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Abstract: This paper proposes a method for spatio-temporal action detection (STAD) that directly generates action tubes
from the original video without relying on post-processing steps such as IoU-based linking and clip splitting.
Our approach applies query-based detection (DETR) to each frame and matches DETR queries to link the
same person across frames. We introduce the Query Matching Module (QMM), which uses metric learning
to bring queries for the same person closer together across frames compared to queries for different peo-
ple. Action classes are predicted using the sequence of queries obtained from QMM matching, allowing for
variable-length inputs from videos longer than a single clip. Experimental results on JHMDB, UCF101-24 and
AVA datasets demonstrate that our method performs well for large position changes of people while offering
superior computational efficiency and lower resource requirements.

1 INTRODUCTION

In recent years, the importance of not only image
recognition, but also video recognition, especially the
recognition of human actions, has been increasing in
various practical applications. Among the tasks that
recognize human actions in videos, spatial-temporal
action detection (or STAD) (Chen et al., 2023; Sun
et al., 2018; Wu et al., 2019; Chen et al., 2021; Li
et al., 2020; Zhao et al., 2022; Gritsenko et al., 2023),
which detects the class, location, and interval of ac-
tions occurring in the video, is important in practical
applications (Ahmed et al., 2020).

The goal of STAD is to create action tubes (or sim-
ply tubes) (Gkioxari and Malik, 2015). A tube is a se-
quence of bounding boxes of the same action class for
the same person across the frame of the video. Here, a
bounding box (or bbox) indicates the rectangle enclos-
ing the actor in the frame, and a tubelet links bound-
ing boxes of the same action class for the same person
within a video clip, a short segment of the original
video consisting of several (8 or 16) frames, due to
the manageability for video recognition models. A
tube, on the other hand, links these boxes through-
out the video. Thus, a tube provides spatio-temporal
information for understanding the action’s temporal
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progression over the frames and its spatial location
within the frames.

Although the length of the clips and the architec-
ture of the models varies, most prior works (Köpüklü
et al., 2021; Chen et al., 2021; Kalogeiton et al.,
2017; Zhao et al., 2022; Gritsenko et al., 2023) create
tubes through the following post-processing (see Fig-
ure 1a). First, the original video is divided into mul-
tiple clips. Next, the model outputs a bounding box
(bbox) or tubelet from the clip input. The model out-
puts are then linked using a linking algorithm (Singh
et al., 2017; Li et al., 2020) based on Intersection-
over-Union (IoU) to create tubes.

However, there are two disadvantages to the post-
processing of creating a tube by linking bbox or
tubelets. The first is IoU-based linking. It cannot
handle large or fast motion of actors, and significant
movements due to rapid camera motion or low fps
(Singh et al., 2023). For example, in actions with
large fast movements such as “diving” and “surfing,”
the IoU with adjacent frames may be small. In cases
where the camera moves significantly, such as with
in-car cameras rather than fixed cameras like surveil-
lance cameras, even actions with small movements
may have large displacements between frames, result-
ing in a small IoU. Thus, the types of actions and
camera environments that can be linked by IoU are
limited.
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Figure 1: How to create action tubes. (a) A typical pro-
cess of prior works. First, the original video is divided into
multiple clips. Next, the clips are input into the model,
which outputs bounding boxes or tubelets. Finally, these
outputs are linked using IoU to create tubes. (b) The pro-
posed method directly outputs tubes of the original video.

The second issue involves splitting a video into
video clips. Regardless of the video’s context, clips
that are trimmed to a predetermined length may not
be suitable for action recognition. For example, a
clip that only captures the first half of a “jump” ac-
tion might actually show the same movements as a
“crouch” action, but still needs to be identified as the
“jump” action that will follow. Recognizing actions
from clips with incomplete action might lead to poor
performance and may also make training more diffi-
cult.

