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Abstract: The increasing need for effective groundwater monitoring presents a valuable opportunity for Machine 
Learning (ML)-based virtual sensing, especially in regions with challenging sensor networks. This paper 
studies the practical application of two core ML models, Gaussian Process Regression (GPR) and Position 
Embedding Graph Convolutional Network (PEGCN), for predicting groundwater levels in The Netherlands. 
Additionally, other models, such as Graph Convolutional Networks and Graph Attention Networks, are 
mentioned for completeness, offering a broader understanding of ML methods in this domain. Through two 
experiments, sensor data reconstruction and virtual sensor prediction, we consider model performance, ease 
of implementation, and computational requirements. Practical lessons are drawn, emphasising that while 
advanced models like PEGCN excel in accuracy for complex environments, simpler models like GPR are 
better suited for non-experts due to their ease of use and minimal computational overhead. These insights 
highlight the trade-offs between accuracy and usability, with important considerations for real-world 
deployment by practitioners less familiar with ML. 

1 INTRODUCTION 

Groundwater monitoring is essential for sustainable 
water resource management, particularly in countries 
like The Netherlands, where precise groundwater data 
supports flood control, irrigation, drinking water 
supply, and environmental protection.  

Traditional monitoring approaches rely heavily on 
physical sensor networks, which are costly and often 
impractical to deploy and maintain due to logistical, 
legal, and geographic constraints. This has opened up 
a significant opportunity for Machine Learning (ML)-
based virtual sensing systems to predict groundwater 
levels in regions where physical sensors are lacking, 
improving monitoring coverage and operational 
efficiency. 

This paper presents an investigation into the 
practical application of two relevant ML models for 
virtual groundwater level sensing, namely Gaussian 
Process Regression (GPR) and Position Embedding 
Graph Convolutional Network (PEGCN).  
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GPR is well-known for its ability to model spatial 
correlations and estimate uncertainty, making it a 
strong candidate for environments where predictive 
reliability is critical. PEGCN, by contrast, employs a 
graph-based framework enhanced with positional 
encoding, allowing it to better capture complex 
spatial relationships in sensor networks. This study 
aims to evaluate the strengths and weaknesses of 
these models in terms of their performance, 
scalability, and adaptability to groundwater 
monitoring needs. 

In addition to GPR and PEGCN, we also mention 
other models, including Graph Convolutional 
Networks (GCN) and Graph Attention Networks 
(GAT). These models are mentioned to provide a 
holistic view of available ML techniques for spatial 
interpolation tasks. This exploration allows us to 
learn valuable lessons, particularly concerning their 
readiness for use in practical situations by non-expert 
users, such as water resource managers or 
environmental engineers with limited ML expertise. 
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Beyond performance metrics like accuracy, this 
paper highlights crucial practical considerations such 
as ease of implementation, computational 
complexity, and the resource demands associated 
with each model. These factors are essential for real-
world applications, as they determine the feasibility 
of adopting ML models in routine groundwater 
monitoring tasks. This study provides insights into 
the trade-offs between model accuracy and practical 
usability, helping guide model selection based on 
specific geographic conditions, operational 
requirements, and user expertise. 

The remainder of the paper is organised as 
follows: Section 2 provides background on 
groundwater monitoring and the ML techniques 
considered. Section 3 reviews related work. Section 4 
presents the case study, implementation details, and 
experimental results. Section 5 discusses the lessons 
learned and concludes with potential directions for 
enhancing ML-based virtual sensing systems in 
groundwater monitoring. 

2 BACKGROUND 

2.1 Groundwater Level Measurement 

Groundwater level measurement provides crucial 
insights into subsurface water dynamics, particularly 
in The Netherlands, where effective water 
management is vital due to its low-lying geography 
and high population density. Integrating ML with 
sensor data enables more accurate spatial and 
temporal interpolation, improving predictions in 
unmonitored areas.  

