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Abstract: Regional climate models suffer from insufficient resolution and deficiencies in their dynamic processes, 
leading to systematic biases in surface air temperature simulations that require correction. In this research, a 
deep learning bias correction model, CE-MS-Unet, is proposed. This model incorporates multi-scale residual 
blocks and calendar month data to improve surface air temperature simulations of the REMO2015 regional 
climate model during the second phase of the Coordinated Regional Downscaling Experiment East Asia 
(CORDEX-EA-II) over mainland China. Experimental results indicate that, compared to Linear Scaling, 
Quantile Delta Mapping, and the deep learning model CU-net, CE-MS-Unet performs better in correcting 
climate averages and seasonal cycles, resulting in corrected data with greater overall agreement and improved 
spatial correlation. It effectively reduces biases and provides more accurate climate predictions. This study 
offers new insights and methods to improve the bias correction of temperature in regional climate models.

1 INTRODUCTION 

In the field of climatology, Global Climate Models 
(GCMs), which couple global atmospheric, oceanic, 
and terrestrial systems, are widely used for studying 
long-term climate change and future climate 
projections. However, the relatively low grid 
resolution of GCMs limits their capacity to accurately 
capture climate changes on a regional scale. The 
application of dynamically downscaled Regional 
Climate Models (RCMs) driven by GCMs within a 
region can provide higher-resolution local 
information, thereby enhancing the accuracy of 
detailed climate impact assessments (Giorgi et al., 
1999). The Coordinated Regional Climate 
Downscaling Experiment (CORDEX), launched by 
the World Climate Research Programme (WCRP), 
provides high-resolution regional climate projections 
for land areas inhabited by most of the global 
population using multiple RCMs (Gutowski et al., 
2016). This study focuses on CORDEX-East Asia 
(CORDEX-EA), the East Asian branch of the 
CORDEX program. Previous studies indicates that 
the RCMs used in the CORDEX-EA-II experiments 
can effectively simulate and project surface air 
temperature and precipitation (Yu et al., 2020). 

However, due to the inherent limitations in 
dynamical processes and physical parameterization 
within RCMs, as well as biases inherited from their 
driving GCMs, the simulated outputs still have 
considerable systematic biases. Statistical bias 
correction methods are commonly used to reduce 
biases and improve the accuracy of future climate 
projections. These methods establish a statistical 
relationship between simulated and observed data to 
minimize their distributional differences. Two widely 
used techniques are Linear Scaling (LS) and Quantile 
Delta Mapping (QDM). LS adjusts the mean or 
standard deviation of data through a simple linear 
transformation and efficiently corrects seasonal 
temperature variations (Chen et al., 2022). However, 
it assumes the correction factor remains valid under 
future climate conditions, which can lead to 
inaccuracies as the climate changes. QDM, an 
advanced version of Quantile Mapping (QM), 
corrects both the distribution and trends of simulated 
data by mapping quantile changes while retaining the 
model's predicted climate change signals. (Tong et 
al., 2021). Nevertheless, QDM is less effective at 
managing spatial correlations and intermittency. 

In recent years, deep learning models have been 
increasingly utilized in meteorology, resulting in the 
development of numerous artificial neural network-
based bias correction methods (de Burgh-Day et al., 
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2023). Originating from computer vision, these 
models treat meteorological bias correction as a 
regression task for fitting image features, using raw 
data as input predictors for training. Several bias 
correction methods based on Generative Adversarial 
Networks (GANs) have been proposed. GANs can be 
trained on unpaired image data to learn the bias 
distribution of GCMs and generate corrected images, 
making them naturally effective for adjusting GCM 
outputs without corresponding observational data and 
capturing spatial precipitation patterns (Pan et al., 
2021; Hess et al., 2023). Additionally, convolutional 
neural network(CNN)-based methods that are widely 
used in short-term weather forecasting have shown 
their potential in climate model bias correction and 
downscaling (Sha et al., 2020). CNN-based models 
extract multi-scale spatial features through 
convolutional and pooling layers, use multi-channel 
input data to capture complex nonlinear relationships 
between different variables, thereby potentially 
improving the bias correction performance of GCMs 
or RCMs (Kesavavarthini et al., 2023; Wang and Tian, 
2022). Recently, the U-net, a CNN derivative 
originally developed for medical image segmentation, 
has also been applied to meteorological bias 
correction (Molina et al., 2023). With its encoder-
decoder structure, U-net can effectively extract 
features and restores spatial information. Compared 
to traditional CNNs, it captures multi-scale spatial 
details while producing outputs that match the 
original image size. 

