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Abstract: This paper considers a prediction problem with a nonstationary geometric distribution in terms of Bayes de-

cision theory. The proposed nonstationary statistical model contains a single hyperparameter, which is used

to express the nonstationarity of the parameter of the geometric distribution. Furthermore, the proposed pre-

dictive algorithm is based on both the posterior distribution of the nonstationary parameter and the predictive

distribution for data, operating with a Bayesian context. Each predictive estimator satisfies the Bayes optimal-

ity, which guarantees a minimum mean error rate with the proposed nonstationary probability model, a loss

function, and a prior distribution of the parameter in terms of Bayes decision theory. Furthermore, an approxi-

mate maximum likelihood estimation method for the hyperparameter based on numerical calculation has been

considered. Finally, the predictive performance of the proposed algorithm has been evaluated in terms of both

the model selection theory and the predictive mean squared error by comparison with the stationary geometric

distribution using real web traffic data.

1 INTRODUCTION

The geometric distribution (Johnson and Kotz, 1969)

(Hogg et al., 2013) is one of significant discrete prob-

ability distributions with at least two definitions. One

is that the probability distribution of the number of

failures before the first success, with the success prob-

ability as the parameter. The other is that the discrete

probability distribution of the number of Bernoulli tri-

als needed to get one success given the same param-

eter. This paper is based on the former definition.

Some important characteristics of the geometric dis-

tribution are that it is the discrete version of the expo-

nential distribution; that it has the memoryless prop-

erty; and that it is a special case of the negative bino-

mial distribution. Based on the above definitions and

characteristics of the geometric distribution, many ap-

plications have been reported, including quality con-

trol (Frank C. Kaminsky and Burke, 1992), queueing

theory (Winsten, 1959), biology (Ewens, 2004), epi-

demiology (O. Diekmann, 2000), communication the-

ory (G.Gallager, 1995), computer networks (Bianchi,

2000), and so forth.

a https://orcid.org/0000-0002-5302-5346

In the field of Bayesian statistics (Berger, 1985)

(Bernardo and Smith, 1994), on the other hand, the

parameter estimation or prediction problems often be-

come intractable. This is because these problems re-

quire integral calculations in the denominator of the

Bayes theorem depending on a known prior distribu-

tion of parameter. However, if the specific distribu-

tion of parameter is assumed to be the prior, com-

plex integral calculations can be avoided. In Bayesian

statistics, this specific class of prior is called a con-

jugate family (Berger, 1985, pp. 130–132) (Bernardo

and Smith, 1994, pp. 265–267). The beta distribution

is the natural conjugate prior of the stationary geomet-

ric distribution (Bernardo and Smith, 1994).

The above results are limited within the stationary

geometric distribution. If the nonstationary probabil-

ity distributions are assumed, the Bayesian estimation

problems become more difficult and more intractable.

In such cases, there is no guarantee of the existence

of a natural conjugate prior. In this regard, at least

two nonstationary probability models have been pro-

posed. One is the Bayesian entropy forecasting (BEF)

model (Souza, 1978) in which the Shannon’s entropy

function and Jaynes’ principle of maximum entropy

are applied to the model formulation. The other is re-

ferred to as the Simple Power Steady Model (SPSM)
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(Smith, 1979). The SPSM is a time-series model and

they have shown certain illustrative probability distri-

butions called linear expanding families in which nat-

ural conjugate priors exist (Smith, 1979). Recently,

a new similar and particular nonstationary parame-

ter classes with hyperparameter estimation methods

have been proposed (Koizumi, 2020; Koizumi, 2021;

Koizumi, 2023). Among the aforementioned results,

a single hyperparameter is identified as the expression

of nonstationarity of the parameter, and its estima-

tion can be achieved through the approximate max-

imum likelihood estimation with numerical calcula-

tion. These results contribute new aspects to the field

of empirical Bayes methods (Carlin and Louis, 2000).

Furthermore, a Bayesian problem in the context of

Bayes decision theory (Berger, 1985) (Bernardo and

Smith, 1994) has been considered. Using this ap-

proach, the predictive estimator satisfies Bayes opti-

mality, which guarantees a minimum mean error rate

for predictions.

In this paper, the aforementioned approach to

the nonstationary geometric distribution is presented.

