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Abstract: Multi-camera systems are being used more and more frequently, from autonomous mobile robots to intelligent
visual servoing cells. Determining the pose of the cameras to each other very accurately is essential for many
applications. However, choosing the most suitable calibration object geometry and utilizing it as effectively
as possible still remains challenging. Disadvantageous geometries provide only subpar datasets, increasing
the need for a larger dataset and decreasing the accuracy of the calibration results. Moreover, an unrefined
calibration method can lead to worse accuracies even with a good dataset. Here, we introduce a probabilistic
method to increase the accuracy of 3D camera calibration. Furthermore, we analyze the effects of the calibra-
tion object geometry on the data properties and the resulting calibration accuracy for the geometries cube and
icosahedron. The source code for this project is available at GitHub (Nova, 2024).

1 INTRODUCTION

Reconciling the two divergent goals of flexibility and
accuracy is becoming an increasingly important task.
As product variety and complexity increase, so do
the demands on automation. To satisfy these re-
quirements, a growing number of sensors are applied.
These sensors must be integrated accurately and ro-
bustly into a coherent system in order to realize their
full potential. That is why the calibration process is
crucial. All subsequent steps rely on its performance.

Optical sensors are one of the most widely used
sensor types for guiding flexible automation hardware
such as industrial 6-axis robot arms. For the calibra-
tion of these camera systems, often 2D calibration
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objects are utilized (Li et al., 2013) (D’Emilia and
Di Gasbarro, 2017), (Lv et al., 2015). However 2D
calibration objects only work when all cameras see
the same calibration pattern. If the angles between the
camera axes become too large and the field of views
of the cameras do not overlap, then 3D calibration ob-
jects must be used. They allow the calibration of cam-
eras without overlapping fields of views.

Various 3D geometries are available for the cal-
ibration objects, such as cubes (Tabb and Medeiros,
2019), (Rameau et al., 2022), (An et al., 2018), pyra-
mids (Abedi et al., 2018), or icosahedrons (Ha et al.,
2017). Usually, these objects consist of flat faces,
here called boards, which are arranged into a rigid 3D
structure. Distinct fiducial markers are placed on each
board to enable individual identification. The size and
number of these boards, and their relative pose to each
other determine the quality of the images that can be
captured by a multi-camera system for a given set of
calibration object poses. Too few boards at the cali-
bration object result in fewer detected boards by the
cameras. If the angle between the camera axis and the
board surface normal vector becomes too large, then
the detection accuracy of the boards also suffers. And
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if too many boards are added to a calibration object,
then the available surface area per board becomes too
small to contain enough feature points, which hurts
the detection accuracy as well. So finding the right
balance between number of boards, board size and
shape, and relative board arrangement is crucial. This
is where our first contribution comes in. We provide
a quantitative comparison of the 3D board geometries
cube and icosahedron.

Another aspect that we address concerns the cal-
ibration process itself (Figure 1; Step 5). The set of
boards representing the full calibration object and the
set of cameras that have to be calibrated together pro-
vide a combinatorial set of possible equations that
describe their relations to each other, as indicated
in Figure 2. These equations contain homogeneous
transformations between camera-to-board, the cam-
eras themselves, and the boards themselves. The
accuracy of the camera-to-board transformations de-
pends on the detection accuracy and the intrinsic
and extrinsic camera parameters. For determining
camera-to-camera transformations, hand-eye calibra-
tion is used, with its accuracy depending on the num-
ber and variety of the calibration object poses. Con-
sequently, some equations yield less accurate trans-
formations, while others produce better ones. The
quality of these equations ultimately affects the cal-
ibration results. This is where our second contribu-
tion comes in. We provide an approach for selecting
a favorable subset of all possible transformation com-
binations that improve the accuracy of the subsequent
calibration algorithm.

