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Abstract: A common challenge in diagnosing neuropsychiatric disorders is the lack of objective biomarkers. Current
diagnostic approaches rely on the subjective interpretation of observations instead of measurements of brain
activity obtained using functional magnetic resonance imaging (fMRI). We propose a method for the objective
diagnosis of depression and autism spectrum disorder (ASD), marking the first known experiment that explores
the diagnostic performance of only fMRI time series statistics. We researched the importance of time series
statistics based on ICA and BOLD for ASD diagnosis. Besides well-known statistics, we introduce features
based on the first-order derivative and the frequency-domain representation of the signals. The performance
of these features is assessed using multiple machine-learning algorithms. A test accuracy of 69% is achieved
on a depression dataset consisting of 72 subjects (51 depressed, 21 controls). On an autism dataset composed
of 49 subjects (24 ASD, 25 controls), a test accuracy of 67% and 74% is achieved for ICA and BOLD-based
methods respectively. The best results on the ASD dataset are related to the lateral sensorimotor network
and the right ventral anterior region. These results demonstrate the potential of fMRI time series statistics as
objective biomarkers for neuropsychiatric disorders.

1 INTRODUCTION

atric disorders can progress from analyzing interac-
tions within and between different regions of interest

Neuropsychiatric disorders encompass a wide range
of mental health conditions characterized by psychi-
atric symptoms. Notable examples include depres-
sion and autism spectrum disorder (ASD). A signif-
icant challenge in diagnosing these conditions is the
absence of objective biomarkers (Bernas, 2020). This
issue can be addressed with functional magnetic res-
onance imaging (fMRI) (Santana et al., 2022).

FMRI provides repeated volumetric measure-
ments of the brain. The variations on these mea-
surements form the blood-oxygen-level-dependent
(BOLD) signal, from which the brain’s activity can be
inferred (Glover, 2011). This process can also be con-
ducted while the subject is not engaged in any task,
known as the resting state. Diagnosing neuropsychi-
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(ROIs) of the brain.

The brain can be structurally divided into ROIs
by a parcellation atlas, or a decomposition-based ap-
proach like independent component analysis (ICA)
(Beckmann and Smith, 2004). ICA decomposes a
multivariate signal into additive, independent, non-
Gaussian components, which allow the identification
of resting-state networks (RSNs) (Smith et al., 2009).
RSNs are spatially independent patterns that corre-
spond with known brain functions and each RSN has
an associated time series.

In this paper, we refer to the time series result-
ing from averaging voxel activity over the ROIs of a
parcellation atlas as "BOLD time series’ and those ob-
tained via ICA as "ICA time series’. We explore fMRI
time series statistics as biomarkers for depression and
ASD. This paper has three main contributions:

 The first study that directly applies ICA time se-
ries statistics for the diagnosis of depression and
ASD, based on our knowledge.
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* The first comparison of ICA and BOLD for objec-
tive ASD diagnosis. Benchmarking both methods
allows comparison of their performance.

* Our method allows interpretability of the diagnos-
tic results. It enables the identification of brain
regions significant in the disorder.

The rest of the paper is organized as follows. We
present the related literature in Section 2 and the
methodology in Section 3. The results are reported
and discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2 RELATED WORK

Diagnosing neuropsychiatric disorders with fMRI is
often investigated by analyzing ICA or BOLD time
series. Features derived from these signals are used
as input for a given classifier or for statistical testing.

2.1 Current Diagnostic Approaches

Current approaches are usually based on functional
connectivity (FC) (Ingalhalikar et al., 2021) or effec-
tive connectivity (EC) (Cirstian et al., 2023), which
are measures of the relationship between the activi-
ties of pairs of ROIs. The research by (Cirstian et al.,
2023) used wavelet coherence as a measure of FC and
achieved an accuracy of over 80% in differentiating
the depressed subjects from healthy controls. (Ingal-
halikar et al., 2021) used FC to discriminate ASD and
controls on the multisite Autism Brain Imaging Data
Exchange (ABIDE) dataset. The researchers achieved
an accuracy of 71%, which is similar to other studies
that diagnose ASD based on FC (Santana et al., 2022).
This shows that FC can be used for diagnosing neu-
ropsychiatric disorders. These approaches, however,
involve applying complex mathematical methods to
the time series. This makes it unclear whether the in-
formation contained only in the signal’s statistics is
sufficient to obtain similar diagnostic results.