The proposed nonstationary class of parameter has

only a single hyperparameter. This hyperparameter

can be estimated from observed data by an approx-

imate maximum likelihood estimation with numer-

ical calculations. Under condition with the known

(or estimated) hyperparameter, the posterior distribu-

tion of parameter with specific prior can be tractably

obtained with simpler arithmetic calculations. This

point would be the generalization of the natural con-

jugate prior with stationary geometric distribution to

avoid heavy integral calculations under the equation

of Bayes theorem. Moreover, a Bayes optimal pre-

diction algorithm is proposed, which guarantees the

a minimum mean error rate for predictions in terms

of Bayes decision theory. Finally, evaluation of the

predictive performances of the proposed algorithms

are via comparison with the results of the stationary

geometric distribution using real web traffic data is

detailed.

The rest of this paper is organized as follows. Sec-

tion 2 provides the basic definitions of the proposed

nonstationary geometric distribution and some lem-

mas and corollaries in terms of Bayesian statistics.

Section 3 proposes the Bayes optimal predictive al-

gorithm in terms of Bayes decision theory. Section

4 presents numerical examples using real web traffic

data. Section 5 presents a discussion on the results of

this paper. Section 6 presents the conclusion.

2 PRELIMINARIES

2.1 Hierarchical Bayesian Modeling

with Nonstationary Geometric

Distribution

Let t = 1,2, . . . be a discrete time index and Xt = xt ≥
0 be a discrete random variable at t. Assume that

xt = 0,1,2, . . . ,N represents count data with known

N and Xt ∼ Geometric(θt), where 0 < θt ≤ 1, is a

nonstationary parameter at t. Thus, the probability

function of the nonstationary geometric distribution

p
(

xt

∣

∣ θt

)

is defined as follows:

Definition 2.1. Nonstationary Geometric Distribu-

tion

p
(

xt

∣

∣ θt

)

= (1−θt)
xt θt , (1)

where xt = 0,1,2, . . . ,N and 0 < θt ≤ 1. ✷

Definition 2.2. Function for Θt ,At , and Bt

Let Θt = θt ,At = at , and Bt = bt be random vari-

ables where At and Bt are mutually independent, then

a function for Θt is defined as,

Θt =
At

At +Bt

, (2)

where 0 < at , 0 < bt . ✷

Definition 2.3. Nonstationarity of At ,Bt

Let Ct = ct ,Dt = dt be random variables, then the non-

stationary functions for At and Bt are defined as,

At+1 = CtAt , (3)

Bt+1 = DtBt , (4)

where 0 < ct < 1, 0 < dt < 1 and they are sampled

from the following two types of beta distributions:

Ct ∼ Beta [kαt ,(1− k)αt ] , (5)

Dt ∼ Beta [kβt ,(1− k)βt ] , (6)

where k is a real valued constant and 0 < k ≤ 1 . ✷

Definition 2.4. Conditional Independence for At ,Ct

(or Bt ,Dt ) under αt (or βt)

p
(

at ,ct

∣

∣ αt

)

= p
(

at

∣

∣ αt

)

p
(

ct

∣

∣ αt

)

, (7)

p
(

bt ,dt

∣

∣ βt

)

= p
(

bt

∣

∣ βt

)

p
(

dt

∣

∣ βt

)

. (8)

✷

Definition 2.5. Initial Distributions for A1,B1

A1 ∼ Gamma(α1,1) , (9)

B1 ∼ Gamma(β1,1) , (10)

where 0 < α1 and 0 < β1. ✷
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Definition 2.6. Initial Distributions for C1,D1

C1 ∼ Beta [kα1,(1− k)α1] , (11)

D1 ∼ Beta [kβ1,(1− k)β1] . (12)

✷

Definition 2.7. Gamma Distribution for q

Gamma distribution of Gamma(r,s) is defined as,

p
(

q
∣

∣ r,s
)

=
sr

Γ(r)
qr−1 exp(−sq) , (13)

where 0< q, 0< r, 0< s, and Γ(r) is the gamma func-

tion defined in Definition 2.9. ✷

Definition 2.8. Beta Distribution for q

Beta distribution of Beta(r,s) is defined as,

p
(

q
∣

∣ r,s
)

=
Γ(r+ s)

Γ(r)Γ(s)
qr−1 (1− q)s−1

, (14)

where 0 < q < 1, 0 < r, 0 < s. ✷

Definition 2.9. Gamma Function for q

Γ(q) =

∫ +∞

0
yq−1 exp(−y)dy , (15)

where 0 < q . ✷

2.2 Lemmas

Lemma 2.1. Transformed Distribution for At

For any t ≥ 1, the transformed random variable

At+1 = CtAt in Definition 2.3 follows the following

Gamma distribution:

At+1 ∼ Gamma(kαt ,1) . (16)

✷

Proof of Lemma 2.1.