Several critical factors that can influence the accu-
racy of hand-eye calibration have already been iden-
tified by Tsai and Lenz (Tsai and Lenz, 1989). They
referred to each robot pose as a "station." According
to their observations, accuracy is affected by the inter-
station rotation angle, the angle between different in-
terstation rotation axes, the distance between the cam-
era and the calibration board, the number of stations,
and the rotation and translation errors at each station.
They recommended using a larger number of stations
with significant variations in rotation angles to im-
prove accuracy. Additionally, they proposed a five-
station configuration to ensure that the stations are
uniformly distributed around the image frame. They
also demonstrated that the distance between the cam-
era and the calibration board, as well as the rotation
and translation errors at each station, have a linear ef-
fect on accuracy.

To estimate rotation and translation vectors, the
OpenCV (Bradski, 2000) ArUco pose estimation al-
gorithm is commonly used. (Oščádal et al., 2020) in-
troduced a benchmark to assess the accuracy of pose

estimations. During their experiments, they found
that estimating the Z-axis of the board, which looks
perpendicularly away from the board surface, was
particularly error-prone, as small changes in the po-
sition of the board could cause significant shifts in the
Z-axis (Yaw). Additionally, they noted that the accu-
racy of roll estimation depends on the view angle of
the camera.

We take these findings about the connection be-
tween view setup and the resulting calibration accu-
racy into consideration in order to improve our data
quality. But our approach goes further by improv-
ing the calibration accuracy for a given dataset. Even
if not all parts of the dataset are desirable, our ap-
proach can still extract beneficial information from
it. This is achieved, among other things, by the
fact that our probabilistic method goes beyond sim-
ple pose rules. We call our method PrIcosa, because
of its Probabilistic nature and the utilization of the
Icosahedron shape.

2 METHODOLOGY

In this section, the complete pipeline (Figure 1) of
our multi-camera calibration framework PrIcosa is
described. It is a six-step process, starting with the in-
trinsic calibration and ending with bundle adjustment
for fine tuning.

2.1 Board Detection & Intrinsic
Calibration

The goal of intrinsic parameter calibration is to es-
tablish a correspondence between 3D points in the
real world and their corresponding 2D image projec-
tions. To initiate this calibration, we collect pairs of
correspondences between 3D points on the ChArUco
board pattern and their corresponding 2D image coor-
dinates from multiple images that contain these pat-
terns. These correspondences serve as the foundation
for initializing the intrinsic parameters of the camera,
represented by "K", as well as the distortion coeffi-
cient, represented by "dist". For perspective cameras,
we adopt the widely recognized calibration technique
outlined by Zhang (Zhang, 2000).

The procedure starts by selecting all available im-
ages to compute an initial estimation of the intrin-
sic parameters and distortion coefficients. However,
for certain views that exhibit significant errors due to
various factors, we introduced a filtering mechanism.
Views that display notable errors are systematically
excluded from further analysis, leaving behind a sub-
set of views that are deemed more reliable. This re-
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Figure 1: The complete pipeline of PrIcosa consists of 6 steps. Step 1: Each board is uniquely identified by its distinct
ChArUco markers, and intrinsic parameters are calculated after detection. Step 2: Camera-to-board projection is calculated
using intrinsic parameters and views with large re-projection error are rejected. Step 3: Transformation from master board
to slave boards are calculated. Step 4: Initial guess of master camera to slave camera Cs T

′

Cm
is calculated for all possible

equations. Step 5: Probabilistic method is applied to select the best initial guess of Cs T
′

Cm
. Step 6: Refinement of initial guess

and calculation of final estimation is performed using bundle adjustment.

fined set of views is then utilized to recalculate the
intrinsic parameters and distortion coefficients. This
process of refinement is performed iteratively, with
the recalculated parameters being obtained from the
filtered subset of images. The iterations continue un-
til the level of error reaches a predefined threshold of
improvement, essentially ensuring that the calibration
process converges to a stable solution.

2.2 Board Pose Estimation and Outlier
Rejection

Board pose estimation is the most crucial phase in
the multi-camera calibration process where the spatial
orientation and position of each camera in relation to
a calibrated reference board are determined. In this
step, we estimate the relative pose of all the cameras
for each observed board using the intrinsic parameters
that were calculated in the previous step. For esti-
mating the pose, we use the OpenCV implementation
of solvePnP iterative algorithm. In real-world scenar-
ios, noise and various factors can introduce errors in
the calibration process. To ensure the robustness and
reliability of the calibration results, we filter out the
poses that exhibit re-projection error beyond a certain

threshold of acceptance. These outlier poses are ex-
cluded from subsequent calibration steps.