In this paper, we propose a method in which the
model directly outputs tubes of the original video
without using IoU-based linking and clip splitting.
Although the goal of STAD is to create tubes, much
attention has not been paid to models that directly
output tubes. The proposed method eliminates post-
processing because the model directly outputs tubes
at the inference stage. Instead, the proposed method
links the same person using query features. Specifi-
cally, inspired by the recent success of DETR (Carion
et al., 2020), we adopt an approach that applies query-
based detection for each frame and matches queries
to find the same person across frames. Our approach
is illustrated in Figure 2. By linking with queries,
we eliminate the need for IoU-based linking, allow-
ing the detection of actions even with large displace-
ments. Furthermore, by predicting action classes us-
ing a sequence of the queries obtained from match-
ing, our method facilitates inputs of variable lengths
for action recognition of the entire video.
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Figure 2: The proposed approach. Linking is performed by
matching queries assigned to the same person, eliminating
the need for the IoU-based linking.
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Figure 3: Overview of the proposed method. First, the
frame features are obtained using the frame backbone.
Next, the frame features and queries interact in a trans-
former. Then, the proposed Query Matching Module
(QMM) matches the queries responsible for the same per-
son in different frames. Finally, the output of QMM is clas-
sified by the action head to predict actions and bounding
boxes in each frame.

2 METHOD

In this section, we describe the proposed method that
directly outputs the tube without using the IoU in the
inference stage. Section 2.1 provides an overview and
presents our approach for linking the same person us-
ing queries. Section 2.2 explains the details of the
proposed Query Matching Module (QMM), which is
responsible for matching queries to the same person
in different frames and construct tubes. Section 2.3
describes the details of the action head, to predict the
actions of the tube.

2.1 Overview

First, we explain the approach of linking the same
person using queries. DETR (Carion et al., 2020) in-
troduced the concept of queries and performed object
detection as a bipartite matching between queries and
ground-truth bounding boxes. In other words, one
query is responsible for one object. The proposed
method learns to match the DETR’s object queries re-
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sponsible for the same person between frames, which
solves the drawbacks of IoU-based linking. Then,
by classifying queries of the same person obtained
through linking for predicting the action of the tube
represented by the queries, we address the drawbacks
of the use of clips.

The overview of the proposed method is shown in
Figure 3. Our proposed model consists of five com-
ponents: the frame backbone for extracting frame fea-
tures, the transformer for interacting the frame fea-
tures and the queries, the Query Matching Module
(QMM) for matching queries that are responsible for
the same person, the action head for predicting ac-
tions from queries of the tube, and the box head for
predicting bounding boxes in the tube.

2.1.1 Steps for Prediction

The following are the steps how the components
work.

1. For each frame xt ∈ R3×H0×W0 for the frame in-
dex t = 1, . . . ,T , the frame features f t ∈ R3×H×W

with dimensions of height H and width W are ob-
tained by the frame backbone. Here, T represents
the number of frames in the video, H0 and W0 rep-
resent the height and width of each frame, respec-
tively.

2. The transformer makes the frame feature f t inter-
act with N object queries to output a set of queries
Qt = {qt

i}N
i=1, where qt

i ∈ Rd . This process is
performed for each frame t to generate the sets
Q = {Qt}T

t=1 for all frames t = 1, . . . ,T .

3. QMM takes the sets Q and outputs L j =

[qts
j∗ ,q

ts+1
j∗ , . . . ,qte

j∗ ]. This is a list of queries respon-
sible for person j, starting at frame ts and ending
at frame te. Here, qt

j∗ is a query qt
i ∈ Qt for some

index i = j∗ that is predicted to be responsible for
the same person j.

4. The action head takes the list L j of length te −
ts + 1 to predict a sequence of action scores â j =

[âts
j∗ , â

ts+1
j∗ , . . . , âte

j∗ ]. Here, ât
j∗ ∈ [0,1]C+1 is the ac-

tion score predicted at frame t over C + 1 action
classes including “no action”. This enables us to
predict different actions in different frames of the
same person.

2.1.2 Tube Prediction

Based on the prediction â j obtained in the above
steps, a tube prediction is generated using the follow-
ing procedure.