ML-based virtual sensors exploit real-world data 
from sensor networks to estimate groundwater levels 
where direct measurements are unavailable. 
Typically installed in boreholes, these sensors record 
water levels continuously, helping to understand 
seasonal variations and human impacts. In regions 
with sparse networks, ML models fill gaps using 
historical sensor data, even when some sensors have 
missing or incomplete records. 

In The Netherlands, various organisations manage 
groundwater sensor networks, with platforms like the 
Dutch Hydrological Information Platform (HYDAP) 
offering access to real-time and historical 
groundwater data. These platforms collect, store, and 
analyse sensor measurements, providing valuable 
data for researchers, policymakers, and engineers. 
Users can access sensor data through APIs or web 
portals, enabling integration with analytical tools for 
data analysis and modelling. 

ARGUS is another such a platform developed by 
Aveco De Bondt. It plays a significant role in 
groundwater monitoring across the country. The 
platform is designed to support waterboards, 
municipalities, and drinking water companies by 
aggregating and analysing groundwater data from a 
wide network of sensors deployed across the country.  

This platform monitors these water levels in real-
time, enabling more informed decision-making for 
flood control, water management, and environmental 
protection. Using advanced data visualisation and 
predictive analytics, it helps assess trends, manage 
risks, and optimise water strategies by integrating 
data from diverse sources, like local sensors and 
national datasets. This enhances operational 
efficiency in water management, offering insights for 
both immediate actions and long-term planning. 

Groundwater monitoring is uniquely challenging 
due to its slow response to external factors compared 
to surface water. For readers interested in a more 
comprehensive understanding of groundwater 
monitoring techniques, including sensor systems and 
hydrological modelling, we recommend the 
consulting a popular text (Rothman, 2021). 

2.2 Gaussian Process Regression 
Primer 

GPR is a non-parametric, Bayesian approach to 
regression that is particularly useful for modelling 
complex, multi-dimensional datasets. It is preferred 
in geospatial analysis and environmental modelling 
due to its ability to provide a probabilistic framework 
and quantify the uncertainty in predictions for making 
informed decisions in these fields. 

It models the observed data 𝑦 at locations 𝑋 using 
a Gaussian process (GP), which is a collection of 
random variables, any finite number of which have a 
joint Gaussian distribution.  

A GP is fully specified by its mean function mሺxሻ 
and covariance function 𝑘ሺ𝑥, 𝑥ᇱሻ. Typically, mሺxሻ is 
taken as zero, and the focus is on the choice of the 
covariance function 𝑘ሺ𝑥, 𝑥ᇱሻ , also known as the 
kernel, which encodes assumptions about the function 
to be learned. 

The kernel function determines the shape of the 
covariance between pairs of points in the input space. 
A popular choice for capturing varying degrees of 
smoothness in the underlying function is the Matérn 
kernel, where 𝑉  controls the smoothness of the 
function. 𝑉 allows the kernel to interpolate between 
different levels of smoothness. E.g., when 𝑉 = 0.5, it 
reduces to the exponential kernel, producing less 
smooth functions. As 𝑉  increases, the resulting 
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functions become smoother, with the kernel 
converging to the squared exponential kernel as 𝑉 →∞.  

GPR is well-suited for environmental modelling 
and geospatial analysis. Its flexible kernel function 
can be customised to fit diverse data types and 
structures. As a non-parametric method, it adapts to 
complex data patterns without requiring predefined 
models. For readers seeking to explore the theory and 
applications of GPR in depth, (Rasmussen, 2006) 
provides comprehensive coverage. 

2.3 Deep Learning for Spatial 
Reconstruction 

Deep Learning (DL) has significantly advanced the 
field of ML. There are powerful tools to model 
complex data structures and extract meaningful 
patterns. Among the various architectures, 
Transformer architectures and Graph Neural 
Networks (GNN) have emerged as particularly 
influential for handling structured data, especially in 
spatial reconstruction tasks. 

Transformers, introduced by (Vaswani, 2017), 
represent a breakthrough in sequence modelling that 
has since been adapted for a wide range of tasks 
beyond natural language processing. The 
Transformer’s self-attention mechanism allows the 
model to weigh the influence of different parts of the 
input data, particularly useful for modelling 
sequential data where the context and order of data 
points are crucial. 