Although previous work on bias correction for 
RCMs in the CORDEX-EA experiments has 
primarily employed traditional statistical methods, no 
studies have explored deep learning-based correction 
approaches (Chen et al., 2022; Tong et al., 2021). To 
improve surface air temperature simulations of 
regional climate models in the CORDEX-EA-II 
experiments over mainland China, this study 
implements a deep learning bias correction model 
based on U-net. The choice to forgo a GAN-based 
approach was driven by two main reasons: first, the 
large data requirements of GANs are challenging to 
meet given that the CORDEX-EA experiment's 
simulations span only up to 35 years; and second, the 
instability and convergence challenges inherent in the 
GAN's architecture complicates its application and 
training (Yu et al., 2024). This research introduces a 
new CE-MS-Unet model that incorporates multi-
scale residual blocks and one-hot encoding of 
calendar month data. When applied to surface air 
temperature bias correction in the REMO2015 
regional climate model, this model achieves better 
overall agreement and more accurate temperature 

cycle correction compared to traditional methods and 
the CU-net model. Consequently, it can support more 
reliable long-term regional surface air temperature 
predictions. 

The paper is organized as follows: Section 2 
details the study area and data preprocessing steps. 
Section 3 describes the implemented bias correction 
methods, including two statistical and two deep 
learning approaches. Section 4 covers the 
experimental setup and analyzes the results, while 
Section 5 concludes with a summary. 

2 STUDY AREA AND DATA 

As shown in Figure 1, this study focuses on a region 
from the CORDEX-EA-II experiment that primarily 
covers mainland China, extending from 18°N to 55°N 
and from 75°E to 135°E. To further evaluate the 
performance of various bias correction methods at a 
smaller spatial scale, five subregions within the study 
area were selected. 

 
Figure 1: Topography of the study area and its five 
subregions: Southern China (SC), Northern China (NC), 
Northeastern China (NE), Northwestern China (NW), and 
the Tibetan Plateau (TP). 

The bias correction uses RCM output data from 
REMO2015, developed by the Climate Service 
Center Germany (GERICS). TAS, TASMAX and 
TASMIN were selected from the historical simulation 
data of CORDEX-EA-II experiment. Additionally, 
digital elevation model (DEM) data were included. 
These features are related to air temperature within 
the climate system, which can improve the accuracy 
of the deep learning model in correcting temperature 
biases (Zhang et al., 2022). The Asian Precipitation-
Highly-Resolved Observational Data Integration 
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Towards the Evaluation of Water Resources 
(APHRODITE, abbreviated as APHRO) gridded 
dataset(V1101) was used as reference data. Detailed 
information about datasets is provided in Table 1. 

Table 1: Datasets used in this study. 

Datasets Variables used Temporal 

APHRO
DITE 

Daily Mean Temperature 
(TAVE) 

1971-
2005

SRTM Digital Elevation Model  
(DEM) 

1971-
2005

REMO2
015 

Output 

Near-Surface Air 
Temperature (TAS) 

1971-
2005 

Daily Minimum Near-
Surface Air Temperature 

(TASMIN) 
Daily Maximum Near-

Surface Air Temperature 
(TASMAX) 

 

Bilinear interpolation was applied to resample the 
meteorological variables from REMO2015 to align 
with the 0.25° × 0.25° resolution of the APHRO 
dataset. For deep learning methods, data from 1971 to 
2000 were used for training and validation, while data 
from 2001 to 2005 served as the test set. To enable 
the model to learn temperature variation patterns 
across different climate states, a strategy similar to 
Pan et al. (2021) was employed: from 1971, the first 
four years of each five-year period were included in 
the training set, with the final year in the validation 
set. For each time step T  within these datasets, 
reference data from the same month within a five-
year window around T were randomly selected as the 
target data. All meteorological variables were 
standardized using Z-score normalization. 