2.3 Board Parameter Calculation

Our objective is to determine the relative poses be-
tween calibration boards to ultimately assemble them
into 3D objects. These 3D objects are composed of
multiple planar calibration boards. When a single im-
age captures two or more of these boards, it provides
an opportunity to estimate their relative poses, estab-
lishing pair-wise relationships. We collect measure-
ments from all images where pairs of boards are vis-
ible together and compute the average inter-board ro-
tation and translation. For this step, we followed the
procedure discussed in (Rameau et al., 2022).

2.4 Extrinsic Camera Parameter
Calculation

2.4.1 For Overlapping Cameras

When two cameras share an overlapping field of view
such that they see the same calibration pattern, then
the process of determining the transformation be-
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Figure 2: The physical setup of the calibration system, shown in a) with only two of the six cameras, can be represented
by connection graphs, which can be seen in b) and correspond to 6DoF rigid transformations. Most of the time, there are
multiple paths to create a closed chain of transformations between two cameras. The selection of this chain, or connection
graph, affects the quality of the camera calibration significantly. In c) every dot represents a camera position after choosing
one of the possible transformation chains. One probability density cluster for each of the six cameras is included in the
diagram. For each camera the transformation chain corresponding to the point in the cluster center is chosen to get the best
calibration results.

tween them becomes more straightforward. In this
particular phase, we have gathered all pairs of cam-
eras that possess a common field of view, and subse-
quently, we have employed the OpenCV stereoCali-
brate method to compute their spatial relationship.

2.4.2 For Non-Overlapping Cameras

When cameras do not have overlapping fields of view,
meaning they are not capturing the same scene si-
multaneously, then more sophisticated approaches are
necessary. In such cases, traditional calibration meth-
ods that rely on shared scene points between cam-
eras are not directly applicable. To address this chal-
lenge, we employ a hand-eye calibration approach.
We designate one camera as the master (reference)
camera and the others as slave cameras. The calibra-
tion boards viewed by the master camera are termed
master boards, while those captured by slave cam-
eras are called slave boards. In Figure 2, we illustrate
a situation where the camera C1 captures boards B1
and B2, and another camera C2 captures the boards
B3, B4, and B5. In this setup, C1 serves as the mas-
ter camera with B1 and B2 as master boards, while
C2 is a slave camera with B3, B4, and B5 as its slave
boards. Each calibration group follows the sequence:
slave_camera → slave_board → master_board →

master_camera. This configuration can be mathemat-
ically modeled using the equation AX = ZB, which
can be effectively solved using the hand-eye calibra-
tion method proposed by Tsai et al. (Tsai and Lenz,
1989).

However, it’s important to note that not all hand-
eye calibration groups have a diverse range of images
needed for accurate calibration. To address this limi-
tation, we have introduced an additional filtering tech-
nique to exclude irrelevant poses from these groups.
Initially, we gather all possible one-to-one pose com-
binations for hand-eye calibration. Then, we analyze
the rotation vectors associated with these poses. If
there is any pose angle that significantly deviates from
the others, the hand-eye calibration algorithm can en-
counter issues related to rotation normalization. To
address this issue, we have introduced a precaution-
ary measure to filter out problematic poses before
initiating the hand-eye calibration algorithm. In this
regard, we have employed the mean-shift clustering
algorithm (Carreira-Perpinán, 2015) to group similar
poses together. If any resulting cluster contains only
one pose element, we automatically discard that clus-
ter. Subsequently, we proceed to compute the hand-
eye calibration for the cameras with the remaining
poses.
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2.4.3 Probabilistic Method for Outlier Rejection

When dealing with multiple planar calibration ob-
jects, a single camera can capture different boards in
various frames, which introduces complexity to the
calibration system.

