧

¬ext st act(S1,A1,)∧ learn rate(α)∧disc f actor(γ)←
. f indall(NV,st act(S2, ,NV),L); .max(L,Value);

NV1 =V1 +α∗ (Rew+ γ∗Value−V1);−my act(A1);
−st(S1);−st act(S1,A1,V1);+st act(S1,A1,NV1);+st(S2).

LA Plan 2 is triggered when an action has been
completed and a resulting state is available, along
with its immediate reward (i.e., the reward obtained
by performing the action). This plan can only
be applied if there was no external knowledge on
the reward given to the couple (S1,A1) (condition
¬ext st act(S1,A1,) in the plan context). The plan
takes into account the hyper-parameters discussed
previously, gets the highest expected reward that can
be obtained in the new state S2 (the state reached by
applying the action on the environment), and a new
expected reward is computed for state S1 according to
Bellman equation. Finally, the agent’s belief base is
consistently updated by removing the beliefs that are
no longer useful and by adding the new state as the
current state.

In case ext st act(S1,A1,GV) is instead a logical
consequence of the agent’s beliefs, no ‘learning by ex-
perience’ takes place and the new state-action-reward
triple stored in the Q-table is st act(S1,A1,GV),
hence integrating given external knowledge instead of
learned knowledge.

(LA Plan 3) +new st(S2,Rew) :
st(S1)∧my act(A)∧ st act(S1,A1,V1)

∧ext st act(S1,A1,GV)←
−my act(A1);−st(S1);−st act(S1,A1,V1);

+st act(S1,A1,GV);+st(S2).

Note that, the +st(S2) belief addition will trigger
LA Plan 1 again, and hence it will activate further it-
erations which will cause the agent to learn the policy
bringing the highest reward (standard Q-Learning).

The Jason code described in this section imple-
ments the exploration stage. The exploitation stage
just requires that the learned Q-values are used to de-
cide what to do next, give the current state. During
exploitation, no Jason plans are needed by the agent,

apart those for converting the symbolic representation
of the selected action, into a call to a real action to be
performed in the environment.

Beliefs of type ext st act(S1,A1,GV), needed dur-
ing the exploration stage, can be present in the learner
agent’s mind since the very beginning due to a design
choice by the developer, or, more interestingly, can be
shared with the learner via communication with one
or more teacher agents. Communication is natively
supported by Jason, and we experimented with this
teacher-learnt approach.

We implemented a very simple teacher agent with
an initial goal !teach(List O f St Act Val Triples)
and two plans triggered by the addition of this goal
to the goal queue.

(TA Plan 1) +!teach([s(S,A,V)|Tail]) :⊤←
.send(Learner, tell,ext st act(S,A,V)); !teach(Tail).

(TA Plan 2) +!teach([]) :⊤←
.print(“teaching completed”).

List O f St Act Val Triples is implemented as a
Prolog list and may either be the empty list [],
managed by TA Plan 2, or a non empty list with
s(S,A,V) as head, and Tail that is the remainder of
the list. In TA Plan 1 the teacher agent sends the
belief ext st act(S,A,V) to the learner agent, gener-
ically represented by the logical variable Learner that
should be substituted with the learner’s name in the
code, and then executes !teach(Tail) to implement re-
cursion over the list’s tail.

The behaviour of the teacher shows how easily
safe learning by communication can be implemented
in Jason. It can become more and more complex, with
dynamic generation of what to teach, based on com-
plex logical reasoning, further communication with
other teacher agents, and with the learner agent itself.

4 THE AMONG US CASE STUDY

As a motivating example and case study of this work,
we tackle the ‘Among Us’ game (InnerSloth LLC,
2018), which is complex enough to represent a chal-
lenging testbed for our approach.

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

51

4.1 Rules of the Game

Among Us is a game centred around the concepts of
trust and cooperation, where various player types col-
laborate within a shared environment, each with dis-
tinct objectives. None of the players can achieve their
mission alone, so it is crucial for them to identify
teammates and collaborate with them to accomplish
their shared goal before the opposing team does.