3 METHODS 

This study implemented two widely used statistical 
methods and two U-net based deep learning methods. 
LS and QDM were selected as baseline statistical 
methods for the CE-MS-Unet model, while the CU-
net model was used as the baseline for the deep 
learning methods. 

3.1 Linear Scaling 

Linear Scaling aims to minimize the mean bias 
between RCM predictions and observational data 
over monthly time series (Teutschbein and Seibert, 

2012). An additive scaling approach is used to 
compute the corrected value of meteorological 
variable X at time step i: 

 

Xbc,pሺiሻ = Xsim,pሺiሻ + μm ቀXobs,cሺiሻቁ -

μm ቀXsim,cሺiሻቁ  
(1)

 

Where μm൫X…ሺiሻ൯ is the long-term monthly average 
temperature for the month corresponding to time step 
i. In the subscripts, sim denotes the RCM simulated 
value, obs the observed value, bc the bias-corrected 
value, p the scenario period, and c the control period. 

3.2 Quantile Delta Mapping 

Quantile Delta Mapping is a technique used to correct 
distributional biases between RCM predictions and 
observational data. Unlike the conventional Quantile 
Mapping method, QDM not only matches RCM data 
with observational data during the control period but 
also accounts for changes between the control period 
and the scenario period (Tong et al., 2021). 

Specifically, for the simulated climate variable X, 
the non-exceedance probability εሺiሻ  at time step i 
during the scenario period is first calculated: 

 

εሺiሻ = Fsim,p ቀXsim,pሺiሻቁ (2)
 

Next, the bias-corrected value Xbc,p
' (i) is determined 

by substituting the non-exceedance probability into 
the inverse cumulative distribution function of the 
observational data from the control period: 

 

Xbc,p
' (i) = Fobs,c

-1 ሾεሺiሻሿ (3)
 

The absolute change in quantiles between control 
period and scenario period is then calculated as: 

 

∆ሺiሻ = Fsim,p
-1 ሾεሺiሻሿ - Fsim,c

-1 ሾεሺiሻሿ = Xsim,pሺiሻ - 
Fsim,c

-1 ൛Fsim,pൣXsim,pሺiሻ൧ൟ  
(4)

 

At the time step i during scenario period, the final 
corrected temperature is obtained by adding the 
absolute change amount to the bias-corrected value. 

 

Xbc,pሺiሻ = Xbc,p
' (i) + ∆ሺiሻ (5)

3.3 CU-Net 

Based on the study by Han et al. (2021), we introduce 
the CU-net model to correct the surface air temperatu- 
re simulation biases of the REMO2015 regional 
climate model. CU-net is a deep learning model 
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Figure 2: Architecture of the CE-MS-Unet model. The model has two input layers: one for meteorological factors and the 
other for calendar month data.

designed for bias correction in meteorology, with an 
architecture similar to U-net. When meteorological 
data is fed into CU-net, the left half of its U-shaped 
structure, consisting of a CNN-based convolutional 
encoding module, automatically extracts high-level 
features from the data. The right half, which consists 
of an upsampling module, performs decoding 
operations to progressively restore the compressed 
feature maps to their original size. During this 
upsampling process, CU-net employs the "copy and 
concatenate" operation that merges feature maps from 
the encoder and decoder along the channel dimension.  

CU-net differs from the original U-net in its use 
of sub-pixel convolution in the decoder. When 
applied to the expansion of meteorological feature 
maps, sub-pixel convolution enhances computational 
efficiency and reduces the loss of valuable 
information during image reconstruction. 