For the particular situation observed in Figure 2,
we observe six calibration groups and derive the fol-
lowing six equations (1)-(6) to compute the transfor-
mation from the camera C2 to the camera C1 (C1TC2

).
These equations result in six different C1T

′
C2

transfor-
mations. In an ideal setting, all six of these transfor-
mations would align perfectly. However, in practical
scenarios, this is not the case.

B1 TC1
C1T

′
C2

= B1TB3
B3TC2

(1)
B1 TC1

C1T
′

C2
= B1TB4

B4TC2
(2)

B1TC1
C1T

′
C2

= B1TB5
B5TC2

(3)
B2TC1

C1T
′

C2
= B2TB3

B3TC2
(4)

B2TC1
C1T

′
C2

= B2TB4
B4TC2

(5)
B2TC1

C1T
′

C2
= B2TB5

B5TC2
(6)

In the next step, we calculate the probability den-
sity function (PDF) of these six C1T

′
C2

transforma-
tions. Among these possibilities, we select the trans-
formation that exhibits the highest probability as our
initial estimate. For calculating PDF, we use the
Gaussian Kernel Density Estimation method (Węglar-
czyk, 2018). The process is explained in Algorithm
1. It is important to note that this step applies to both
non-overlapping and overlapping scenarios.

2.5 Bundle Adjustment

In this phase, we refine all camera-to-camera and
board-to-board transformations to minimize the over-
all re-projection error using bundle adjustment. For
clarity, we denote the master camera as Cm and slave
cameras as Cs. The sets of master and slave boards
are represented as Bm and Bs, respectively.

We calculate the re-projection error for each of the
observed images. For instance, for pose ’p’ camera
Cs observes board Bs. For the same pose ’p’ master
camera Cm observes board Bm. Then we can calculate
the camera Cs to board Bs transformation as follows:

Bs TCs =
BsTBm

BmTCm
CmTCs (7)

If camera Cs (with intrinsic parameters Ks) detects
N image points (x) on board Bs at pose ’p’ and their
corresponding 3D points are X , the re-projection error
for that pose is:

Algorithm 1: C1 TC2
Calibration.

Input: Camera Intrinsics(2.1), Board Poses(2.2)
Output: C1 TC2

Total_Cameras←C1, C2;
Total_Boards← B1, B2, B3, B4, B5;
Master_Camera←C1;
Master_Boards← B1, B2;
Slave_Boards← B3, B4, B5;
for Bm in Master_Boards do

for Bs in Slave_Boards do
C1 TC2

,Bm TBs
←

cv2.calibrateRobotWorldHandEye(Bm TC1
,

Bs TC2
);

rtmatrix← Collect C1 TC2
;

tvecs← Collect translation vectors from
C1 TC2

;
end

end
density← scipy.stats.gaussian_kde(tvecs);
max_idx← argmax(density);
f inal C1 TC2

← rtmatrix[max_idx];

Rep =

√
1
N

N

∑
i=1

∥∥∥ xi−KsCs TBs
Xi

∥∥∥2
(8)

Similarly, we calculate the re-projection errors for
all the images of all the cameras and take the average
to calculate the overall re-projection error.

Cam-02
Cam-05

Cam-03

Cam-06

Cam-04

Cam-01

1
 m

Figure 3: In our use case we have 6 cameras. The distance
between each consecutive camera is around 1 meter and the
distance between each camera pair baseline to the calibra-
tion object is also around 1 meter.

3 EVALUATION

We evaluate our results using two calibration objects:
an icosahedron and a cube. For both of the objects, we
use the same camera setup and robot gripper move-
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Figure 4: View angle variation for each camera. View angle is calculated from the camera to board projection matrix which
is derived from solvePnP algorithm. Then Euler angles (Roll, Pitch and Yaw) are calculated from that matrix. View angle =
∥Roll2 +Pitch2∥.

ments for image acquisition. In the following subsec-
tions, we compare the outcomes obtained from these
two calibration objects. We compare their differences
in the variation of the views, the coverage in the im-
age planes, and the resulting re-projection errors.