The game is set in a futuristic space station where
players take on the roles of crewmates or impostors.
There are a certain number of rooms on the spaceship
and several tasks to be performed in each room. When
the game starts, each player is assigned a room as their
initial room. The players then start looking for tasks
to perform in that room and move when they decide
that there is nothing left to do in their current room.
Players can travel between rooms and interact with
other players to help or hinder them, depending on the
team the player believes that the other player belongs
to. The game ends when one of the specified ending
conditions is met.

Types of Players and Their Goals. Crewmates are
tasked with completing a series of tasks scattered
throughout the spaceship, while impostors aim to sab-
otage the crew’s efforts and eliminate crewmates one
by one. The fact that impostors look and act just like
crewmates makes it difficult for the crew to identify
them. This leads to a game of cat and mouse, as crew-
mates use their wits and instincts to uncover the im-
postors and eject them before it is too late. When the
game starts, each crewmate only knows the colours of
the other players and addresses them by their colours.
The crewmate observes their behaviour to classify
them as allies or enemies and ultimately accuses them
of being impostors if they are deemed untrustworthy.
They seek the support of other crewmates during the
voting phase.

Voting Phase. A voting phase is initiated whenever
a crewmate identifies another player as untrustwor-
thy. During the voting phase, each of the two involved
players tries to convince the rest of the group that the
other player is the impostor. There is also a feature
called the “advantage of speaking first”, which bene-
fits the first player to report the other as an impostor.
This feature can be crucial to the outcome of the vote:
typically, the reporting player needs the agreement of
at least one other crewmate to have the reported player
expelled. However, if the reporting player is an im-
postor, another crewmate must expose the lie and gain
the consent of at least a third crewmate. Winning a
dispute brings a player closer to victory for their team.

If the crewmate wins the dispute, the impostor will be
expelled and the crewmates will have one fewer en-
emy player. However, if the impostor wins the dis-
pute, the completion of tasks will slow down due to
the crewmate’s expulsion.

Game-Ending Conditions. As the game pro-
gresses, the number of players decreases along with
the number of tasks to complete. There are three pos-
sible scenarios in which the game can end:

1. All the crewmates are eliminated and expelled
from the spaceship. In this scenario, impostors win
and take over the spaceship.

2. All the machines on the spaceship are fixed, the
central computer is fully operational again and capa-
ble of recognising who the impostors are. The im-
postors are then expelled from the spaceship by the
central computer, and the crewmates win the game.

3. All impostors are unmasked by the crewmates
and expelled from the spaceship before all the ma-
chines are fixed. This scenario is the rarest and occurs
because the crewmates have exposed each impostor
before completing all of their tasks. Once again, this
results in a win for the crewmates.

4.2 How Symbolic Agents Play Among
Us

In this section, we report how BDI agents can be used
to tackle the Among Us game. Note that we focus
only on the most relevant aspects; the complete im-
plementation of the agents can be found in the sup-
plementary material.

We start with the BDI agents. However, instead
of reporting the AgentSpeak(L) plans, in order to im-
prove readability, we report the agents’ behaviour via
UML sequence diagrams.

The first kind of agent we consider is the crew-
mate one. As we can see, the task of the crewmate
is quite straightforward. The agent checks whether
there are any tasks to be completed in the room where
it is in and, upon receiving such perception from the
environment, the agent reacts consequently. Specifi-
cally, if there are indeed tasks to complete, the agent
will complete them (this can be achieved by perform-
ing the actual task exploiting a specific environment
action); otherwise, in case no more tasks are available
in the room, the agent simply moves to another room.

A more challenging agent is the impostor one,
which has a less straightforward behaviour than its
crewmate counterpart.

Killer impostors aim to kill crewmates. That is,
this agent looks into the room and if a crewmate is de-
tected, the impostor agent kills them. Note that this is

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

52

Figure 2: UML Sequence Diagram representing the main routine of the methodical impostor.

done without checking whether there are other crew-
mates in the room who may witness the murder.

Standard impostors change their action depending
on the presence of crewmates in the room. Decide,
with a fixed probability, whether to kill a crewmate or
not, in the presence of possible witnesses. Methodi-
cal impostors instead have a more complex behaviour,
shown in Figure 2; in fact, they take into consideration
the presence of crewmates in the room. However, dif-
ferently from before, such agents distinguish between
seeing only one or multiple crewmates. In the for-
mer case, the agent safely kills the solitary crewmate,
while in the latter case, the agent decides with a fixed
probability whether to kill one of the crewmates in the
room or not.