3.4 CE-MS-Unet 

Building upon the CU-net architecture, this study 
introduces multi-scale residual blocks and one-hot 
encoding of calendar month data, leading to a new 
model: the Calendar-Embedded Multi-Scale Residual 
U-net (CE-MS-Unet). Figure 2 illustrates the 
structure of CE-MS-Unet. CE-MS-Unet replaces the 
sequential convolutions in each layer with multi-scale 
residual blocks and incorporates calendar month data 
as additional input at the deepest layer.  

 
Figure 3: Structure of the multi-scale residual block. 

Biases in RCM temperature simulations may 
result from interactions between climate processes 
occurring at different spatial scales, such as local 
effects and large-scale weather systems. Therefore, 
more effectively capturing meteorological features 
across multiple spatial scales can potentially improve 
bias correction performance (Faijaroenmongkol et al., 
2023). As shown in Figure 3, the Multi-Scale 
Residual Block captures multi-scale information in 
the temperature field using parallel convolutional 
kernels of different sizes. These multi-scale features 
are then fused and passed to the next network layer 
through a Residual Connection. The use of feature 
fusion and residual connections stabilizes deep 
network training, helping prevent overfitting and 
reduce noise and uncertainty in temperature data. 
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Additionally, the Exponential Linear Unit (ELU) 
activation function is used in all convolutional layers. 

Temperature shows significant seasonal 
variations, with distinct patterns and characteristics 
across different months. The use of calendar data in 
deep learning models has been successfully applied to 
precipitation bias correction (Ling et al., 2022). To 
improve the model's ability to capture temperature 
bias characteristics across different months and 
seasons, calendar month data was used as an 
additional input. These data are represented as a 12-
dimensional one-hot encoded vector, where each 
dimension corresponds to a month and is then fused 
with the feature maps at the model’s deepest layer. 
Before fusion, learnable scaling factors are applied to 
dynamically adjust the weights of the two data 
sources, optimizing their relative influence during the 
fusion process. Introducing calendar month data at 
the deepest layer is intended to preserve the CU-net 
model's original spatial feature extraction capabilities 
while integrating temporal information with high-
level abstract features, thereby enhancing the model's 
final correction output more effectively. 

4 EXPERIMENT AND RESULTS 

4.1 Training Setting 

During training, the ADAM optimizer was used with 
an initial learning rate of 0.001 and a batch size of 16. 
The total number of epochs was set to 50. Dynamic 
learning rate adjustment were employed: if the 
validation loss did not decrease for two consecutive 
epochs, the learning rate was halved. After training, 
the model weights with the lowest validation loss 
were saved. Both models utilized a custom loss 
function that considers the Mean Squared Error (MSE) 
at each grid point, as well as the MSE of the overall 
data mean and standard deviation, defined as follows： 

 

L = MSE൫yi-yi
' ൯ + 3 × MSE൫ymean-

ymean
' ൯ + 3 × MSE൫ystd-ystd

' ൯  
(6)

 

Where yi and yi
'  represent the observed and corrected 

values, with the subscripts mean  and std  denoting 
their mean and standard deviation, respectively. 

Both deep learning models were implemented 
using TensorFlow 2.9 and Python 3.9 and were 
trained on four GPU-like accelerators. The 
accelerator adopts a GPU-like architecture consisting 

of a 16GB HBM2 device memory and many compute 
units, with peak FP64 performance of 7.0TFLOPS. 

4.2 Statistical Performance Metrics 

To evaluate the effectiveness of each bias correction 
method, mean absolute error (MAE), root mean 
squared error (RMSE), and spatial correlation 
coefficient (SCC) were employed. MAE and RMSE 
is calculated as: 

 

MAE = 1
n

∑ หyi-yi
' หn

i=1   (7)
 

RMSE = ට1
n

∑ ൫yi-yi
' ൯2n

i=1   
(8)

 

Where yi is the observed values and yi
'  is the corrected or original 

values. The Spatial Correlation Coefficient (SCC) is 
used to evaluate the correlation between the spatial 
distributions of temperature values before and after 
correction: 

 

SCC = ∑ ሺxi-xതሻn
i=1 ൫yi-yത൯ට∑ ሺxi-xതሻ2n

i=1 ට∑ ൫yi-yത൯2n
i=1

  (9)
 

Where xi and yi represent the values in the observed 
and corrected spatial distributions, and xത  and yത  are 
their respective means. 