The action score of the tube for person j is the
average of the scores of the same action in â j. This

is formally defined as follows. First, we define the
following sets:

C j = {c | c ∈ topk(ât
j∗), ât

j∗ ∈ â j} (1)

Tj,c = {t | c ∈ topk(ât
j∗), ât

j∗ ∈ â j}. (2)

Here, topk(ât) is the operation of extracting the top k
elements of the score vector ât . C j is the set of classes
with top-k scores in each frame and Tj,c is the set of
frame indices where the class c is in the top-k.

The scores of the tube for each c ∈ C j is then de-
fined as

â j,c =

{
1

|Tj,c| ∑t∈Tj,c ât
j∗,c |Tj,c|> τk

0 otherwise,
(3)

where τk is a threshold for filtering out short predic-
tions.

The bounding boxes of the tube for action c is also
defined as

b̂ j,c = { fb(qt
j∗) | t ∈ Tj,c, qt

j∗ ∈ L j}, (4)

where fb :Rd 7→ [0,H−1]× [0,W −1] is the box head
that predicts the bounding box of the query.

The parameters of the pre-trained DETR are fixed
and used for the frame backbone, transformer, and
box head, while the QMM and action head are trained
separately. Next, the details of the QMM and the ac-
tion head will be explained.

2.2 Query Matching Module

The proposed Query Matching Module (QMM) is
trained using metric learning to match queries that
are responsible for the same person across frames.
Specifically, the query features of the same person
are brought closer together, while those of different
persons are pushed apart. In the following, we formu-
late the loss for the training, followed by the inference
process.

2.2.1 Training

For training the matching queries of the same person,
we do not use all frames of the video. Instead, we use
a clip of T frames extracted from the original video.

Given the sets of input queries Q = {Qt}T
t=1, first

we filter out queries to retain only those classified as
“person” with high confidence. This is done by ex-
amining the object class score ct

i

ct
i = fc(qt

i), qt
i ∈ Qt , (5)

obtained from fc :Rd 7→R(C+1)×[0,1], the head of class
prediction of the pre-trained DETR.
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Then we select the score of the person class from
ct

i among all C+1 classes, and queries are kept if their
scores exceed the threshold τp; otherwise, they are
excluded.

Qt′ = {qt
i | ct

i[“person”]≥ τp} (6)

Next, we find which person is responsible for each
query in Qt′. The prediction of the bounding box
bt

i = fb(qt
i) obtained using fb is compared with the

ground truth box gt
j of person j to compute the IoU.

We assign the person ID j to only queries qt
i that ex-

ceed the threshold τiou, otherwise −1, as follows;

yt
i =

{
j, if IoU(bt

i,g
t
j)> τiou

−1, otherwise.
(7)

Next, the person feature encoder fp is used to
transform the query to features et

i = fp(qt
i), which

is suitable for matching. These steps are performed
for all frames within the clip, resulting in the set
E = {et

i | qt
i ∈ Qt′} to perform contrastive learning

with the following N-Pair Loss (Sohn, 2016);

lt
i (e

t
i) =− log

 ∑eu
j∈Et

i
+ exp( 1

τt
sim(et

i,e
u
j))

∑eu
k∈E−{et

i} exp( 1
τt

sim(et
i,e

u
k))

 .

(8)

Here, Et
i
+ = {eu

j | yu
j = yt

i,e
u
j ∈ E −{et

i}} is the pos-
itive example set, that is, the subset of E where each
element eu

j has the same person ID yt
i with et

i . sim(·, ·)
is the cosine similarity and τt denotes the temperature.
We train the person feature extractor fp to minimize
this contrastive loss L ,

L =
T

∑
t=1

1
|E| ∑

et
i∈E

lt
i (e

t
i). (9)

2.2.2 Inference

The goal of QMM during inference is to produce a set
of lists L = {L j} whose element L j contains queries
representing the person j, with L initialized as /0.