After feature extraction, the next step typically in-
volves using a classifier to diagnose based on poten-
tial feature differences. (Cirstian et al., 2023) used a
support vector machine (SVM) and decision tree clas-
sifiers, while (Ingalhalikar et al., 2021) applied both a
random forest (RF) and an artificial neural network.
Besides using classical machine-learning approaches
to classification, deep-learning is also used to perform
both classification and feature extraction.

In the paper by (Supekar et al., 2022), the re-
searchers proposed a spatiotemporal deep neural net-
work (stDNN) model for ASD diagnostics, where
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BOLD time series are used as an input to the sStDNN
directly. Their model achieved 78% accuracy, 76%
precision, and 82% recall on the ABIDE dataset.
Other papers report combining multimodal features
with deep learning and linear SVM (Sen et al., 2018)
or graph signal processing (Brahim and Farrugia,
2020). (Liu et al., 2024) used stacked sparse de-
noising autoencoders and multilayer perceptrons in
an ensemble leading to a diagnostic performance of
75.2% accuracy, 82.9% sensitivity, 69.7 % specificity
on ABIDE I. This shows a shift from classical meth-
ods to deep learning-based approaches. While deep-
learning methods provide promising results, they em-
ploy a high-dimensional decision space, limiting the
interpretability of the results. This leaves room to in-
vestigate if a small set of statistical features could help
clinical practice by making the diagnostics more ex-
plainable.

2.2 Statistics-Based Diagnosis

Relatively few studies focus on time series statistics.
(Brahim and Farrugia, 2020) proposed a framework
combining features derived from graph signal pro-
cessing and BOLD time series statistics. Classify-
ing with these features resulted in 60% accuracy, 53%
sensitivity, and 69% specificity on the ABIDE dataset.
Their study notes that first-order statistical features,
such as the standard deviation of fMRI time series,
“may be a discriminating feature for the classifica-
tion of a mental disorder like autism” (Brahim and
Farrugia, 2020). Further literature suggests that the
power spectral density (PSD) of the ICA time series
may be discriminating in the case of ASD (Dekhil
et al., 2018) and that statistics of the BOLD time se-
ries are correlated with dynamic functional connectiv-
ity (Zheng et al., 2023). This suggests that the time se-
ries statistics should be explored as feasible biomark-
ers for diagnosing neuropsychiatric disorders.

2.3 ICA and BOLD Time Series

Time series are acquired depending on the parcella-
tion into ROIs, which can be done through ICA or an
atlas. Where an atlas divides the brain according to
predefined delineations, ICA finds patterns of simi-
larly activating voxels directly on the studied sample.
While an atlas and ICA both yield time series repre-
senting brain activity, it is unclear how the differences
in defining ROIs affect the diagnostics. According to
(Moghimi et al., 2022), no optimal brain parcellation
atlas exists. This suggests research in which diagnos-
tics based on the BOLD time series are compared to
the one based on the ICA time series.
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Figure 1: Flowchart for the fMRI time series processing.

Another challenge in diagnostics is the “curse of
dimensionality”, which might happen if the number
of features used for diagnosis is much higher than the
number of included subjects (Berisha et al., 2021). An
atlas typically contains more ROIs than ICA, mean-
ing more features for classification. This motivates a
comparison between the two.

3 METHODOLOGY

A system for diagnosing neuropsychiatric disorders
is proposed. The system can be seen in Figure 1 and
consists of fMRI brain scan preprocessing, feature ex-
traction and selection, and binary classification.

3.1 Data Preprocessing

This study utilizes a depression dataset (Bezmater-
nykh et al., 2022) and the ASD dataset from the Trin-
ity Centre for Health Sciences site, part of the ABIDE
dataset (Di Martino et al., 2014). The depression
dataset includes 51 depressed subjects (13 males, 38
females, mean age of 33.1 years) and 21 controls (6
males, 15 females, mean age of 33.8 years). The
autism dataset consists of 24 subjects with ASD (all
males, mean age of 17.3 years) and 25 controls (all
males, mean age of 17.1 years).

First, fMRI scans are preprocessed to decrease
noise and to normalize the data. Preprocessing is han-
dled in the FMRIB Software Library tool MELODIC
3.0. Steps taken for both datasets involve realign-
ment, slice timing correction, spatial normalization,
smoothing, denoising, group ICA and dual regression
(Beckmann and Smith, 2004). The ASD dataset is de-
noised using I[CA AROMA (Pruim et al., 2015). For
a detailed description of the preprocessing on the de-
pression dataset, see (Cirstian et al., 2023).