See APPENDIX A. ✷

Lemma 2.2. Transformed Distribution for Bt

For any t ≥ 1, the transformed random variable

Bt+1 = DtBt in Definition 2.3 follows the following

Gamma distribution:

Bt+1 ∼ Gamma(kβt ,1) . (17)

✷

Proof of Lemma 2.2.

The proof is exactly same as Lemma 2.1, replacing

At+1 by Bt+1, Ct by Dt , and αt by βt .

This completes the proof of Lemma 2.2. ✷

Lemma 2.3. Transformed Distribution for Θt

For any t ≥ 2, the transformed random variable Θt =
At

At+Bt
in Definition 2.2 follows the following beta dis-

tribution:

Θt ∼ Beta(kαt−1, kβt−1) . (18)

✷

Proof of Lemma 2.3.

See APPENDIX B. ✷

Corollary 2.1. Transformed Initial Distribution for

Θ1

The transformed random variable Θ1 = A1
A1+B1

in

Definition 2.2 follows the following beta distribution:

Θ1 ∼ Beta(α1,β1) . (19)

✷

Proof of Corollary 2.1.

From Definition 2.5,

A1 ∼ Gamma(α1,1) ,

B1 ∼ Gamma(β1,1) .

If Lemma 2.3 is applied to the above A1 and B1, then

the following holds,

Θ1 ∼ Beta(α1,β1) . (20)

This completes the proof of Corollary 2.1. ✷

3 PREDICTION ALGORITHM

BASED ON BAYES DECISION

THEORY

3.1 Preliminaries

Definition 3.1. Loss Function

In this paper, the predictive error for xt+1 is measured

by the following squared-error loss function (Berger,

1985, 2.4.2, I., p. 60),

L(x̂t+1,xt+1) = (x̂t+1 − xt+1)
2
. (21)

✷

Definition 3.2. Risk Function

The risk function is defined as the expectation of the

loss function L(x̂t+1,xt+1) with respect to the sam-

pling distribution p
(

xt+1

∣

∣θt+1

)

,

R(x̂t+1,θt+1)=
N

∑
xt+1=0

L(x̂t+1,xt+1)p
(

xt+1

∣

∣θt+1

)

,(22)

where p
(

xt+1

∣

∣θt+1

)

is from Definition 2.1. ✷

Definition 3.3. Bayes Risk Function

Let xxxt = (x1,x2, . . . ,xt) be observed sequence and

p
(

θt

∣

∣xxxt
)

be the posterior distribution of parameter θt

under xxxt . Then, the posterior distribution after param-

eter transitions to nonstationary becomes p
(

θt+1

∣

∣xxxt
)

and the Bayes Risk Function BR(x̂t+1) is defined as,

BR(x̂t+1)=

∫ 1

0
R(x̂t+1,θt+1) p

(

θt+1

∣

∣xxxt
)

dθt+1 . (23)

✷
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Definition 3.4. Bayes Optimal Prediction

The Bayes optimal prediction x̂∗t+1 is defined as the

minimizer of the Bayes risk function,

x̂∗t+1 = argmin
x̂t+1

BR(x̂t+1) . (24)

✷

3.2 Main Theorems

Theorem 3.1. Posterior Distribution after transitions

to nonstationary for θt

Let the prior distribution of parameter θ1 of

the nonstationary geometric distribution in Defini-

tion 2.1 be Θ1 ∼ Beta(α1,β1). For any t ≥ 2,

let xxxt−1 = (x1,x2, . . . ,xt−1) be the observed data se-

quence. Then, the posterior distribution of Θt

∣

∣ xxxt−1

can be obtained as the following closed form:

Θt

∣

∣ xxxt−1 ∼ Beta(αt ,βt) , (25)

where the parameters αt , βt are given as,














αt = kt−1α1 +
t−1

∑
i=1

ki;

βt = kt−1β1 +
t−1

∑
i=1

kixt−i .

(26)

✷

Proof of Theorem3.1.

For any t ≥ 2, the posterior of parameter distribu-

tion p
(

θt

∣

∣ xxxt−1
)

remains in the closed form Θt ∼
Beta(αt ,βt) if Xt ∼ Geometric(θt ) in Definition 2.1

and Θ1 ∼ Beta(α1,β1) in Corollary 2.1 according to

the nature of conjugate families (Bernardo and Smith,

1994, 5.2, p.265) (Berger, 1985, 4.2.2, p.130).

Furthermore, assuming that xt−1 is the observed

data,
{

αt = αt−1 + 1;

βt = βt−1 + xt−1 ,
(27)

holds for t ≥ 2 by conjugate analysis (Bernardo and

Smith, 1994, n = 1,r = 1 for Negative-Binomial

model, p.437). This is the proof of Eq. (25).