It is worth noting that these behaviours have been
implemented as BDI plans and represent only a subset
of the agents’ behaviour.

4.3 How Sub-Symbolic Agents Play
Among Us

Differently from their symbolic counterpart, sub-
symbolic agents do not have plans, but can learn
their own policies. To do so, they need to experiment
with the environment to get back feedback on which
actions to perform in which scenarios. A Java
Environment class has been implemented in Jason
to compute rewards and next states, in a way that
is coherent with the Among Us rules of the game.
The interaction between the Environment and the
RL agents implemented in Jason has been described
in Section 3: during their exploration stage, the RL
agents execute actions on the Environment, and the
Environment produces new st(S,Reward) percepts
that enter the agent’s belief base and trigger either
LA Plan 2 or LA Plan 3. A teacher agent may
be used, with an initial goal that may look like (as
an example for teaching the impostor RL agent)
!teach([s(f ound2orMore,kill,0),s(f ound1,kill,2)])
suggesting that when two or more agents are in the

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

53

same room as the impostor, killing is a bad choice,
as some crewmate might identify the impostor and
report it. Killing should instead be done when only
one crewmate is in the room.

5 EXPERIMENTAL RESULTS
AND DISCUSSION

In this section, we report the experiments we carried
out on the Among Us case study. First, we show
the results obtained by employing BDI agents, then,
by employing RL agents, and finally, by combining
the two. For space constraints, we focus exclusively
on the impostor agents, the reason lies in their be-
ing more challenging and complex than their crew-
mate counterpart. We also focus on the analysis of
homogeneous/heterogeneous teams, as we are inter-
ested in checking if there are advantages of mixing
BDI and RL agents. The safe learning mechanism
is not considered here: we run experiments to make
sure that learner agents always learn policies coherent
with what the teacher teaches them, and this happens.
In this section, we let RL agents learn by experience
only, without any external hint.

5.1 BDI Experiments

The experiments reported in this section aim at un-
derstanding which impostor strategy and which crew-
mate skill level would make the game as balanced
(and hence as significant) as possible.

This section outlines our empirical approach to
identifying optimal impostor strategies to maximise
win ratios. To facilitate frequent impostor gameplay
and precise performance tracking, we intentionally re-
duced the skill level of crewmates, specifically their
task completion probability.

The first strategy analysed is the “killer impos-
tor”, who prioritises eliminating crewmates over other
strategies like deception. Figure 3 shows that killer
impostors achieve a high win ratio with their direct
approach. In games in which the crewmates win, the
survivor count is notably low, demonstrating the ef-
fectiveness of the killer impostor in reducing the num-
ber of crewmates. In contrast, impostor victories of-
ten see a high survival rate, with nearly 60% of wins
occurring without impostor losses. However, their in-
discriminate killings sometimes lead to early expul-
sion from the game.

Our second experiment (Figure 4) examines “stan-
dard impostors”, who balance killing crewmates with
faking task completion. These impostors achieve a
lower win ratio, likely due to suboptimal decision

making in choosing between deception and elimina-
tion. Standard impostors also leave fewer tasks in-
complete compared to killer impostors, indicating a
potential inefficiency in prioritising deception when a
kill would not compromise their cover.

To address this inefficiency, we introduce the “me-
thodical impostor”, which combines the speed of
killer impostors with the strategic discretion of stan-
dard impostors. Considering the number of crew-
mates present, methodical impostors optimise their
actions, leading to a surprisingly higher win ratio
(Figure 5).

Furthermore, the methodical impostor’s use of de-
ception results in more surviving crewmates in games
won by their team. Although this may extend the
game’s duration, it contributes to a more balanced
and strategic game-play experience. In light of these
findings, we select the methodical impostor as the
optimal strategy. Subsequently, we adjust the skill
level of the crewmates to ensure balanced game play.
Through multiple experiments, we determine that a
crewmate skill level of approximately 0.52 yields a
win rate close to 50% for the crewmates, as shown
in Figure 7. Methodical impostors and crewmates
with 0.52 skill level play in a balanced way and will
be used in the RL-BDI experiments.