First, as in the training phase, a set Qt′ = {qt
i}

is formed by selecting only queries with high per-
son class scores to focus on those queries respon-
sible for persons. Then, the person feature vectors
et

i = fp(qt
i) are computed for each query, and also

e j = fp(L j[|L j| − 1]) for the most recent (or last) el-
ements in the lists L j ∈ L. Lastly, the similarities be-
tween e j and et

i are calculated to verify whether the
current query qt

i represents the same person as L j. If
similarity exceeds the threshold τs, the person repre-
sented by qt

i is considered the same as L j, and qt
i is

added to L j.

If L = /0, it is considered that no persons have ap-
peared in the video before and lists Li = [qt

i] are added
to L for each qt

i ∈ Qt′. If the similarity is below the
threshold, [qt

i] is considered a newly detected person
in the video, not assigned to any L j ∈ L, and added to
L as a new list.

This process is iterated from t = 1 to T , and lists
in L with a minimum length of τ′k are used as the final
output of QMM.

2.3 Action Head

The action head takes L j = [qts
j∗ , . . . ,q

te
j∗ ], the

QMM output, and predicts the actions as â j =

[âts
j∗ , â

ts+1
j∗ , . . . âte

j∗ ]. L j represents the same person in
successive frames, regardless of the presence, ab-
sence, or changes in actions. Therefore, the action
head predicts actions ât

j∗ ∈ RC+1, including “no ac-
tion,” for every frame t = ts, . . . , te in L j, rather than a
single action for the entire L j.

Since the length of L j varies for different j, a
transformer is used as the action head with time en-
coding. This encoding adds (or concatenates) time
information to encode each qt in L j with its time t rel-
ative to ts. The action head also has cross-attention
from the frames. A pre-trained action recognition
model is applied to the frames to obtain a global fea-
ture, which is then used as a query in the attention
within the transformer of the action head.

Note that the action head classifies the elements in
L j, which are the original DETR query qt

i rather than
the person feature fp(qt

i). This choice stems from the
differing goals of metric learning and action classifi-
cation. Metric learning aims to keep output features
distinct for different individuals, even when perform-
ing the same action. In contrast, action classification
needs similar features for the same action, regardless
of the person performing it. Therefore, encoded fea-
tures fp(qt

i) are employed for metric learning, while
DETR queries qt

i are used for action classification.
The loss for actions is a standard cross entropy;

L = ∑
L j∈L

te

∑
t=ts

LCE(ât
j∗ ,a

t
j∗). (10)

Here, action labels of each frame t is

at
j∗ =

{
“no action”, if yt

j∗ =−1
ct

j, otherwise,
(11)

and ct
j is the action class for person j at frame t,
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3 EXPERIMENTAL RESULTS

The proposed method is evaluated using datasets
commonly used for evaluating STAD.

3.1 Settings

3.1.1 Datasets

JHMDB21 (Jhuang et al., 2013) includs movies and
YouTube videos, consisting of 928 videos with 15 to
40 frames each. There are 21 action classes, and each
video contains exactly one ground truth tube of the
same length as the video.

UCF101-24 (Singh et al., 2017) consists of 3207
videos with clips ranging from approximately 3 to 10
seconds. There are 24 action classes, and unlike JH-
MDB, one video can contain any number of ground
truth tubes of any length. However, all tubes within a
single video belong to the same action class.

AVA (Gu et al., 2018) comprises 430 15-minute
videos collected from movies. It features 80 ac-
tion class labels, with 60 used for evaluation. Each
video contains multiple ground truth tubes of varying
lengths, allowing tubes of different action classes to
coexist within a single frame. The annotations, pro-
vided at 1-second intervals, are insufficient for train-
ing. To address this, we interpolate annotations dur-
ing both training and inference using linear interpo-
lation and object detection. For linear interpolation,
when the same person performing the same action is
annotated in both the starting and ending frames of
the target interval, we linearly interpolate the bound-
ing box coordinates between these two frames. How-
ever, linear interpolation has the drawback of large
errors in bounding boxes when the person’s position
changes significantly. Therefore, we apply object de-
tection to each frame using YoLoX (Ge et al., 2021)
pre-trained on COCO (Lin et al., 2014). We compare
the Intersection over Union (IoU) between bounding
boxes obtained by the YoLoX detection and linear in-
terpolation, and use the person ID and action ID of
the linear interpolated bounding boxes with the high-
est IoU with the detected bounding boxes.