In this paper, nonstationary parameter model is as-

sumed. Therefore, if both Lemma 2.1, and Lemma

2.2 are recursively applied to Eq. (27), then,
{

αt = k (αt−1 + 1) ;

βt = k (βt−1 + xt−1) ,
(28)

holds for t ≥ 2.

Finally, Eq. (26) is ultimately derived by recur-

sively applying Eq. (28) backwards until the initial

conditions α1,β1 in both Definition 2.5 and Corollary

2.1 are reached.

This completes the proof of Theorem 3.1. ✷

Remark 3.1.

The right hand sides of Eqs. (26) have structures

called as Exponentially Weighted Moving Average

(EWMA) (Harvey, 1989). ✷

Theorem 3.2. Predictive Distribution for xt+1

p(xt+1

∣

∣ xxxt) =
αt+1 ∏

xt+1−1

i=0 (βt+1 + i)

∏
xt+1

i=0 (αt+1 +βt+1 + i)
, (29)

where αt+1 and βt+1 are formulated in Eq. (26). ✷

Proof of Theorem 3.2.

p
(

xt+1

∣

∣ xxxt
)

=

∫ 1

0
p
(

xt+1

∣

∣ θt+1

)

p
(

θt+1

∣

∣ xxxt
)

dθt+1 (30)

=
Γ(αt+1+βt+1)

Γ(αt+1)Γ(βt+1)

Γ(αt+1+1)Γ(βt+1+ xt+1)

Γ(αt+1+1+βt+1+ xt+1)
(31)

=
αt+1 ∏

xt+1−1

i=0 (βt+1 + i)

∏
xt+1

i=0 (αt+1 +βt+1 + i)
. (32)

Note that the second term in Eq. (31) is obtained from

the definition of the beta function and that Eq. (32)

is obtained from Eq. (31) by applying the following

property of gamma function: Γ(x+ 1) = xΓ(x).
This completes the proof of Theorem 3.2. ✷

Theorem 3.3. Bayes Optimal Prediction x̂∗t+1

x̂∗t+1 =
βt+1

αt+1 − 1
, (33)

where αt+1 and βt+1 are formulated in Eq. (26). ✷

Proof of Theorem 3.3.

For parameter estimation problem under the squared-

error loss function, the posterior mean is the optimal

(Berger, 1985, Result 3 and Example 1, p. 161). For

the prediction problem, the predictive mean, i.e. the

expectation of the Bayes predictive distribution is

identically the optimal under the squared-error loss

function. Therefore,

x̂∗t+1 = E
[

xt+1

∣

∣ xxxt
]

(34)

=
N

∑
xt+1=0

[

xt+1 p
(

xt+1

∣

∣ xxxt
)]

(35)

=
βt+1

αt+1 − 1
. (36)

Note that Eq. (36) is derived from Eq. (35) by the

expectation of the Negative-Binomial-Beta distribu-

tion (Bernardo and Smith, 1994, p. 429).

This completes the proof of Theorem 3.3. ✷
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3.3 Hyperparameter Estimation with

Empirical Bayes Method

Since a hyperparameter 0 < k ≤ 1 in Eqs. (5) and (6)

is assumed to be known, it must be estimated in prac-

tice. In this paper, the following maximum likelihood

estimation in terms of empirical Bayes method (Car-

lin and Louis, 2000) is considered.

Let l(k) be a likelihood function of hyperparam-

eter k and k̂ be the maximum likelihood estimator.

Then, those two functions are defined as,

k̂ = argmax
k

l(k) , (37)

l(k) = p(x1

∣

∣ θ1)p(θ1)
t

∏
i=2

p(xi

∣

∣ xxxi−1
,k) (38)

=
t

∏
i=1

[

αi ∏
xi−1
j=0 (βi + j)

∏
xi
j=0(αi +βi+ j)

]

, (39)

where αi and βi are formulated in Eq. (26).

Eq. (39) can not be solved analytically and then

the approximate numerical calculation method should

be applied. The detail is described in Subsection 4.3.

3.4 Proposed Predictive Algorithm

The proposed predictive algorithm that calculates the

Bayes optimal prediction x̂∗t+1 in Theorem 3.3 is de-

scribed as the following Algorithm 3.1.

Algorithm 3.1. Proposed Predictive Algorithm.

1. Estimate hyperparameter k̂ by Eq. (39) from train-

ing data.