5.2 RL-BDI Experiments

In the following experiments, crewmates are always
implemented as BDI agents crewmates with skill level
0.52. What changes is the configuration of teams of
impostors.

Team Comprising RL Impostors Agents Only.
When RL agents act as the sole impostors, their per-
formance is poor, and RL-only teams lose almost all
games, as shown in Figure 8 (RL-only impostor teams
win ratio: 17.5%). Analysis reveals a key behaviour:
RL impostors avoid eliminations in the presence of
multiple crewmates, prioritising their own survival
over the team’s success. This self-serving, reactive
nature undermines the collaborative and strategic re-
quirements of Among Us, where teamwork and long-
term planning are crucial to victory. Given these limi-
tations, we investigate hybrid team compositions that
combine RL impostors with methodical BDI impos-
tors to assess whether RL behaviour can contribute
positively in a mixed-strategy context.

Half of the Team Comprising RL Impostor Agents.
Replacing 2 RL impostors with 2 methodical BDI
impostors significantly improves the win ratio (Fig-
ure 9: 2RL impostors + 2 methodical BDI impos-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

54

Figure 3: Win ratio of killer impostors versus poorly
skilled crewmates in BDI-only setting.

Figure 4: Win ratio of standard impostors versus poorly
skilled crewmates in BDI-only setting.

Figure 5: Win ratio of methodical impostors versus
poorly skilled crewmates in BDI-only setting.

Figure 6: Win ratio of methodical impostors versus crew-
mates with skill level 0.52 in BDI-only setting.

Figure 7: Win rate of crewmates against methodical impostors as a function of crewmate’s skill level in BDI-only setting.
Outcome: crewmates skill level of 0.52 makes games balanced and will be used in RL-BDI experiments.

tors team win ratio reaches 44.4% that is better than
the 17.5% win ratio of RL-only impostors team, but
still lower than 52% win ration for BDI-only impostor
team). This indicates that the methodical BDI impos-
tors can positively influence the “selfish” RL impos-
tors, whose performance initially appeared unsuitable
for the game’s collaborative context.

Analysis of game outcomes revealed key differ-
ences in the dynamics of the early game.

RL Impostor Teams: Pure RL impostor teams
rarely achieve victory, as early crewmate eliminations
are rare. Crewmates often cluster in initial rooms due
to random assignments, and RL impostors prioritise
faking tasks in the presence of others, delaying kills.

Mixed RL and BDI Impostor Teams: Introduc-
ing two BDI impostors significantly changes early-
game strategy. BDI agents disrupt crewmate cluster-
ing, prompting RL impostors to initiate kills earlier,
resulting in a more effective team dynamic.

These conclusions are based on the average evolu-
tion of the game observed in terms of tasks completed,
crewmate survival, and overall performance (Figure
11).

A Quarter of the Team Comprising RL Impostor
Agents. Although the 50-50 hybrid team outper-
forms the pure RL team, the pure BDI team shown in
Figure 6 remains superior, with 52% win ratio against
the 44.4% shown in Figure 9. To explore whether
a different configuration could exceed the pure BDI
team’s performance, we tested a team with three BDI
impostors and one RL impostor, building on the im-
provement seen from the 4 RL to the 2 RL + 2 BDI
configuration.

As shown in Figure 10, this set-up achieves 55%
win ratio, that is a better result than the one achieved
by the pure BDI team. Further analysis attributes this
improvement to: (i) The presence of three BDI im-

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

55

Figure 8: Win ratio when the impostor team consists solely
of RL impostors and BDI crewmates have skill level 0.52.

Figure 9: Win ratio when the impostor team consists of 2
RL and 2 BDI methodical impostors and BDI crewmates
have skill level 0.52.

Figure 10: Win ratio when the impostor team consists of 1 RL impostor and 3 BDI methodical impostors and BDI crew-
mates have skill level 0.52.

Figure 11: Initial evolution of the game in the two different scenarios.