3.1 Experimental Setup

We utilize six 20MP monochrome industrial cam-
eras (DMK 33GX183 33G-Series from ’The Imaging
Source’) with 50 mm focal length. Each camera is
placed approximately 1 m away from the motion cen-
ter of the calibration object. The cameras are arranged
as stereo pairs with a baseline of 1 m. The camera
pairs each look at the calibration object from three
perpendicular directions, as shown in Figure 3.

The icosahedron is composed of equilateral trian-
gles with sides of 17 cm, and the cube has square faces
with sides of 220 cm. Both have the same ArUco
6x6_1000 pattern, where each square size is 13 mm.

To automatically move the calibration object to
different poses, we employ a Staubli TX2-60L robot.
The calibration object was mounted on the robot
gripper, and we used ROS1 Noetic (Open Source
Robotics Foundation, 2007) to control the robot and
MoveIt (Coleman et al., 2014) to plan the motions for
reaching the desired target poses with the calibration
object.

To move the object with the robot hand, we fol-
lowed a very simple motion plan. We moved the ob-

ject around the Z axis of the gripper by an Euler angle
of −280◦ to 280◦. The dataset is available at (Nova
and Kedilioglu, 2024).

We adopted the "multical" (Batchelor, 2024)
GitHub repository as a baseline for our multi-camera
calibration system and implemented necessary mod-
ifications to address the specific challenges of non-
overlapping camera setups.

3.2 View Variation

To achieve robust intrinsic parameter calibration, it
is essential to ensure a wide variety of views for all
the cameras. Optimal performance appears to be ob-
tained when the angle between the image plane and
the pattern plane is around 45° (Zhang, 1999). Re-
garding camera extrinsic parameter calibration, par-
ticularly with the hand-eye calibration method, it is
equally important to gather a large number of views
with significant variation (Tsai and Lenz, 1989).

To calculate the angle between the image plane
and the pattern plane, we utilized the solvePnP algo-
rithm, which provides the transformation between the
camera and the board coordinates. This transforma-
tion results in a homogeneous matrix that we convert
into Euler form. This conversion yields three rota-
tion vectors: Roll, Pitch, and Yaw. Since the rotation
around the Z-axis (Yaw) shows limited variation in
pose, we exclude the yaw angle and instead focus on
the absolute values of the Roll and Pitch angles, which
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Object Cam-1 Cam-2 Cam-3 Cam-4 Cam-5 Cam-6

Cube

Icosahedron
Figure 5: Image plane re-projection error after Bundle adjustment. It shows the average point error on a specific area of the
image plane.

we define as the ’view angle’. For other computer vi-
sion tasks the rotation around the optical axis (= Yaw)
is also not considered relevant (Mavrinac, 2012).

View angle = ∥Roll2 +Pitch2∥ (9)

The comparison between the two calibration ob-
jects concerning view angle variation is illustrated in
(Figure 4). Each bar in the plot represents the number
of views within a specific view angle range. The plot
clearly shows that images captured from the icosa-
hedron object exhibit greater pose variety than those
from the cube object. Additionally, it is noted that
camera-6 did not detect any points for the cube cali-
bration object, despite identical conditions for image
acquisition being maintained for both objects.

3.3 Coverage in Image Plane

Distortion mostly affects near the edges of the im-
age plane, so placing the calibration pattern near these
edges is crucial. Ensuring a wider coverage area al-
lows a more robust estimation of distortion parame-
ters.

Figure 5 shows a heat map of the re-projection er-
ror for all of the points present on the image plane
of each camera. This representation offers us a com-
prehensive insight into the extent of coverage of the
image plane.

The image clearly shows that the icosahedron ob-
ject achieves a larger coverage area with lower re-
projection error compared to the cube object.

3.4 Per View Re-Projection Error

Figure 6 displays the final re-projection error re-
sults. In this experiment, 20 images from each cam-
era were captured using the same robot motion and

camera setup. Each bar in the graph represents the
re-projection error for an individual image. The re-
sults clearly indicate that for all cameras, the overall
re-projection error when using the icosahedron ob-
ject is consistently below 1 pixel. In contrast, the
cube calibration object results in significantly higher
re-projection errors. This demonstrates the superior
accuracy and effectiveness of the icosahedron in cali-
brating the cameras.