2. Define hyperparameters α1, β1 for the initial prior

p(θ1

∣

∣ α1,β1) in Eqs. (9) and (10).

3. Using the observed sequence xxxt of test data, cal-

culate the Bayes optimal prediction x̂∗t+1 from

Eq. (33) where αt+1 and βt+1 are formulated in

Eq. (26), and k is replaced by k̂ in step 1. in

Eq. (26).

✷

4 NUMERICAL EXAMPLES

4.1 Data Specifications

In order to evaluate the efficacy of the proposed Al-

gorithm 3.1, the real web traffic data is utilized. This

data is extracted from the http (Hyper Text Transfer

Protocol) request arrival time stamps at three-minute

intervals from a web server, spanning a twelve-day

period between March 20 and March 31, 2005.

Tables 1 and 2 illustrate a portion of the speci-

fications of both training and test data. Table 1 ex-

plains an overview of the training data on March 25,

2005,while Table 2 provides an overview of the test

data on March 26, 2005. Figure 1 depicts both plots

with line graphs. In figure 1, the vertical axis rep-

resents the number of request arrivals, the horizontal

axis represents the time interval index, the blue line

represents the training data, and the red line repre-

sents the test data.

The remaining characteristics of the data are illus-

trated in Tables 7 and 8 in Appendix C.

Table 1: Training Data Specifications.

Items Values

Date Mar. 25, 2005

Time Interval Every 3 minutes

Total Request Arrivals 11,527

Total Time Intervals tmax 305

Auto Correlation

Coefficient (lag=1) 0.821

Table 2: Test Data Specifications.

Items Values

Date Mar. 26, 2005

Time Interval Every 3 minutes

Total Request Arrivals 6,369

Total Time Intervals tmax 291

Auto Correlation

Coefficient (lag=1) 0.670
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Figure 1: Training and Test Data Plots for Web Traffic Data
on Mar. 25–26, 2005.

4.2 Conditions and Criteria for

Evaluation

The performance of Algorithm 3.1 with the real data

is evaluated. Note that the training data is used only

for hyperparameter estimation of k̂ in Eq. (39). With

the estimated k̂, the Bayes optimal prediction of x̂∗t+1
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is calculated from the test data. For the comparison,

two types of prediction x̂∗t are considered. The first is

from the proposed algorithm with nonstationary ge-

ometric distribution in Theorem 3.3 and the second

is from a conventional algorithm with stationary geo-

metric distribution.

4.2.1 Initial Prior Distribution of Parameter

According to Corollary 2.1, the class of the initial

prior distribution of parameter is beta distribution.

If the non-informative prior (Berger, 1985; Bernardo

and Smith, 1994) is considered under beta prior p(θ1

∣

∣

α1,β1), it should correspond to the uniform distribu-

tion and each of two hyperparameters of α1 and β1

equals to one. Their settings are shown in Table 3.

Table 3: Defined Hyperparameters for Prior Distribution
p
(

θ1

∣

∣ α1,β1

)

.

Items α1 β1

Values 1 1

4.2.2 Criteria

For the criteria for evaluations, the following mean

squared error based on the squared-error loss function

in Definition 3.1 is defined.

Definition 4.1. Mean Squared Error

1

tmax

tmax

∑
t=1

L(x̂t ,xt) =
1

tmax

tmax

∑
t=1

(x̂t − xt)
2
. (40)

4.3 Results

Table 4 presents the estimated hyperparameter k̂ from

the training data. Figure 2 depicts the loglikelihood

function log l(k) with base of 103, as calculated nu-

merically using R version 4.4.1 (R Core Team, 2024).

Table 9 in Appendix C illustrates the extended re-

sults of the hyperparameter estimation of the training

data.

Table 5 illustrates the values of predictive mean

squared errors for both the proposed and stationary

models in Definition 4.1. Figure 3 depicts its graphi-

cal result. In Figure 3, the horizontal and vertical axes

are the index of time interval 1≤ t ≤ 291 and the num-

ber of request arrivals, respectively. Furthermore, the

orange bar is real request arrivals xt from test data, the

blue solid line is the predictions x̂∗t from the proposed

nonstationary geometric model, the red solid line is

the predictions from the stationary geometric model.

The second column from Left in Table 10 in Ap-

pendix C illustrates the extended results of mean

squared errors for both the proposed and stationary

models from the test data.

Table 4: Hyperparameter Estimation from Training Data.

Item k̂

Value 0.889
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Figure 2: log l(k) Plot for 0 ≤ k ≤ 1.

Table 5: Mean Squared Error for Two Models.