3.1.2 Model

For the frame backbone, transformer, box head fb and
fc, we used DETR (Carion et al., 2020) pre-trained
on COCO (Lin et al., 2014) and fixed the parame-
ters. However, we fine-tuned DETR’s parameters for
the UCF101-24 dataset due to discrepancies between
the detection boxes of COCO-trained DETR and the
annotation boxes. In QMM, the person feature en-
coder fp is a 3-layer MLP, and the action head fa uses

a two-layer transformer encoder. The global feature
used in the action head is computed by X3D-XS (Fe-
ichtenhofer, 2020), a lightweight CNN-based action
recognition model, pretrained on Kinetics (Kay et al.,
2017).

3.1.3 Training and Inference Strategies

QMM and action head are trained separately. First,
QMM is trained, followed by the training of the action
head.

QMM is trained for a clip of eight frames ex-
tracted at 4-frame intervals from a random start time
in the video for JHMDB and UCF101-24, while for
AVA, a randomly selected key frame is used as the
starting frame. Each frame is resized while maintain-
ing its aspect ratio so that the longer side becomes
512 pixels, which is the input size of the model. The
shorter side is padded with black to create the clip.
The training settings are as follows: 20 epochs, batch
size of 8, AdamW optimizer with an initial learning
rate of 1e-4 (decayed by the factor of 10 at epoch 10).
Furthermore, τiou = 0.2,τt = 1, and τp = 0.75 for JH-
MDB, τp = 0.5 for UCF101-24 and AVA.

The action head is trained using the output from
QMM inference. During inference, frame-by-frame
preprocessing remains the same as in the training
phase. For JHMDB and UCF101-24, all frames are
used as input. However, for AVA, due to memory con-
straints, the number of input frames during inference
is limited to 16. The parameter settings are as fol-
lows: For JHMDB, τp = 0.9, τs = 0.5, τ′k = 8, for
UCF101-24, τp = 0.5, τs = 0.25, τ′k = 16, and for
AVA, τp = 0.5,τs = 0.25,τ′k = 8. The training set-
tings are as follows: 20 epochs, AdamW optimizer
with initial learning rate of 1e-3 (decayed by the fac-
tor of 10 at epoch 15). When generating tubes, τk = 8
is used.

3.1.4 Metrics

For JHMDB and UCF101-24, we adopt video-mAP
(v-mAP) as the most commonly used evaluation met-
ric for STAD. This is the class average of average
precision based on the spatio-temporal IoU (3D IoU)
between predicted tubes and ground truth tubes for
each action class. On the other hand, for AVA, we use
frame-mAP on annotated key frames as the evaluation
metric, as it is the official protocol.

We also evaluated tube detection solely to confirm
the effectiveness of the proposed QMM. Specifically,
we evaluate using the recall of predicted tubes against
the regions of ground truth tubes. We consider a pre-
diction correct if the 3D IoU between the ground truth
tube and the predicted tube is above a threshold and
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Table 1: Comparison of recall performance between QMM and IoU-based linking. The 3D IoU threshold is set at 0.5 for
JHMDB and 0.2 for both UCF101-24 and AVA.