Figure 12: Win ratio w.r.t. number of RL impostors.

postors accelerates the elimination of crewmates early
in the game, prompting the RL impostor to begin
eliminating crewmates earlier. (ii) The behaviour of
the RL impostor, theoretically making it impossible
to be caught, as it only kills when unobserved. This
grants the impostor team resilience to expulsions, as

the RL impostor acts as an “immortal player”. Al-
though this experiment yielded positive results, pre-
vious experiments provided valuable insights leading
to this conclusion. Figure 12 summarises the perfor-
mance of each team configuration, with the red line
denoting the performance of the pure BDI team.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

56

Table 1: General information on recent proposals for integrating BDI and RL agents.

Ref. Year Language RL Algorithm Implementation of RL
(Badica et al., 2015) 2015 Jason 1.4.2 TDL Jason Plan
(Badica et al., 2017) 2017 Jason 1.4.2 SARSA Jason Plan
(Wan et al., 2018) 2018 Jason SARSA Jason Plan

(Bosello and Ricci, 2019) 2019 JaCaMo 0.7 SARSA Jason Action
(Pulawski et al., 2021) 2021 Jason-RL Iterative SARSA As in (Bosello and Ricci, 2019)

(Persiani and Hellström, 2022) 2022 Python DeepRL predict. DeepRL in Keras
(Ichida and Meneguzzi, 2023) 2023 Python AS Q-Learning FA Outside

SafeRLJ 2024 Jason 3.1 SARSA Jason Plan

Table 2: Features, examples, and licensing of recent proposals for integrating BDI and RL agents.

Ref. BDI Integration Safe Hybrid Planning Hybrid MAS Example Code License
(Badica et al., 2015) No No No No Toy No
(Badica et al., 2017) No No No No Toy (Felton, 2017) GPL-3.0
(Wan et al., 2018) No No Yes No Toy No

(Bosello and Ricci, 2019) Yes No No No Compl. (Bosello, 2019) LGPL-3.0
(Pulawski et al., 2021) As in (Bosello and Ricci, 2019) No No No Toy No

(Persiani and Hellström, 2022) No No No No Toy (Persiani, 2022) MIT
(Ichida and Meneguzzi, 2023) Yes No Yes No Compl. No

SafeRLJ No Yes No Yes Compl. (Not given, 2024) MIT

Performance improvement with hybrid teams de-
pends on the ratio of BDI to RL impostors; RL im-
postors are beneficial additions, but their effectiveness
decreases if their number is too high.

6 COMPARISON WITH THE
RELATED WORK

The integration of the BDI model with RL has been
explored in fewer than 20 papers. Despite the lim-
ited number, several of these works have significantly
advanced decision making in various applications. A
recent survey on the topic, specifically Section 3.3,
can be found in (Erduran, 2023). Based on this sur-
vey, we conducted a more systematic comparison of
the RL and BDI works published over the last decade,
summarised in Tables 1 and 2. Unlike Erduran’s anal-
ysis, our review delves into the details of the code,
facilitated by the collaboration of authors of key arti-
cles (Badica et al., 2015; Badica et al., 2017; Bosello
and Ricci, 2019; Persiani and Hellström, 2022; Ichida
and Meneguzzi, 2023), who generously shared struc-
tured and detailed information about their proposals.

The idea of integrating RL and BDI dates back
to the beginning of the millennium. (Norling, 2004)
was one of the first authors to integrate the SARSA
algorithm into BDI agents implemented using JACK
Intelligent Agents, now https://aosgrp.com.au/jack/.
Her goal was to have a rough approximation to the
way humans learn to make decisions in an area in
which they have expertise. (Lokuge and Alahakoon,
2005b; Lokuge and Alahakoon, 2005a) proposed a

hybrid BDI model that integrates RL to improve deci-
sion making in dynamic vessel berthing applications,
while (Airiau et al., 2009) extended BDI agents with
learning capabilities using Binary Decision Trees.
Other works followed (Qi and Bo-ying, 2009; Lee and
Son, 2009; Tan et al., 2011), but it is only from the re-
search in (Badica et al., 2015) that we find approaches
similar to ours, from which we could take inspiration.