To obtain the BOLD time series, both the AAL3
atlas (Rolls et al., 2020) and the Harvard-Oxford atlas
(cort-maxprob-thr25-2mm) (Makris et al., 2006)
are used. Voxel time series are averaged over each
ROl yielding one time series per ROI. The RSNs were
selected using the ”goodness-of-fit” (Bernas, 2020), a
similarity score between identified ICA components
and the Smith atlas (Smith et al., 2009). Indepen-
dent components were chosen based on the highest
obtained score and visually verified.

The resulting RSN for the depression dataset in-
cluded: the Primary and Medial Visual Network, Lat-
eral Visual Network, Default Mode Network Ante-
rior, Default Mode Network Posterior, Cerebellum,
Sensorimotor Network, Auditory Network, Executive
Network, Frontoparietal Right Network, and Fron-
toparietal Left Network, Lateral Motor Network, and
the Dorsal Attention Network (Cirstian et al., 2023).

For the ASD dataset, the identified RSNs in-
cluded: the Primary Visual Network, Default Mode
Network, Precuneus, Dorsal Attention Network,
Salience Network, Auditory Network, Frontoparietal
Left Network, Frontoparietal Right Network, Lat-
eral Sensorimotor Network, Occipital Visual Net-
work, Primary Sensorimotor Network and Cerebel-
lum. These RSN are visualized in Figure 2.
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Figure 2: Visual representation of the resting-state networks
identified in the ASD dataset. The Z-score represents the
level of association between a voxel and a network.

3.2 Feature Extraction and Selection

After preprocessing the data, feature extraction is per-
formed on each of the ROIs’ time series. Features are
extracted from the time series (SIG) and its first-order
derivative (DER). Subsequently, feature selection is
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Table 1: Parameter grids for KNN, SVM, and RF models.

Model Parameter Values
n_neighbors [3,5]
K-Nearest Neighbors (KNN) weights [uniform’]
metric ["euclidean’, *'manhattan’]
Support Vector Machine (SVM) C [0.1,0.2,0.3, 0.4, 05 06 0.7,0.8,0.9, 1.0]
kernel [’linear’]
max_depth [2, 3]
Random Forest (RF) min_samples_leaf [2, 3]
max_features [’sqrt’, "log2’]

applied to the resulting feature vectors (FVs).

Amplitude-based features include the root mean
square (RMS), mean value (MV), median (MED),
standard deviation (SD), skewness (SKEW), kurto-
sis (KURT), min. value (MIN), max. value (MAX),
range (RAN), and interquartile range (IQR). The
RMS and MV are computed according to the equa-
tions specified in (Zheng et al., 2023). Then, the SD
is calculated as

] n
;Z(xi—,u)% (1
i=1

o=

where x; are the indexed time series values, n is the
total number of the time points, u is the MV of the
time series and & represents the SD. To assess a dis-
tribution’s asymmetry and tail heaviness, SKEW and
KURT are computed respectively by

n 3
SKEW = 721:"(;; . #) @)

and .
KURT = W 3)

The frequency-based features include the mean fre-
quency (MF), the peak frequency (PF), and the PSD.
These features are obtained from the frequency spec-
trum of the time series. The spectrum is estimated by
using Welch’s method (Welch, 1967). The PSD was
approximated using 26 frequency bins for each RSN.
The mean and peak frequency are computed by

£12 p.
. zfjo/{ X(f)
LX)

where respectively f; is the sampling frequency and
X(f) is the frequency spectrum of the time series, and

PF = argmax {X(f)}. ®)

Therefore, thirteen features per ROI are extracted in-
cluding RMS, MV, MED, SD, SKEW, KURT, MIN,
MAX, RAN, IQR, MF, PF, and PSD. These features
are aggregated into separate FVs according to

4)

FV = [Feature| Feature, Features ... Featurey], (6)
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where FV is the feature vector of a given type, e.g.
RMS, MYV, etc., Feature; is a feature of a given type
computed for the i-th ROI and N is the total number
of ROIs considered in the analysis. These FVs are
obtained for both the SIG and DER, resulting in 26
vectors to be investigated as potential biomarkers.
All vectors undergo a z-score normalization and
the feature selection process. Two feature selection
algorithms are tested separately: Analysis of Variance
(ANOVA) and Mutual Information (MI). ANOVA as-
sesses the variance between groups of features to de-
termine their discriminating power, while MI evalu-
ates the dependency between features and the label.