4.3 Results 

4.3.1 Overall Agreement 

The overall agreement between the corrected and 
observed surface air temperature was evaluated using 
MAE and RMSE values calculated for each grid point 
across the entire study area and its five subregions. 
Detailed results are presented in Table 2. Across the 
study area, four corrected results exhibited different 
levels of improvement over the original RCM data. 
LS showed a slight advantage compared to QDM, 
whereas CU-Net and CE-MS-Unet outperformed LS. 
CE-MS-Unet performed the best, reducing the MAE 
and RMSE values by 0.23 and 0.24 respectively, 
compared to CU-Net. The four methods varied in 
performance across subregions. Among statistical 
methods, QDM outperformed LS in MAE and RMSE 
in the NW and TP regions, while LS performed better 
in the others. For deep learning methods, CE-MS-
Unet consistently surpassed CU-Net across all 
regions. In four of the five subregions (excluding TP), 
deep learning methods showed better consistency 
than statistical methods, with CE-MS-Unet yielding 
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Table 2: MAE and RMSE values for RCM output and four bias-corrected results across the entire study area and its five 
subregions, the best-performing values are highlighted in bold. 

 MAEs RMSEs 

Regions RCM LS  QDM  CU-Net 
CE-
MS-
Unet

RCM LS  QDM  CU-Net 
CE-
MS-
Unet

SC 3.24 2.97 3.08 2.18 1.94 4.21 3.89 4.08 2.89 2.58 

NC 3.65 3.28 3.38 2.67 2.46 4.70 4.25 4.41 3.42 3.12 

NE 3.97 3.69 3.68 3.01 2.66 4.99 4.62 4.69 3.75 3.27 

NW 2.94 2.28 2.18 2.07 1.90 3.71 2.93 2.83 2.59 2.37 

TP 4.38 2.37 2.09 2.75 2.59 5.63 3.09 2.71 3.69 3.45 

Overall 4.58 3.93 4.01 3.88 3.65 6.05 5.24 5.41 5.19 4.95 

 
Figure 4: Spatial-distribution of mean temperature biases for the testing period (2001-2005) from (a) RCM and (b-e) four 
bias-correction methods (unit: ℃). The spatial average RMSEs (the upper one) and annual average daily map correlations 
(the lower one) between the RCM/corrected outputs and observations are provided in lower right corner of the panels.  

the best results. In the TP region, the complex terrain 
results in larger biases in RCM simulations. 
Traditional methods process data in a relatively 
simple way, making them better suited to this 
scenario. In contrast, deep learning models struggle to 
learn temperature bias characteristics due to the large 
amount of high-error data. Consequently, QDM 
performs best in the TP region. These results suggest 
that, in terms of overall agreement with surface air 
temperature data, the two U-Net-based deep learning 
methods provide superior corrections across most 
regions, with CE-MS-Unet yielding the most 
consistent results. 

4.3.2 Spatial Distribution Bias 

As shown in Figure 4, the five-year average 
temperature bias between the corrected results and 
observational data was calculated to assess each 
method's ability to correct spatial biases. The RMSE 
of the original data’s annual average temperature 
reached 2.41, while all four correction methods 
significantly reduced this bias, lowering the RMSE to 
below 1. Owing to their superior spatial feature 
extraction capability, CU-net and CE-MS-Unet not 
only effectively reduced the bias but also better 
preserved the original spatial patterns of the RCM. 
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Figure 5: Annual cycles of temperature biases from REMO2015 and four bias-correction results over five subregions.

CE-MS-Unet reduced the bias to below 1°C in most 
regions and eliminated the cold bias in high-latitude 
areas seen with LS and QDM, resulting in a more 
balanced cold-warm bias distribution. 