On the other hand, GNNs are powerful tools for 
learning representations of nodes and edges within a 
graph. These representations are refined by 
aggregating information from neighbouring nodes 
and edges, enabling the model to propagate 
information effectively across the entire graph.  

Unlike traditional neural networks, GNNs use the 
graph structure during learning. This is especially 
beneficial for spatial data where the relationships 
between data points are determined by their 
connectivity, rather than merely by their order or 
proximity. They are highly flexible and adaptable, 
capable of handling various types of graphs, 
including directed, undirected, weighted, and multi-
relational graphs. This makes them suitable for a 
broad range of applications, from analysing 
molecular structures to understanding dynamics 
within social networks. 

In spatial reconstruction, GNNs have been used to 
model physical processes where data is naturally 
represented as a network of interconnections, e.g., 
river networks, road networks. They have been 

employed to predict traffic flow, model water 
distribution in rivers, and simulate the spread of 
pollutants in air or water networks. By using GNNs, 
researchers can incorporate both the spatial 
arrangement and the physical or functional 
connectivity between data points, leading to more 
accurate and context-aware predictions. 

Recent research has explored combining 
Transformer architectures with GNNs to exploit the 
self-attention mechanism's ability to process 
sequential dependencies and GNNs’ capacity to learn 
from graph-structured data. This hybrid approach is 
particularly potent for spatio-temporal data, where 
both the temporal dynamics and the spatial 
connections must be understood and modelled 
effectively. 

One of the promising applications of this hybrid 
approach is in environmental science, where models 
need to capture complex interactions over both time 
and space, such as the evolution of weather patterns, 
the spread of contaminants, or the changes in 
groundwater levels. By integrating Transformers with 
GNNs, models can better capture the multifaceted 
nature of these processes, leading to more accurate 
predictions and deeper insights into the underlying 
phenomena. For detailed elaborations on graph 
representation learning and transformer architectures, 
interested readers are referred to the respective works 
of (Rothman, 2021; Hamilton, 2020). 

3 RELATED WORK 

Groundwater level prediction research features the 
study of various ML techniques, ranging from 
traditional methods to cutting-edge DL models. 
Classical regression methods, such as GPR and 
Sparse Identification of Nonlinear Dynamics 
(SINDy), have been foundational in spatial prediction 
tasks related to groundwater levels.  

GPR, known for its ability to model continuous 
spatial relationships and estimate uncertainties, has 
proven useful, although it faces computational 
challenges with large datasets due to its complexity 
(MacKay, 1998; Gu, 2012). SINDy, on the other 
hand, is adept at capturing complex spatial dynamics 
and nonlinear dependencies but is less effective for 
direct value prediction (Brunton, 2015; Castro-Gama, 
2022). 

Ensemble methods, like Random Forest, have 
been applied to model topological and flow dynamics 
within water networks. These methods handle time 
dependencies with fewer parameters and are effective 
for capturing flows across a network’s edges, while 
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typical prediction tasks focus on node values (Sun, 
2019; Ahmadi, 2019).  

DL, especially models, such as Convolutional 
Neural Networks (CNN), Long Short-Term Memory 
(LSTM) networks, Transformer models, and Graph 
Neural Networks (GNN), have significantly 
advanced spatial and temporal data modelling in 
water distribution networks (Paepae, 2021). GNNs, 
particularly their extensions, like Graph Attention 
Networks (GAT) and Temporal GNNs (T-GNNs), are 
well-suited for modelling complex network structures 
with nodes and edges, enabling more accurate 
predictions of dynamic processes, such as water 
distribution (Truong, 2024; Zhao, 2019; Veličković, 
2018). 