Items MSE

Proposed Stationary

Values 186.8 254.1

5 DISCUSSIONS

From Table 4, the estimator is k̂ = 0.889. If k = 1,

then the second parameters of beta distributions in

Eqs. (5),(6),(11), and (12) become zero. This means

that the variances of beta distributions are also zero,

and that the parameter θt of geometric distribution is

stationary. Therefore k̂ = 0.889 6= 1.000 means that

training data is nonstationary. Furthermore, Figure 2

show that the likelihood function l(k) is empirically

upward convex. Hence the estimated value for k̂ can

be considered reliable as an estimator.

Table 5 shows that the performance of predic-

tion with the proposed model is superior to that of

the stationary model. The improvement of MSE is

more than 25%. In fact, Figure 3 also shows that

the blue line follows the orange bar better than the

red line. Similarly, Figure 4 compares the expecta-

tion values of the posterior parameter distributions

E
[

θt

∣

∣ xxxt−1
]

between two models. In Figure 4, the

blue line of the proposed model shows more intense

dynamic fluctuations than the red line of the station-

ary model. These results suggest that the proposed

empirical Bayesian method with the nonstationary ge-
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Figure 3: Prediction Result for Test Data.

ometric model works to some extent compared to the

stationary model. However, Figure 3 also shows that

the blue line did not necessarily follow the rapid in-

crease or decrease in the orange bars. If one sets the

hyperparameter k = 0.50, then the nonstationarity of

parameter θt becomes larger and the MSE of the pro-

posed model becomes 148.5. In this case, the im-

provement is about 40% better than that of the sta-

tionary model. This desirable situation did not occur

because the training and test data were very different

as shown in Figure 1.

Finally, the values of Akaike Information Criteria

(AIC) (Akaike, 1973) between two models in terms

of the model selection were calculated and shown in

Table 6. Note that the value of AIC is calculated by

(−2log2 L+ 2m), where L and m represent the likeli-

hood value and the number of parameters in the statis-

tical model, respectively. In this paper, m = 4 for the

proposed nonstationary model (θt ,αt ,βt , and k) and

m = 3 for the stationary model (θt ,αt , and βt). There-

fore, the parametric penalty in AIC for the proposed

model did not become so larger than that of the sta-

tionary model. As a result, the value of AIC in Table

6 for the proposed model is slightly smaller than that

of the stationary model. It means that the proposed

model is relatively suitable than the stationary model.

Furthermore, the third and fourth columns of Table

9 in Appendix C present the extended results of the

AIC values for the training data. The overall results

indicate that the the proposed nonstationary geomet-

ric model is comparatively more suitable than the sta-

tionary geometric model based on the observed data

in terms of the model selection.

Table 6: Akaike Information Criteria (AIC) for Two Mod-
els.

Items AIC

Proposed Stationary

Values 3976.4 4090.1
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6 CONCLUSION

In this paper, a special class of nonstationary geo-

metric distributions has been proposed. It has been

proved that the Bayes optimal prediction related by

the nonstationary geometric distribution and squared-

error loss function can be obtained by the simple

arithmetic calculations if its nonstationary hyperpa-

rameter is known. Using the real web traffic data,

the predictive performance of the proposed algorithm

was shown to be superior to that of the stationary al-

gorithm in terms of both model selection theory and

predictive mean squared error.

For the nonstationary hyperparameter estimation,

the approximate maximum likelihood estimation is

considered. It has been observed that the likelihood

function for the hyperparameter is empirically up-

ward convex for certain data. The theoretical proof

of the general convexity should be an open prob-

lem. Moreover, the generalization for the nonsta-

tionary negative binomial distribution and the other

Bayes optimal predictive algorithms with loss func-

tions other than the squared-error loss function should

also be considered for future research.
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APPENDIX

A: Proof of Lemma 2.1

If t = 1, suppose A1 = a1 and C1 = c1 are defined as,

A1 ∼ Gamma(α1,1) , (41)

C1 ∼ Beta [kα1,(1− k)α1] , (42)

according to Definition 2.5 and Definition 2.6, respec-

tively.

Since A2 = C1A1 from Definition 2.3, and At and

Ct are conditional independent from Definition 2.4,

the joint distribution of p(c1,a1) becomes,

p(c1,a1)

= p
[

c1

∣

∣ kα1,(1− k)α1

]

p
(

a1

∣

∣ α1,1
)

=
Γ(α1)

Γ(kα1)Γ [(1− k)α1]
c

kα1−1
1 (1− c1)

(1−k)α1−1

·
a

α1−1
1

Γ(α1)
exp(−a1)

=
c

kα1−1
1 (1− c1)

(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]
a

α1−1
1 exp(−a1) .