Table 1 and Table 2 show the language in which
the BDI framework is implemented (column Lang.),
the RL algorithm implemented (RL) and where it is
implemented (column Impl. of RL, stating whether
the algorithm is implemented via a standard plan
or action in the BDI framework or outside the BDI
framework). The column BDI int. states whether the
standard cycle implemented by the BDI interpreter
was changed to accommodate RL, while the col-
umn Safe stores information about the support given
to safe RL, as described by (Garcı́a and Fernández,
2015). Hy. Plans is yes if hybrid plans are exploited
in the proposal, where by hybrid plans we mean the
coexistence of standard BDI plans and plans aimed at
implementing the RL mechanism in the same agent’s
code; Hy. MAS refers to the implementation of
MAS in which pure BDI agents interact with pure RL
agents. The column Example provides a qualitative
evaluation of the complexity of the examples devel-
oped using the proposed approach. In most cases, the
‘toy example’ answer was given by the authors them-
selves. Finally, Code and Lic. report on the online
availability of code and on its licence, respectively.

The unique features of SafeRLJ are the safety sup-
port and the experiments with pure BDI and pure RL
agents that work together to achieve a common goal.

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

57

No previous proposal addressed these aspects. Apart
from this, the works closer to SafeRLJ are (Badica
et al., 2017; Wan et al., 2018) because they implement
SARSA inside standard Jason plans, and in a way that
is very similar to ours. However, the examples devel-
oped are very simple. Indeed, the dimension of the
state-action matrix for the ‘Among Us’ case study is
243 cells for crewmates and 90 cells for impostors. It
involves only the four actions of moving up, down,
left, right in simple grid worlds with dimensions 4x3,
6x5 and 4x4 in (Badica et al., 2015), (Badica et al.,
2017) and (Wan et al., 2018) respectively.

Concerning the scenario complexity, (Bosello and
Ricci, 2019) run exhaustive experiments including
a Grid world, the CartPole, MountainCar, and Car
Intersection with 1080 floats state (reduced then to
20 trough averaging in preprocessing) and 3 ac-
tions. (Ichida and Meneguzzi, 2023) developed their
MAS using Python-AgentSpeak (https://github.com/
niklasf/python-agentspeak), and run experiments in
a chatbot for a travel planning scenario, where the
embedding of the action space has 276 dimensions
and the embedding of the state / belief base has 100
dimensions. However, the RL algorithm is imple-
mented outside the pure Jason agent, and both ap-
proaches modify the standard BDI interpreter, making
the comparison difficult.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a study conducted on the
integration of symbolic and sub-symbolic agents at
two different levels, single- and multi-agent. We fo-
cused on BDI agents as symbolic representatives and
RL agents as sub-symbolic counterparts. We intro-
duced a straightforward, but still effective, approach
to make sub-symbolic decisions safe, according to
the ‘Safe RL’ paradigm based on external knowledge
taught by a teacher. A complex video game scenario
inspired by the well-known ‘Among Us’ game served
as testbench for experimenting the effectiveness of
homogeneous teams consisting of BDI or RL agents
only, w.r.t. heterogeneous teams, where BDI and RL
agents play together. Our results demonstrate the ben-
efits of combining the two types of agents, compared
to utilising singular techniques in isolation. The com-
parison with related work shows that the previous ap-
proach did not take safety and the possibility of mix-
ing BDI and RL agents in the same application into
account. Future directions include exploring safe RL
and connecting it with the models of trust widely stud-
ied in the MAS community. In fact, the learner agent

might decide in a dynamic way whether to follow
the teacher’s advice or not, based on the trust on the
teacher. Since the SARSA algorithm is easy to under-
stand and implement, but it comes with many limita-
tions, we plan to take inspiration from the related lit-
erature and integrate more efficient learning methods
in SafeRLJ, while ensuring the possibility of exploit-
ing symbolic knowledge in the learning process.

REFERENCES

Airiau, S., Padgham, L., Sardiña, S., and Sen, S. (2009).
Enhancing the adaptation of BDI agents using learn-
ing techniques. Int. J. Agent Technol. Syst., 1(2):1–18.

Badica, A., Badica, C., Ivanovic, M., and Mitrovic, D.
(2015). An approach of temporal difference learning
using agent-oriented programming. In 20th Interna-
tional Conference on Control Systems and Computer
Science, CSCS 2015, Bucharest, Romania, May 27-
29, 2015, pages 735–742. IEEE.