Scalability issues often arise with GNNs due to 
their high computational demands and numerous 
parameters (Topping, 2022; Zheng, 2024). To address 
this, innovative techniques like Position Embedding 
Graph Convolutional Network (PEGCN) and 
Nodeformer have been developed (Chamberlain, 
2021; Wu, 2022). These models handle challenges 
such as over-squashing, heterophily, and long-range 
dependencies by incorporating positional encoding, 
making them effective for spatial interpolation tasks 
like groundwater level prediction. Nodeformer uses 
Transformer architectures to improve the scalability 
and performance of graph-based models, although it 
requires higher computational resources. 

Hybrid models have also been explored, e.g., 
combining GNNs with LSTMs or CNNs, to enhance 
prediction robustness by capturing dynamic temporal 
and spatial changes in water levels (Lu, 2020; Nasser, 
2020). Moreover, probabilistic spatio-temporal graph 
models, such as DIffSTG, and attention-based 
models, like spatial-temporal attention mechanisms, 
have been developed to improve prediction accuracy 
and reliability, surpassing traditional methods in 
several aspects (Shi, 2021; Wen, 2023). These 
methods are particularly useful in environmental 
science, where models must capture both the spatial 
and temporal dynamics of water systems. 

Fast downscaling methods, such as CNN-based 
approaches, have also been employed to improve data 
resolution in environmental predictions. While 
statistical techniques, like quantile perturbation, have 
been explored, DL methods have outperformed 
traditional models in capturing complex temporal 
features for downscaling tasks (Tabari, 2021; Sun, 
2024). These advancements demonstrate the potential 
of ML models, particularly those incorporating 
spatial and temporal dynamics, for more accurate 
groundwater level predictions. 

The growing applicability and use of ML 
techniques, from classical regression to advanced 
GNN architectures, continues to improve water level 
prediction. PEGCN, with its positional encoding, 
exemplifies these advancements, offering enhanced 
spatial awareness for groundwater level prediction. A 
challenges lies in integrating temporal dynamics and 
refining these models for broader applicability in 
water resource management. 

4 INVESTIGATIVE STUDY 

This study aims to estimate groundwater levels across 
Schiedam, Netherlands, using real sensor data. 
Schiedam’s complex clay terrain and urban 
infrastructure create significant variability in 
groundwater levels. The dataset, from the ARGUS 
platform, includes hourly measurements from 151 
sensors over 7.6 years (66,921 hours), with water 
levels ranging from -2.8m to 0.3m. For efficiency, the 
analysis focuses on the last 60 days of data. 

ML models are used to generate virtual sensor 
values, enhancing spatial coverage without the cost of 
additional physical sensors. These virtual sensors 
predict levels in unmonitored areas by utilising spatial 
correlations from the data. The dataset pairs sensor 
readings with geographic coordinates, labelling 
missing or target data as ‘virtual’ to allow for model 
training and accurate predictions. Schiedam’s 
environment is a challenging representative test case 
for virtual sensing technologies in groundwater 
monitoring. 

4.1 Model Implementation and Testing 

The dataset includes hourly groundwater level 
readings from multiple sensors, accompanied by the 
geographic coordinates of each sensor. If a sensor is 
missing data at certain timestamps or is flagged for 
prediction, the entry is labelled as ‘virtual,’ and the 
corresponding value is set to zero for prediction 
purposes. 

The dataset is chronologically ordered by 
timestamp, with each timestamp representing a 
snapshot of sensor readings. For graph-based models, 
like the PEGCN, a k-nearest neighbours (kNN) graph 
is constructed from these snapshots using the 
Euclidean distances between sensor coordinates.  

For statistical regression approaches, such as 
GPR, both the sensor values and coordinates are 
normalised to improve the accuracy of the model’s 
predictions. 
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4.1.1 Handling Missing Data and Virtual 
Sensors 

Two distinct approaches are used to handle missing 
data and virtual sensors, namely dynamic graph (with 
node removal) and fixed graph (with zero-filling). 

Dynamic Graph Approach: Missing data is 
excluded from the input, and the model generates a 
regression without receiving any information about 
the missing sensor. This method works best for 
spatially-aware models, like GPR and PEGCN.  