Now, denote the two transformation as,
{

v = a1c1

w = a1 (1− c1) ,
(43)

where 0 < v, 0 < w.

Then, the inverse transformation of Eq. (43) be-

comes,
{

a1 = v+w

c1 =
v

v+w
,

(44)

The Jacobian J1 of Eq. (44) is,

J1 =

∣

∣

∣

∣

∣

∣

∂a1
∂v

∂a1
∂w

∂c1
∂v

∂c1
∂w

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1

w

(v+w)2
− v

(v+w)2

∣

∣

∣

∣

∣

∣

= −
1

v+w
=−

1

a1
6= 0 .

Then, the transformed joint distribution p(v,w) is

obtained by the product of p(c1,a1) and the absolute

value of J1.

p(v,w)

= p(c1,a1)
∣

∣−
1

a1

∣

∣

=

(

v
v+w

)kα1−1 ( w
v+w

)(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]

·(v+w)α1−1
exp [−(v+w)] ·

1

v+w

=
vkα1−1w(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]
exp [−(v+w)] .(45)

Then, p(v) is obtained by marginalizing Eq. (45)
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with respect to w,

p(v) =

∫ ∞

0
p(v,w)dw

=
vkα1−1 exp(−v)

Γ(kα1)Γ [(1− k)α1]

·

∫ ∞

0
w(1−k)α1−1 exp(−w)dw

=
vkα1−1 exp(−v)

Γ(kα1)Γ [(1− k)α1]
·Γ [(1− k)α1]

=
1

Γ(kα1)
vkα1−1 exp(−v) . (46)

Eq. (46) exactly corresponds to Gamma(kα1,1)
according to Definition 2.7. Recalling v = a1c1 from

Eq. (43) and A2 =C1A1 from Definition 2.3,

A2 ∼ Gamma(kα1,1) .

Thus if t = 1, then At+1 ∼ Gamma(kαt ,1) holds.

For t ≥ 2, by substituting αt = kαt−1, At = at and

Ct = ct are defined as,

At ∼ Gamma(αt ,1) , (47)

Ct ∼ Beta [kαt ,(1− k)αt ] . (48)

Eqs. (47) and (48) correspond to Eqs. (41) and (42),

respectively. Therefore the same proof can be applied

for the case of t ≥ 2 and it can be proved that,

∀t,At+1 ∼ Gamma(kαt ,1) .

This completes the proof of Lemma 2.1.

✷

B: Proof of Lemma 2.3

From Lemma 2.1 and 2.2,

∀t ≥ 2,At ∼ Gamma(kαt−1,1) ,

∀t ≥ 2,Bt ∼ Gamma(kβt−1,1) .

According to Definition 2.2, two random variables

At and Bt are mutually independent. Therefore, the

joint distribution pf p(at ,bt) becomes,

p(at ,bt)

= p
(

at

∣

∣ kαt−1,1
)

p
(

bt

∣

∣ kβt−1,1
)

=

[

a
kαt−1−1
t exp(−at)

Γ(kαt−1)

]

·

[

b
kβt−1−1
t exp(−bt)

Γ(kβt−1)

]

=
a

kαt−1−1
t b

kβt−1−1
t

Γ(kαt−1)Γ(kβt−1)
exp [−(at + bt)] .

Denoting the two transformations,
{

λ = at + bt

µ = at
at+bt

,
(49)

where 0 < λ, 0 < µ.

The inverse transformation of Eq. (49) becomes,
{

at = λµ

bt = λ(1− µ) .
(50)

Then, the Jacobian J2 of Eq. (50) is,

J2 =

∣

∣

∣

∣

∣

∣

∣

∂at

∂λ
∂at

∂µ

∂bt

∂λ
∂bt

∂µ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

µ λ

1− µ −λ

∣

∣

∣

∣

∣

∣

= −λ =−(at + bt) .

Then, the transformed joint distribution p(λ,µ) is

obtained by the product of p(at ,bt) and the absolute

value of J2 as the following,

p(λ,µ)

= p(at ,bt) ·
∣

∣−(at +bt)
∣

∣

=
(λµ)kαt−1−1 [λ(1−µ)]kβt−1−1

Γ (kαt−1)Γ (kβt−1)
exp(−λ) ·λ

=
µkαt−1−1 (1−µ)kβt−1−1

Γ (kαt−1)Γ (kβt−1)
λkαt−1+kβt−1−1 exp(−λ) .