Additionally, the spatial correlation coefficients 
(SCC) between the five-year annual average 
temperatures of each dataset and the observational 
data were calculated. The results indicated that the 
original RCM data had a SCC of 0.98, while all four 
correction methods improved it to 1. To further assess 
each method's ability to enhance spatial correlation, 
the approach of Wang and Tian (2022) was employed. 
This method flattens the 2D spatial data into a 1D 
vector to calculate daily map correlations, which are 
then averaged over the 5 years. Figure 4 indicates that 
CE-MS-Unet achieved the highest annual average 
daily map correlation. Although CU-net also 
demonstrated a relatively high map correlation, its 
RMSE was notably higher. Taking both metrics into 
account, CE-MS-Unet has a clear advantage in 
correcting spatial biases of temperature. 

4.3.3 Temporal Skill 

Figure 5 illustrates the regional monthly mean 
temperature biases between the corrected results and 
observational data. In four subregions excluding TP, 
CE-MS-Unet, LS, and QDM significantly reduced 
the monthly mean temperature bias, bringing it below 
1°C for most months and closely matching the 
observational climatology. CU-Net reduced the bias 
in average temperatures for spring, summer, and 
autumn, but showed a substantial warm bias in winter. 
CE-MS-Unet effectively addressed the winter bias 

issue observed in CU-Net and demonstrated 
comparable capabilities to LS and QDM across four 
subregions. Moreover, the deviations in the lowest 
and highest monthly mean temperatures corrected by 
LS and QDM were around 3°C, while those corrected 
by CE-MS-Unet were closer to 2°C, indicating 
thatCE-MS-Unet had less variability than the 
traditional methods. In the TP region, both deep 
learning methods were less effective than LS and 
QDM in reducing the significant cold bias in RCM 
simulations. This result aligns with the overall 
agreement section and is attributed to higher errors 
and lower data quality in the region's simulations. 

5 CONCLUSIONS 

To improve the accuracy of surface air temperature 
simulations from the REMO2015 model within the 
CORDEX-EA project over mainland China, we 
presented a U-Net-based bias correction model, CE-
MS-Unet. Experimental results demonstrate that, 
compared to traditional statistical methods like Linear 
Scaling and Quantile Delta Mapping, as well as the 
existing deep learning model CU-net, CE-MS-Unet is 
better at capturing the spatial and temporal features of 
surface air temperature. This improvement is 
achieved by incorporating multi-scale residual blocks 
and embedding calendar month data. In East Asia, 
CE-MS-Unet excels in reducing MAE and RMSE, 
while also providing superior correction for spatial 
distribution and seasonal cycles. Although slightly 
inferior to QDM in the Tibetan Plateau, CE-MS-Unet 
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overall outperforms LS, QDM, and CU-net in 
correcting spatial and temporal biases in 
REMO2015’s surface air temperature simulations. 

Future work could explore further adjustments to 
the CE-MS-Unet structure, such as integrating 
attention mechanisms, designing more sophisticated 
methods for calendar data fusion, and enhancing the 
model's bias correction performance in the Tibetan 
Plateau. Ablation studies could also be conducted to 
improve the model's interpretability. Additionally, 
testing CE-MS-Unet's performance in CORDEX 
experiments outside East Asia would help validate its 
generalization and applicability. 

ACKNOWLEDGEMENTS 

This work was supported by the State Key RandD 
Program of China (No. 2021YFB0300200). 

REFERENCES 

Giorgi, F., and Mearns, L. O. (1999). Introduction to special 
section: Regional climate modeling revisited. Journal 
of Geophysical Research: Atmospheres, 104(D6), 
6335-6352. 

Gutowski Jr, W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, 
D., Kang, H.-S., Krishnan, R., Lee, B., Lennard, C., and 
Nikulin, G. (2016). WCRP coordinated regional 
downscaling experiment (CORDEX): a diagnostic MIP 
for CMIP6. 

Yu, K., Hui, P., Zhou, W., and Tang, J. (2020). Evaluation 
of multi‐RCM high‐resolution hindcast over the 
CORDEX East Asia Phase II region: Mean, annual 
cycle and interannual variations. International Journal 
of Climatology, 40(4), 2134-2152. 