For GPR, the model does not rely on graph 
structures and can function effectively with masked 
data. In the case of PEGCN, however, removing 
nodes results in the need to reconstruct a new graph 
at each iteration, which can reduce the model’s ability 
to maintain a constant graph structure. However, this 
dynamic input graph could make the model more 
adaptable when predicting new virtual sensors 
without requiring a complete retraining of the model. 

Fixed Graph Approach: The graph structure 
remains constant and missing data is replaced with 
zeros during both training and testing. The loss is 
computed only between the output predictions and the 
actual values of the existing sensors.  

Graph-based models, like PEGCN and other 
GNNs trained with this method, tend to perform 
better at reconstructing the sensor network when the 
virtual sensors are predetermined. However, this 
approach may perform poorly when asked to predict 
out-of-distribution sensors, i.e., sensors that were not 
part of the initial training set. 

4.1.2 Model Training and Testing 

During model training, PEGCN and other GNN 
algorithms randomly mask half of the sensor inputs, 
setting their values to zero, while still incorporating 
them into the loss function. This masking technique, 
applied to batches of snapshots, enables the model to 
predict missing sensor values by leveraging the 
available data from other sensors. This method 
enhances the model’s understanding of spatial 
dependencies between sensors. 

In contrast, training the GPR model involves 
optimising two key hyperparameters, i.e., the 
constant value and the length scale that control the 
smoothness and variability of predictions. The model 
is fine-tuned by minimising prediction errors, to 
capture spatial correlations in the predictions. 

The testing phase mirrors the training setup. For 
GNN-based models like PEGCN, we reconstruct the 
masked sensor values and compare them with actual 
data. GPR, on the other hand, directly predicts 

groundwater levels based on learned spatial 
correlations. Both models are evaluated using 
standard error metrics like Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE). 

4.2 Experimental Setup 

The study is designed to evaluate the models’ ability 
to learn from real sensor data and predict groundwater 
levels. Two main experiments were conducted to 
assess both the reconstruction of known sensors and 
the prediction of virtual sensors in unmonitored areas. 

The first experiment (Experiment 1) focuses on 
evaluating the models’ ability to understand and 
reconstruct the dynamics of the existing sensor 
network. This is particularly important for DL 
models, like PEGCN and GATRes, as GPR does not 
require training and thus has limited capacity to 
capture network dynamics. 

To conduct this experiment, the dataset is divided 
into two parts: The first 40 days of data are used for 
training, while the last 20 days are reserved for 
validation. During training, in each snapshot, half of 
the sensors are randomly masked, and the models are 
trained to predict the values of the masked sensors 
based on the available data from the other sensors. 

In the evaluation phase, the same procedure is 
applied: Half of the sensors are masked, and the 
model predicts the values for these masked sensors. 
The predicted values are then compared to the actual 
sensor readings to compute the error. 

The second experiment (Experiment 2) is 
designed to directly assess the models’ ability to 
predict the values of virtual sensors, aligning with the 
ultimate goal of creating virtual sensors to extend the 
spatial coverage of the network. 

One sensor is selected as the target for error 
calculation, and this sensor is masked in all the 
snapshots during training. The training process is 
similar to Experiment 1, except the loss is computed 
on all nodes apart from the chosen sensor, ensuring 
that the model never receives any direct information 
about the target sensor. 

During evaluation, all sensor data excluding the 
target sensor are fed into the model. Only the 
coordinates and a value of zero are provided for the 
target sensor. The model is then required to predict 
the target sensor’s value, and the error is computed 
based on this prediction. 

In these experiments, the following models were 
evaluated: 

Mean Model: Used only in Experiment 1, this 
simple baseline model outputs the mean value of each 
sensor calculated from the training dataset. It serves 
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as a control for comparison with more complex 
models. 

GPR: Uses a Matérn kernel with V = 3/2, a fixed 
length scale of 1, and a constant value of 5. This 
version of GPR does not undergo optimisation. 

GPR (Optimised): Also uses a Matern kernel 
with V = 3/2, but both the length scale and constant 
value are optimised to minimise prediction errors on 
the training dataset. 