3.3 C(lassification

The data is split 80/20 for training and testing. To
address the class imbalance, the Synthetic Minor-
ity Over-sampling Technique (SMOTE) is applied
(Chawla et al., 2002). Three classifiers are used:
K-Nearest Neighbors (KNN), linear SVM, and RF.
These classifiers are applied individually and collec-
tively as an ensemble within the Voting Classifier
(VC). Hyperparameters are tuned on the training set
through five-fold cross-validation with grid search.
The parameter grids of each model are listed in Ta-
ble 1.

The trained classifiers are subsequently tested on
the test set. The best-performing RF, KNN, and SVM
are incorporated into the VC ensemble. Training and
testing are repeated ten times similar to nested cross-
validation. The performance metrics include test ac-
curacy (TA), True Positive Rate (TPR), True Negative
Rate (TNR), and the Area Under the Receiver Opera-
tor Characteristics Curve (AUC).

Classification is performed in stages to determine
the optimal combination of signal type (original time
series, SIG, or its first-order derivative, DER), fea-
ture selection method (ANOVA or MI), classifier, and
number of selected features (FS). By systematically
varying the mentioned parameters, the study aims
to identify the best-performing configuration. This
method is applied to both datasets and extended with
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Table 2: Highest test results (AUC score) for the depression dataset based on ICA time series statistics (best result in boldface).
The tables include: Feature Vector - the feature vector used for prediction; AUC - Area Under the ROC Curve; TA - Test
Accuracy; TPR - True Positive Rate (Sensitivity); TNR - True Negative Rate (Specificity); Features Selected - number of
features chosen; Signal - type of signal used; Selection Method - method for selecting features; Model - algorithm achieving

the reported performance.

Feature Vector AUC TA TPR

TNR Features Selected  Signal

Selection Method Model

RAN 0.67 0.69 0.73 0.60
RMS 066 0.65 0.65 0.66
RAN 0.66 0.66 0.67 0.64
MAX 066 0.69 075 0.57
MAX 065 0.69 077 052

6 DER MI RF
9 DER ANOVA RF
7 DER MI KNN
4 DER MI RF
5 DER MI RF

Table 3: Highest test results (AUC score) for the autism dataset based on ICA time series statistics (best result in boldface).

Feature Vector AUC TA TPR

TNR Features Selected  Signal

Selection Method Model

PF 0.67 0.67 0.56 0.78
PF 066 0.66 0.60 0.72
MAX 065 0.65 0.66 0.64
SKEW 0.65 0.65 0.50 0.80
SKEW 0.64 0.64 0.74 0.54

1 DER MI vC
1 DER MI KNN
1 DER MI SVM
2 DER MI RF
5 SIG ANOVA SVM

a comparison between ICA and BOLD on the ASD
dataset.

4 RESULTS AND DISCUSSION

This section provides and discusses the numerical re-
sults of machine learning experiments. The results are
listed in Tables 2, 3, 4, 5. The tables show only the
five results leading to the highest AUC score.

4.1 Depression Dataset

The results obtained on the depression dataset are
presented in Table 2. As shown, the features RAN,
RMS, and MAX (extracted from the ICA time se-
ries’ derivative) provide predictions with test accura-
cies ranging from 65% to approximately 70%, along
with balanced sensitivity and specificity. The high-
est results are achieved for features extracted from
the ICA time series’ derivative, indicating that rates of
change are more informative in depression. The best
performance is achieved by using MI feature selec-
tion, which suggests a nonlinear relationship between
features and the label. These results show that fea-
tures relating to the amplitude of the ICA time series’
derivative might carry diagnostic information.

The most selected features in the analysis of the
depression dataset include the range of the time se-
ries’ derivative associated with the cerebellum, pri-
mary and medial visual network and, lateral visual
network. This is consistent with the literature in link-

ing abnormalities in the cerebellum and visual cor-
tex to depression (Cirstian et al., 2023). This find-
ing demonstrates that statistical methods identify the
same abnormal ROIs as more complex methodolo-
gies. However, due to the small size of the dataset,
this method should be validated with more data in fu-
ture research.