Chen, J., Yang, Y., and Tang, J. (2022). Bias correction of 
surface air temperature and precipitation in CORDEX 
East Asia simulation: What should we do when 
applying bias correction?. Atmospheric Research, 280, 
106439. 

Tong, Y., Gao, X., Han, Z., Xu, Y., Xu, Y., and Giorgi, F. 
(2021). Bias correction of temperature and precipitation 
over China for RCM simulations using the QM and 
QDM methods. Climate Dynamics, 57, 1425-1443. 

de Burgh-Day, C. O., and Leeuwenburg, T. (2023). 
Machine learning for numerical weather and climate 
modelling: a review. Geoscientific Model 
Development, 16(22), 6433-6477. 

Kesavavarthini, T., Rajesh, A. N., Venkata Srinivas, C., and 
Kumar, T. L. (2023). Bias correction of CMIP6 
simulations of precipitation over Indian monsoon core 
region using deep learning algorithms. International 
Journal of Climatology, 43(8), 3749-3767. 

Molina, M. J., O’Brien, T. A., Anderson, G., Ashfaq, M., 
Bennett, K. E., Collins, W. D., Dagon, K., Restrepo, J. 

M., and Ullrich, P. A. (2023). A review of recent and 
emerging machine learning applications for climate 
variability and weather phenomena. Artificial 
Intelligence for the Earth Systems, 2(4), 220086. 

Sha, Y., Gagne II, D. J., West, G., and Stull, R. (2020). 
Deep-learning-based gridded downscaling of surface 
meteorological variables in complex terrain. Part I: 
Daily maximum and minimum 2-m 
temperature. Journal of Applied Meteorology and 
Climatology, 59(12), 2057-2073. 

Yu, S., Chakraborty, I., Anderson, G. J., Lucas, D. D., Lops, 
Y., and Galea, D. (2024). UFNet: Joint U-Net and fully 
connected neural network to bias correct precipitation 
predictions from climate models. Artificial Intelligence 
for the Earth Systems. 

Wang, F., and Tian, D. (2022). On deep learning-based bias 
correction and downscaling of multiple climate models 
simulations. Climate dynamics, 59(11), 3451-3468. 

Ling, F., Li, Y., Luo, J. J., Zhong, X., and Wang, Z. (2022). 
Two deep learning-based bias-correction pathways 
improve summer precipitation prediction over 
China. Environmental Research Letters, 17(12), 
124025. 

Zhang, Y., Chen, M., Han, L., Song, L., and Yang, L. 
(2022). Multi-element deep learning fusion correction 
method for numerical weather prediction. Acta 
Meteorol. Sin, 80, 153-167. 

Pan, B., Anderson, G. J., Goncalves, A., Lucas, D. D., 
Bonfils, C. J., Lee, J., Tian, Y., and Ma, H. Y. (2021). 
Learning to correct climate projection biases. Journal 
of Advances in Modeling Earth Systems, 13(10), 
e2021MS002509. 

Hess, P., Lange, S., Schötz, C., and Boers, N. (2023). Deep 
Learning for Bias‐Correcting CMIP6‐Class Earth 
System Models. Earth's Future, 11(10), 
e2023EF004002. 

Teutschbein, C., and Seibert, J. (2012). Bias correction of 
regional climate model simulations for hydrological 
climate-change impact studies: Review and evaluation 
of different methods. Journal of hydrology, 456, 12-29. 

Han, L., Chen, M., Chen, K., Chen, H., Zhang, Y., Lu, B., 
Song, L., and Qin, R. (2021). A deep learning method 
for bias correction of ECMWF 24–240 h forecasts. 
Advances in Atmospheric Sciences, 38(9), 1444-1459. 

Faijaroenmongkol, T., Sarinnapakorn, K., and Vateekul, P. 
(2023). Sub-Seasonal Precipitation Bias-Correction in 
Thailand Using Attention U-Net With Seasonal and 
Meteorological Effects. IEEE Access, 11, 135463-
135475. 

 

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

570