Badica, C., Becheru, A., and Felton, S. (2017). Integration
of jason reinforcement learning agents into an inter-
active application. In Jebelean, T., Negru, V., Petcu,
D., Zaharie, D., Ida, T., and Watt, S. M., editors, 19th
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2017,
Timisoara, Romania, September 21-24, 2017, pages
361–368. IEEE Computer Society.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. J. (2007).
Programming multi-agent systems in AgentSpeak us-
ing Jason. J. Wiley.

Bosello, M. (2019). Companion code of Bosello et al. 2019.
Accessed on December 31, 2024.

Bosello, M. and Ricci, A. (2019). From programming
agents to educating agents - A jason-based frame-
work for integrating learning in the development of
cognitive agents. In Dennis, L. A., Bordini, R. H.,
and Lespérance, Y., editors, Engineering Multi-Agent
Systems - 7th International Workshop, EMAS 2019,
Montreal, QC, Canada, May 13-14, 2019, Revised
Selected Papers, volume 12058 of Lecture Notes in
Computer Science, pages 175–194. Springer.

Bratman, M. (1987). Intention, Plans, and Practical Rea-
son. Cambridge, MA: Harvard University Press, Cam-
bridge.

Calegari, R., Ciatto, G., Mascardi, V., and Omicini, A.
(2021). Logic-based technologies for multi-agent sys-
tems: a systematic literature review. Auton. Agents
Multi Agent Syst., 35(1):1.

Calegari, R., Ciatto, G., and Omicini, A. (2020). On the
integration of symbolic and sub-symbolic techniques
for XAI: A survey. Intelligenza Artificiale, 14(1):7–
32.

Ciatto, G., Sabbatini, F., Agiollo, A., Magnini, M., and
Omicini, A. (2024). Symbolic knowledge extraction
and injection with sub-symbolic predictors: A system-
atic literature review. ACM Comput. Surv., 56(6).

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

58

de Silva, L., Meneguzzi, F., and Logan, B. (2020). BDI
agent architectures: A survey. In Bessiere, C., editor,
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,
pages 4914–4921. ijcai.org.

Erduran, Ö. I. (2023). Machine learning for cognitive BDI
agents: A compact survey. In Rocha, A. P., Steels,
L., and van den Herik, H. J., editors, Proceedings
of the 15th International Conference on Agents and
Artificial Intelligence, ICAART 2023, Volume 1, Lis-
bon, Portugal, February 22-24, 2023, pages 257–268.
SCITEPRESS.

Felton, S. (2017). Companion code of Badica et al. 2017.
Accessed on December 31, 2024.

Finin, T. W., Fritzson, R., McKay, D. P., and McEntire,
R. (1994). KQML as an agent communication lan-
guage. In Proceedings of the Third International Con-
ference on Information and Knowledge Management
(CIKM’94), Gaithersburg, Maryland, USA, November
29 - December 2, 1994, pages 456–463. ACM.

Garcı́a, J. and Fernández, F. (2015). A comprehensive sur-
vey on safe reinforcement learning. J. Mach. Learn.
Res., 16:1437–1480.

Ichida, A. Y. and Meneguzzi, F. (2023). Modeling a con-
versational agent using BDI framework. In Hong, J.,
Lanperne, M., Park, J. W., Cerný, T., and Shahriar, H.,
editors, Proceedings of the 38th ACM/SIGAPP Sym-
posium on Applied Computing, SAC 2023, Tallinn, Es-
tonia, March 27-31, 2023, pages 856–863. ACM.

Ilkou, E. and Koutraki, M. (2020). Symbolic vs sub-
symbolic AI methods: Friends or enemies? In Con-
rad, S. and Tiddi, I., editors, Proceedings of the CIKM
2020 Workshops co-located with 29th ACM Inter-
national Conference on Information and Knowledge
Management (CIKM 2020), Galway, Ireland, October
19-23, 2020, volume 2699 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

InnerSloth LLC (2018). Among us. https://www.innersloth.
com/gameAmongUs. Video game.