GCN and PEGCN: Trained for 100 epochs, with 
a learning rate of 0.001, weight decay of 0.0001, and 
batches of 64 snapshots. The loss function is Mean 
Square Error (MSE), and a kNN graph is constructed 
with k = 4. For PEGCN, both a version with a 
constant graph structure and one without are trained. 

GATRes: Trained for 200 epochs, with a learning 
rate of 0.01, weight decay of 0.00001, and batches of 
64 snapshots. Like PEGCN, the loss function is MSE, 
and kNN graphs are created with k = 4. 

We expect GATRes, with its higher number of 
parameters, will perform well in the sensor 
reconstruction task, i.e., Experiment 1. However, 
PEGCN and GPR may outperform GATRes in the 
virtual sensor prediction task, i.e., Experiment 2, due 
to their ability to capture spatial relationships and 
their geographical awareness. 

The models performance are gauged using MSE 
as the loss function during training, MAE for 
effectiveness, and RSME to measure overall 
prediction accuracy. 

Our evaluation extends beyond these performance 
metrics to include other key factors, such as ease of 
implementation, which we rate as simple, moderate, 
or hard, based on the complexity of running the code 
and integrating data.  

We also assess resource complexity by 
considering training time and prediction time. These 
dimensions help illustrate the trade-offs between 
model effectiveness and computational demands. 

4.3 Results 

Figures 1 and 2 present the performance results for 
each model in Experiment 1, showing the MAE and 
RMSE, respectively. The figure shows that the simple 
mean function outperformed all other models in terms 
of both MAE and RMSE, which was somewhat 
unexpected.  

 
Figure 1: MAE for each model in Experiment 1. 

 
Figure 2: RMSE for each model in Experiment 1. 

This result can be attributed to the relatively stable 
groundwater levels in the study area, where values do 
not fluctuate significantly over time due to the 
controlled nature of the environment. As a result, a 
model outputting constant mean values is sufficient 
for reconstructing the missing data, which explains 
why the mean model performed so well in this 
context. 

Among the more complex models, PEGCN and 
GATRes exhibited the best performance in 
reconstructing the sensor network. However, they did 
not outperform the mean model.  

The potential for improvement lies in their ability 
to learn more intricate patterns from the data. 
However, the models’ difficulty in handling the 
largely static nature of the groundwater data could 
have hindered their performance. 
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Adjustments such as normalising the data per 
sensor or imputing missing values with the mean 
instead of zeros may help reduce confusion within 
these models and improve their results. PEGCN with 
a constant graph structure showed better results than 
the version with a dynamic graph, confirming the 
importance of maintaining the network structure for 
spatial data reconstruction. 

Interestingly, GPR models, despite being less 
complex and requiring no training, performed 
surprisingly well, outperforming two of the DL 
models, namely the GCN and PEGCN without a 
constant graph. This suggests that GPR, with its 
strong spatial correlation modelling, is able to handle 
such data effectively. The model’s ability to make 
accurate predictions without learning from the full 
sensor network is particularly promising for virtual 
sensor prediction tasks. 

None of the models exceeded the mean function 
in this particular case, but PEGCN and GATRes 
showed potential when provided with additional 
features and improved data handling methods. GPR 
models’ performance demonstrates that simpler 
methods may be effective when spatial correlations 
are present, making them useful for tasks like virtual 
sensor prediction.  

Positional encoding within GCN significantly 
improved its regression capabilities, even when 
competing against more parameter-rich models, like 
GATRes. These results highlight the need for further 
refinement, particularly in handling static 
environments, and suggest that GPR can serve as a 
baseline for future virtual sensor prediction 
experiments with an expected error of approximately 
50cm. 

Figure 3 shows the cartesian plot of sensors 
#76869 and #1022380. As you can see, these were 
selected in two seemingly distinct clusters, in 
respective central and peripheral positions. 

In Experiment 2, the models’ performance varied 
significantly depending on the sensor being predicted. 
As shown in Figures 4 through 8, PEGCN generally 
produced more stable results across different sensors, 
with errors ranging from 20cm to 2m.  