3.5 Discussion

Throughout the experiments, we have highlighted the
importance of maintaining large variability in cam-
era poses for good-quality calibration. Figure 4 and
5 illustrate the superior coverage and view variation
achieved using the icosahedron compared to the cube,
and Figure 6 presents the resulting calibration results.

Despite the complexity of our camera setup, the
distinctive shape of the icosahedron enabled us to at-
tain the necessary view variety with minimal robot
motion. While it might be possible to replicate simi-
lar results with a cube, it would require more intricate
robot motions, which would need to be adjusted for
different camera setups. In industrial settings with an
increasing number of cameras, such adjustments be-
come increasingly challenging and time-consuming.
The icosahedron, therefore, offers an elegant and effi-
cient solution, streamlining the calibration process in
complex, multi-camera environments.

Even after meeting all calibration criteria, it is
possible that sometimes the final re-projection error
may still be high. This could occur if the bundle ad-
justment process converges at a local minimum. A
good initial guess can help prevent this issue, and
our probabilistic algorithm assists in selecting opti-
mal initial guesses. During the extrinsic parameter
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Figure 6: Per image re-projection error after bundle adjustment. One image consists of multiple views. Image re-projection
error is the average error of all views.

calibration, we observed that some calibration groups
were highly scattered. This scattering tends to occur
when a group has fewer images, limited variety, or
incorrect pose estimations. When using a calibration
object with a large number of boards, it becomes pos-
sible to create a large number of calibration groups,
which facilitates a more robust initial guess. For in-
stance, with the icosahedron object, we have around
100 groups for each camera pair. While some groups
are outliers, the inlier groups tend to cluster densely
around the center (Figure 2(c)), aiding in the selection
of initial parameters. In contrast, using the cube ob-
ject results in an average of only 4 groups per camera,
making it challenging to estimate a robust solution.

The structural advantage of the icosahedron, com-
bined with the probabilistic approach of our PrIcosa
framework, enables it to identify the optimal calibra-
tion group even from subpar datasets. For instance,
when analyzing the icosahedron datasets from cam-
eras 5 and 6, we observe that these cameras have lim-
ited view variation and image plane coverage (Figure
4 and 5). Despite these shortcomings, our framework
still manages to find the best solution within the poor
dataset (Figure 6).

4 CONCLUSIONS

We have shown that an icosahedron-shaped calibra-
tion object leads to considerably better calibration re-
sults than a cube-shaped calibration object for the
same set of views and calibration object poses. The
icosahedron represents a better balance between the
quantity and size of the boards. It provides signif-
icantly more variety in the dataset and better cover-
age of the image planes with useful patterns. This en-
ables smaller re-projection error values and improves
the calibration accuracy.

To get the most out of the acquired dataset, we
developed and evaluated a probabilistic method that
uses an optimized subset of possible input equations
for the optimization algorithms that are used to cal-
ibrate the cameras. By taking the cluster center of
all possible camera positions generated by the prob-
ability density function, we can minimize the re-
projection error in the calibration process.

Further research could consist of the exploration
of different calibration patterns. The localization of
the features of these patterns should be accurate and
robust. The patterns should also work in the case of
partial overlap. They should have a unique ID such
that each board can be identified in the images. Their
geometry should be able to handle sharp angles and
still be accurate enough. This would allow to increase

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

808



the pose variety in the dataset.
Another aspect that deserves further investigation

is the selection of the reference camera. Our cur-
rent implementation is time-consuming, mainly in the
bundle adjustment phase. This process involves se-
lecting each camera as the reference camera in turn
and performing the bundle adjustment repeatedly, re-
sulting in increased time requirements as the number
of cameras grows. A potential modification to address
this issue involves dynamically selecting the best ref-
erence camera by analyzing the observed views of
each camera. Our evaluation in the previous sec-
tion demonstrated that cameras with a substantial de-
gree of pose variability yield better results. There-
fore, automatically determining the reference camera
based on observed view characteristics could opti-
mize the calibration process, especially in scenarios
with a large number of cameras.
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