(51)

Then, p(µ) is obtained by marginalizing Eq. (51) with

respect to λ,

p(µ)

=

∫ ∞

0
p(λ,µ)dλ

=
µkαt−1−1 (1− µ)kβt−1−1

Γ(kαt−1)Γ(kβt−1)

·

∫ ∞

0
λkαt−1+kβt−1−1 exp(−λ)dλ

=
µkαt−1−1 (1− µ)kβt−1−1

Γ(kαt−1)Γ(kβt−1)
·Γ(kαt−1 + kβt−1)

=
Γ(kαt−1 + kβt−1)

Γ(kαt−1)Γ(kβt−1)
µkαt−1−1 (1− µ)kβt−1−1

.

(52)

Eq. (52) exactly corresponds to Beta(kαt−1,kβt−1)
according to Definition 2.8.

Recalling µ = at
at+bt

from Eq. (49) and Θt =
At

At+Bt

from Definition 2.2,

∀t ≥ 2,Θt ∼ Beta(kαt−1,kβt−1) ,

holds.

This completes the proof of Lemma 2.3.

✷
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C: Extended Results of Numerical

Examples

The following five tables are presented in Appendix

C. Tables 7 and 8 illustrate the specifications of train-

ing data, which encompasses a twelve-day period be-

tween March 20 and March 31, 2005. Table 7 illus-

trates the request arrivals and the total time intervals

(tmax). Table 8 illustrates the auto correlation coef-

ficients with lag=1. Tables 9 presents the estimated

values of the hyperparameter k̂, obtained through the

approximate maximum likelihood estimations, along

with the values of Akaike Information Criteria (AIC)

for both the proposed nonstationary and the conven-

tional stationary models, derived from the training

data with a eleven-day period. Table 10 illustrates the

predictive performances of both the proposed and sta-

tionary models, evaluated on the test data. It depicts

the mean squared errors under both the past observed

test data and the estimated values of the hyperparam-

eters from the training data.

Table 7: Extended Training Data Specifications #1.

Total Request
Date Arrivals tmax

Mar.20, 2005 4,669 279
Mar.21, 2005 6,742 312
Mar.22, 2005 9,767 329

Mar.23, 2005 11,672 333
Mar.24, 2005 17,329 332
Mar.25, 2005 11,527 305

Mar.26, 2005 6,369 291
Mar.27, 2005 26,325 314
Mar.28, 2005 17,994 341

Mar.29, 2005 17,874 336
Mar.30, 2005 7,267 295
Mar.31, 2005 11,260 329

Table 8: Extended Training Data Specifications #2.

Auto Correlation
Date Coefficient

Mar.20, 2005 0.615

Mar.21, 2005 0.667
Mar.22, 2005 0.708
Mar.23, 2005 0.782
Mar.24, 2005 0.864

Mar.25, 2005 0.821
Mar.26, 2005 0.670
Mar.27, 2005 0.839

Mar.28, 2005 0.873
Mar.29, 2005 0.862
Mar.30, 2005 0.712

Mar.31, 2005 0.714

Table 9: Extended Results of Training Data.

AIC

Date k̂ Proposed Stationary

Mar.20, 2005 0.932 3086.2 3098.4

Mar.21, 2005 0.936 3663.1 3693.9

Mar.22, 2005 0.924 4155.0 4191.4

Mar.23, 2005 0.921 4333.2 4392.7

Mar.24, 2005 0.918 4643.6 4758.4

Mar.25, 2005 0.889 3976.4 4090.1

Mar.26, 2005 0.924 3417.2 3456.7

Mar.27, 2005 0.937 4862.5 4927.6

Mar.28, 2005 0.900 4788.0 4904.0

Mar.29, 2005 0.911 4692.5 4832.2

Mar.30, 2005 0.923 3547.3 3601.5

Mar.31, 2005 0.928 4290.0 4320.9

Table 10: Mean Squared Errors of Test Data.

MSE

Date Proposed(A) Stationary(B) A
B

Mar.21, 2005 142.9 192.0 0.744

Mar.22, 2005 289.5 376.7 0.768

Mar.23, 2005 288.3 499.1 0.578

Mar.24, 2005 492.8 1263.0 0.390

Mar.25, 2005 365.8 756.2 0.484

Mar.26, 2005 186.8 254.1 0.735

Mar.27, 2005 1083.1 2261.5 0.479

Mar.28, 2005 761.7 1504.1 0.506

Mar.29, 2005 631.4 1491.3 0.423

Mar.30, 2005 201.9 302.8 0.667

Mar.31, 2005 338.7 482.4 0.702
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