In contrast, GPR exhibited much greater 
variability in its predictions. As shown in Fig. 4, GPR 
performed well on sensor #76869 reaching 10cm, but 
its error for sensor #1022380 reached nearly 4m. 

 
Figure 3: Cartesian plot of sensors #76869 and #1022380 
from Experiment 2. 

 
Figure 4: MAE and RSME (in metres)  for each method 
and sensors #76869 (top) and #1022380 (bottom) in 
Experiment 2. 

This disparity can be explained by GPR’s 
limitations when reconstructing sensors that are either 
geographically distant from other sensors or have 
values that differ greatly from their neighbours. Its 
inherent spatial correlation modelling is highly 
sensitive to the distance between sensors, making it 
less effective in regions where the groundwater levels 
fluctuate significantly across short distances or where 
the data distribution is irregular.  

PEGCN, with its positional encoding and graph-
based structure, appears to be better equipped to 
handle such discrepancies, allowing it to maintain 
more consistent performance even with sensors that 
exhibit varying behaviours. 
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MAE error distributions shown in Fig. 8, suggests 
that GPR struggles with outliers, especially in cases 
where the sensor’s value is far from its neighbouring 
sensors. This indicates that GPR’s interpolation 
capabilities are less robust in areas with extreme 
values or isolated sensors.  

 
Figure 5: MAE PEGCN per-sensor performance (in metres) 
in Experiment 2 (RMSE not shown due to similar values). 

 
Figure 6: MAE distribution PEGCN performance (in 
metres) in Experiment 2 (RMSE not shown due to similar 
values). 

On the other hand, PEGCN’s stability across the 
sensor network demonstrates the advantage of 
maintaining a graph structure that captures 
geographic relationships more accurately. 

Experimenting with kernel functions and 
hyperparameters could potentially improve GPR’s 
performance, particularly in areas with highly 
variable levels. However, GPR seems less suited for 
environments where significant differences exist 
between nearby sensors.  
 

 
Figure 7: MAE GPR (without optimisation) per-sensor 
performance (in metres) in Experiment 2 (RMSE not shown 
due to similar values). 

 
Figure 8: MAE distribution GPR (without optimisation) 
performance (in metres) in Experiment 2 (RMSE not shown 
due to similar values). 

Table 1: Other factors results for GPR, PEGCN, and GCN. 

Factor GPR PEGCN GCN

Prediction 

Snapshot 
0.03s 

Dataset 
22.32s

Snapshot 
0.35s 

Dataset 
59.52s 

Snapshot 
0.34 

Dataset 
56.94s

Training 10:42.4 01:37.0 00:53.6
Device CPU GPU GPU
No. parameters 2 6521 1153
Ease of 
implementation Simple Moderate Moderate 

Time to 
completion Day Week Week 

While PEGCN exhibits better stability and 
performance for virtual sensor prediction in areas 
with complex sensor networks, GPR still provides a 
valuable baseline with reasonable accuracy, 
especially when spatial relationships are consistent. 
However, both models could benefit from further 
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optimisation and testing in different environments to 
fully understand their capabilities and limitations. 

Beyond performance metrics such as prediction 
accuracy, other important factors must be considered 
when comparing models. Specifically, ease of 
implementation and resource complexity, are among 
those reported in Table 1. These aspects can 
significantly impact the practicality of a model for 
real-world applications. 

Among the models, GPR stands out for its 
simplicity. GPR is relatively easy to implement, as it 
does not require extensive training, and its 
performance remains stable with well-chosen initial 
parameters. This makes GPR an ideal choice for 
applications where ease of use and minimal 
computational overhead are priorities. Additionally, 
GPR runs efficiently on standard CPUs, making it 
accessible for smaller datasets or less resource-
intensive tasks.  

However, one major limitation is its scalability. 
As the number of sensors increases, GPR’s 
computational complexity grows cubically, which 
can lead to performance bottlenecks with larger 
datasets. 