Lee, S. and Son, Y.-J. (2009). Dynamic learning in hu-
man decision behavior for evacuation scenarios un-
der bdi framework. In Proceedings of the 2009 IN-
FORMS Simulation Society Research Workshop. IN-
FORMS Simulation Society: Catonsville, MD, pages
96–100.

Lokuge, P. and Alahakoon, D. (2005a). Handling multi-
ple events in hybrid BDI agents with reinforcement
learning: A container application. In Chen, C., Filipe,
J., Seruca, I., and Cordeiro, J., editors, ICEIS 2005,
Proceedings of the Seventh International Conference
on Enterprise Information Systems, Miami, USA, May
25-28, 2005, pages 83–90.

Lokuge, P. and Alahakoon, D. (2005b). Reinforcement
learning in neuro BDI agents for achieving agent’s in-
tentions in vessel berthing applications. In 19th In-
ternational Conference on Advanced Information Net-
working and Applications (AINA 2005), 28-30 March
2005, Taipei, Taiwan, pages 681–686. IEEE Com-
puter Society.

Norling, E. (2004). Folk psychology for human modelling:
Extending the BDI paradigm. In 3rd International

Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2004), 19-23 August 2004, New
York, NY, USA, pages 202–209. IEEE Computer Soci-
ety.

Not given (2024). Companion code of this paper, 2024.
The code has been uploaded as supplemental material
of this submission.

Persiani, M. (2022). Companion code of Persiani et al.
2022. Accessed on December 31, 2024.

Persiani, M. and Hellström, T. (2022). The mirror agent
model: A bayesian architecture for interpretable agent
behavior. In Calvaresi, D., Najjar, A., Winikoff, M.,
and Främling, K., editors, Explainable and Transpar-
ent AI and Multi-Agent Systems - 4th International
Workshop, EXTRAAMAS 2022, Virtual Event, May 9-
10, 2022, Revised Selected Papers, volume 13283 of
Lecture Notes in Computer Science, pages 111–123.
Springer.

Pulawski, S., Dam, H. K., and Ghose, A. (2021). Bdi-dojo:
developing robust BDI agents in evolving adversar-
ial environments. In El-Araby, E., Kalogeraki, V.,
Pianini, D., Lassabe, F., Porter, B., Ghahremani, S.,
Nunes, I., Bakhouya, M., and Tomforde, S., editors,
IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems, ACSOS 2021,
Companion Volume, Washington, DC, USA, Septem-
ber 27 - Oct. 1, 2021, pages 257–262. IEEE.

Qi, G. and Bo-ying, W. (2009). Study and application of
reinforcement learning in cooperative strategy of the
robot soccer based on bdi model. International Jour-
nal of Advanced Robotic Systems, 6(2):15.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in
a logical computable language. In 7th European Work-
shop on Modelling Autonomous Agents in a Multi-
Agent World, Eindhoven, The Netherlands, January
22-25, 1996, volume 1038 of Lecture Notes in Com-
puter Science, pages 42–55. Springer.

Rao, A. S. and Georgeff, M. P. (1995). BDI agents: From
theory to practice. In Lesser, V. R. and Gasser, L.,
editors, Proceedings of the First International Con-
ference on Multiagent Systems, June 12-14, 1995, San
Francisco, California, USA, pages 312–319. The MIT
Press.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learn-
ing - an introduction. Adaptive computation and ma-
chine learning. MIT Press.

Tan, A., Ong, Y., and Tapanuj, A. (2011). A hybrid agent ar-
chitecture integrating desire, intention and reinforce-
ment learning. Expert Syst. Appl., 38(7):8477–8487.

Wan, Q., Liu, W., Xu, L., and Guo, J. (2018). Extending
the BDI model with q-learning in uncertain environ-
ment. In Proceedings of the 2018 International Con-
ference on Algorithms, Computing and Artificial Intel-
ligence, ACAI 2018, Sanya, China, December 21-23,
2018, pages 33:1–33:6. ACM.

Wooldridge, M. J. (2009). An Introduction to MultiAgent
Systems, Second Edition. Wiley.

Together Is Better! Integrating BDI and RL Agents for Safe Learning and Effective Collaboration

59