JHMDB UCF AVA
All L M S All L M S All L M S

IoU ≥ 0.25 92.9 75.8 73.2 92.3 82.9 57.4 55.5 68.0 87.7 25.8 20.0 81.3
IoU ≥ 0.5 91.0 63.6 73.2 91.8 78.6 44.4 49.6 71.1 90.9 21.7 16.7 86.9
IoU ≥ 0.75 81.0 27.3 53.7 88.7 50.7 4.00 21.2 68.0 93.0 14.1 12.9 92.3
QMM 91.4 75.8 75.6 91.2 83.3 60.1 53.9 68.7 83.9 37.8 23.0 69.1

incorrect otherwise; then calculate the recall. Since
the STAD dataset only annotates people performing
actions, we use only recall for evaluation rather than
precision, which is affected by other people who are
not performing any actions. For the same reason, we
use the 3D IoU only at frames where the ground truth
tube exists when calculating the recall.

Furthermore, we perform evaluations based on the
magnitude of action position changes. We adopt the
motion category in MotionAP (Singh et al., 2023),
and calculate the recall for ground truth tube regions
in each of the Large (L), Medium (L), and Small (S)
motion categories.

3.2 Results

3.2.1 Performance of Query Matching by QMM

Table 1 shows a comparison of the proposed QMM
versus IoU-based linking. In the table, “All” repre-
sents the recall for all ground truth tubes regardless
of motion category, while “L,” “M,” and “S” repre-
sent the recall for each motion category. The 3D
IoU threshold is set to 0.5 for JHMDB and 0.2 for
UCF101-24 and AVA.

The performance of IoU-based linking decreases
for categories with larger motions as the threshold
increases for both datasets, indicating that using a
smaller IoU threshold value could mitigate the draw-
backs of IoU-based linking. However, using a small
threshold value leads to fundamental problems such
as easier linking with false detections and increased
possibility of linking failures in situations where peo-
ple overlap.

In contrast, QMM, compared to using an IoU
threshold of 0.75, the proposed QMM performs better
than IoU-based linking with an IoU threshold of 0.75.
Compared to an IoU threshold of 0.5, it improves in
the All, Large, and Medium categories, while perfor-
mance decreases in the Small category. Compared to
an IoU threshold of 0.25, for JHMDB and AVA, per-
formance decreases in the All and Small categories,
but is equal to or better in the Large and Medium cat-
egories. However, for UCF101-24, performance im-
provements are observed in the All, Large and Small

Table 2: Ablation study on the use of time encoding and
global features in the action head. Performance is shown
as v-mAP@0.5 for JHMDB, and v-mAP@0.2 for UCF101-
24.

JHMDB UCF
time

encoding
global
feature top1 top5 top1 top5

- 28.7 39.0 42.4 49.4
add 31.9 42.1 44.0 50.1

concat 35.7 46.5 45.0 51.1
concat ✓ 41.7 53.3 61.0 65.6

categories. From these findings, QMM is particularly
effective for actions with large position changes.

3.2.2 Ablation Study of Action Head

Here, we show an ablation study on the action head.
Specifically, we compare the presence and absence
of time encoding, which adds temporal information
to the input, and global features obtained from a
pre-trained model. Table 2 shows the results based
on v-mAP. Note that top1 and top5 represent the
top-k values in Eqs (1) and (2), respectively. The
3D IoU threshold is set to 0.5 for JHMDB and 0.2
for UCF101-24, consistent with the previous exper-
iment. In other words, the performance is shown
as v-mAP@0.5 for JHMDB and v-mAP@0.2 for
UCF101-24. Experiments on the AVA dataset is on-
going and will be presented in the final version.

Using the time encoding was effective in both
datasets. In particular, concatenation showed a more
pronounced effect than addition. This suggests that
explicit incorporation of temporal information is cru-
cial for effective action recognition.

Next, we can see that incorporating global features
from a pre-trained action recognition model signifi-
cantly improves performance in both datasets. This
improvement leads to two key insights. First, global
features support the learning of the action head, which
needs to be trained on the output queries of the pre-
trained DETR. Using these global features for cross-
attention in the action head, the head is likely to
achieve more effective learning from scratch. Second,
using DETR’s output, which is trained on object de-
tection tasks, for action recognition has limitations.
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Figure 4: Visualization of predictions by the proposed method. (Top) Temporal annotation intervals. (Bottom) The bounding
boxes represent predicted tubes. Boxes are in when the top-1 class of the frame is “no action”, and in red when ‘Basketball”.