In contrast, PEGCN and GCN are more 
challenging to implement. They require a solid 
understanding of graph-based neural networks and 
experience with libraries, like PyTorch Geometric. 
Setting up these models involves more intricate input 
preparation and parameter tuning, particularly for the 
graph structure and embeddings. Moreover, these 
models perform best on GPUs, meaning access to 
high-performance hardware is crucial for their 
implementation and training, especially when dealing 
with larger datasets.  

During the study, Nodeformer was also explored 
as a potential model. However, it was ultimately 
unsuccessful in our case, highlighting the difficulty of 
adapting advanced DL models to specific tasks. This 
illustrates the inherent challenge in implementing 
cutting-edge models, which may not always be ready 
for practical applications without significant 
customisation. 

Table 1 also provides an overview of the resource 
demands of each model in terms of prediction time, 
training time, and ease of implementation. It reveals 
that GPR is the most resource-efficient, with a 
prediction time of just 0.021965s per snapshot and no 
need for training on large datasets.  

PEGCN and GCN are significantly more 
demanding, with training times for the whole dataset 
reaching over an hour and requiring substantial GPU 
resources. Additionally, GATRes and Nodeformer 
were not fully implemented due to their high 

complexity, suggesting that these models may not be 
easily used in environments where computational 
resources are limited. 

As the table shows, GPR is the fastest and 
simplest to implement, making it ideal for small-scale 
applications with minimal training requirements. 

However, PEGCN performs better in terms of 
accuracy and stability for virtual sensor 
reconstruction tasks, although it demands more data, 
training time, and computational resources. The need 
to retrain PEGCN whenever new virtual sensors are 
added increases its complexity, both in terms of data 
management and coding effort. 

5 CONCLUSION 

A key takeaway is the importance of comparing 
available ML models based on their performance, as 
well as on their suitability for practical applications. 
We investigated models like GPR, PEGCN, and GCN 
for groundwater level monitoring, with a focus on 
real-world implementation and usability. This focus 
is particularly crucial because the eventual users of 
such solutions may not be experts in ML, and the 
system should be accessible and manageable without 
deep technical expertise needed. 

Model selection plays a key role, with GPR being 
ideal for users needing a simple, efficient solution. Its 
ease of use, minimal computational needs, and no 
requirement for retraining make it suitable for stable 
groundwater conditions and smaller datasets, 
particularly for non-expert users. 

In contrast, complex models like PEGCN offer 
better accuracy in handling spatial variability but 
require significant resources, technical expertise, and 
access to advanced hardware like GPUs, making 
them challenging for non-expert users. 

Even for experienced practitioners, implementing 
advanced models like PEGCN, GATRes, or 
Nodeformer is challenging due to real-world 
obstacles, like data cleaning and handling missing 
values. Moving from theoretical model performance 
to practical deployment often involves additional 
customisation and tuning, demanding substantial 
computational power. Thus, balancing model 
performance with usability remains complex, even 
for technical users. 

This paper considers ML models, GPR and 
PEGCN, for estimating groundwater levels in The 
Netherlands, using data from the Schiedam area. We 
investigate their performance in monitored and 
unmonitored areas, considering accuracy, ease of use, 
and computational requirements, as well.  
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GPR delivered reliable predictions with minimal 
training, but struggled in regions with significant 
groundwater variation. PEGCN better captured 
spatial relationships but demanded more 
computational power and retraining when adding 
virtual sensors. But the choice of model also depends 
on operational needs. GPR is suited for simpler 
applications, while PEGCN excels in more complex 
environments requiring higher precision. 

Promising advancements in ML-based virtual 
sensing for groundwater monitoring include 
integrating positional encoding into models like 
GATRes to improve spatial awareness and model 
complex terrain dependencies. Incorporating 
temporal features can better capture seasonal 
fluctuations, enhancing long-term predictions. 
Expanding data sources, such as soil composition and 
weather forecasts, can further boost accuracy across 
regions. Developing methods to estimate prediction 
error in sensor-free areas could help optimise sensor 
placement and improving uncertainty quantification, 
increasing trust in ML-driven predictions. 
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