In object detection, all people are labeled as “per-
son,” regardless of their actions. As a result, DETR’s
queries may lack action-specific information. How-
ever, global features can fill this gap, boosting action
recognition performance.

The differences in the top-k value show that top-5
performs better than top-1. This suggests that while
the top-1 action in ât may not be the correct action of
the tube, it is often the case that the top-5 actions in-
clude. Therefore, increasing the top-k value improves
the performance of the v-mAP. However, for videos
where the start and end of actions are correctly de-
tected using only the top-1 action, as shown in Figure
4, using the top-5 actions may negatively affect per-
formance due to unnecessary actions being also used
to predict the action of the tube. Future work includes
improvements such as excluding timestamps from Tj,c
where the predicted action scores are lower than the
“no action” class score.

4 CONCLUSIONS

We have proposed a STAD method that directly gen-
erates action tubes without relying on post-processing
steps, such as IoU-based linking. Instead, our
approach utilizes metric learning between DETR
queries to link actions across frames. Although the
proposed Query Matching Module (QMM) and action
head are trained using fixed-length clips, our method
offers a flexible inference framework that can han-
dle variable-length video inputs, enhancing its adapt-
ability to diverse videos. In future work, our aim is
to extend this approach to more complex tasks, such
as spatio-temporal sentence grounding (Yang et al.,
2022), and to further refine the architecture and learn-
ing strategies to improve the performance of query
matching to track the same person across different
frames.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI
Grant Number JP22K12090.

REFERENCES

Ahmed, S. A., Dogra, D. P., Kar, S., Patnaik, R., Lee, S.-C.,
Choi, H., Nam, G. P., and Kim, I.-J. (2020). Query-
based video synopsis for intelligent traffic monitoring
applications. IEEE Transactions on Intelligent Trans-
portation Systems, 21(8):3457–3468.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object de-
tection with transformers. In Vedaldi, A., Bischof, H.,
Brox, T., and Frahm, J.-M., editors, Computer Vision
– ECCV 2020, pages 213–229, Cham. Springer Inter-
national Publishing.

Chen, L., Tong, Z., Song, Y., Wu, G., and Wang, L.
(2023). Efficient video action detection with token
dropout and context refinement. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 10388–10399.

Chen, S., Sun, P., Xie, E., Ge, C., Wu, J., Ma, L., Shen, J.,
and Luo, P. (2021). Watch only once: An end-to-end
video action detection framework. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV),
pages 8158–8167.

Feichtenhofer, C. (2020). X3d: Expanding architectures
for efficient video recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021).
YOLOX: exceeding YOLO series in 2021. CoRR,
abs/2107.08430.

Gkioxari, G. and Malik, J. (2015). Finding action tubes.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Gritsenko, A. A., Xiong, X., Djolonga, J., Dehghani, M.,
Sun, C., Lucic, M., Schmid, C., and Arnab, A. (2023).
End-to-end spatio-temporal action localisation with
video transformers. CoRR, abs/2304.12160.

Gu, C., Sun, C., Ross, D. A., Vondrick, C., Pantofaru, C.,
Li, Y., Vijayanarasimhan, S., Toderici, G., Ricco, S.,

Action Tube Generation by Person Query Matching for Spatio-Temporal Action Detection

267



Sukthankar, R., Schmid, C., and Malik, J. (2018).
Ava: A video dataset of spatio-temporally localized
atomic visual actions. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6047–6056.

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., and Black, M. J.
(2013). Towards understanding action recognition. In
2013 IEEE International Conference on Computer Vi-
sion, pages 3192–3199.

Kalogeiton, V., Weinzaepfel, P., Ferrari, V., and Schmid,
C. (2017). Action tubelet detector for spatio-temporal
action localization. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV).

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C.,
Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., Suleyman, M., and Zisserman, A. (2017).
The kinetics human action video dataset. CoRR,
abs/1705.06950.
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