4.2 Autism Dataset

As shown in Table 3, features selected from the PF,
MAX, and SKEW FVs achieve the best performance
and balanced metrics. Notably, the best result is ob-
tained using the peak frequency of the lateral sensori-
motor network (LSMN) extracted from the ICA time
series’ derivative. This network was linked to ASD
in previous research (Botta et al., 2022). One of the
conditions associated with ASD is the lack of reci-
procity which is observed, e.g., when autistic individ-
uals struggle to identify the emotions of others. In-
terestingly, it was observed that a disturbance in the
sensorimotor network increases the demands of emo-
tion processing (Davis et al., 2017).

To inspect the differences in peak frequency of the
LSMN between ASD and control groups, two box
plots are provided in Figure 3. As shown, there are
visible differences in the median of both groups while
the range of values is similar. A higher peak fre-
quency in the ASD group might indicate faster dy-
namics in the LSMN and the dominance of high-
frequency components in the frequency spectrum of
the subjects, which can be viewed as a disturbance in
the LSMN in the ASD subjects.
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Figure 3: A group comparison of the normalized peak fre-
quency feature of the ICA time series’ derivative extracted
from the lateral sensorimotor network.

4.3 Comparing ICA and BOLD

The results obtained with the AAL3 atlas are listed
in Table 4. Features extracted from the time series
achieve higher results more often than the features
extracted from its derivative. Comparing the results
to Table 3, the features extracted from the deriva-
tive signal score higher when ICA is used, while the
highest results for the BOLD time series are achieved
for features extracted from the original signal. More-
over, predictions based on BOLD time series achieve
higher accuracies (over 70%) with balanced sensitiv-
ity and specificity. It should be noted that the best
results achieved by using both ICA and BOLD time
series are obtained when only one feature is consid-
ered. In the case of the BOLD time series, features
are most often extracted from the right ventral ante-
rior (tVAR).

Notably, tVAR is considered a part of the salience
network which was also observed to play a role in
ASD (Seeley, 2019). This finding suggests that both
ICA and BOLD-based methods identify regions sig-
nificant in diagnosing ASD, however, they have dif-
ferent focuses. This can be explained by differences
in granularity (e.g. 12 RSNs for ICA vs. 166 ROIs
in the AAL3 atlas). Therefore, it is unclear which
method should be preferred for diagnostics and future
research could explore both methods.

To compare the kurtosis between ASD and con-
trols, the mean time series per group are shown in
Figure 4. The ASD group has more outliers than the
control group which leads to a longer tail of the distri-
bution. As the ASD sample is rather small, this should
be verified on a larger dataset such as ABIDE.

To further explore the effect of granularity on
the diagnostic performance, the results based on the
Harvard-Oxford atlas (consisting of 48 ROIs) are pre-
sented in Table 5. As shown, the performance is bet-
ter than ICA-based predictions but worse than AAL3.
An important difference between Table 5 and Table
4 is the fact that the classifiers in Table 5 required a
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ASD Group Control Group

Figure 4: Comparison of the distribution of average time se-
ries values between ASD and control groups obtained with
the AAL3 atlas. The bigger tail of ASD distribution sug-
gests higher kurtosis for this group.

higher number of features to achieve similar scores.
This suggests that when only 48 ROIs are considered,
the algorithms struggle to pinpoint the most important
region and need more information than with AAL3.

The ROI most often selected for prediction here
was the anterior region of the cingulate cortex. Inter-
estingly, it is also a part of the salience network (See-
ley, 2019), again showing that the selected features
from ICA and BOLD differ. The results show the ex-
istence of a few discriminating statistical features. Fu-
ture work could benefit from exploring a combination
of these features, e.g. peak frequency and kurtosis,
obtained with different brain parcellations.

S CONCLUSIONS

The identification of objective biomarkers is essential
for objectively diagnosing neuropsychiatric disorders.
Currently, such biomarkers are predominantly sought
using connectivity-based features. Here, an approach
focused on time series statistics was proposed.

This study assessed the feasibility of ICA and
BOLD time series statistics as biomarkers for depres-
sion and ASD. Results obtained using ICA and BOLD
time series were benchmarked against each other on
the ASD dataset. The findings indicate that statisti-
cal features can carry diagnostic information and re-
late to RSN identified in the literature as abnormal.
The results also suggest that brain parcellation, i.e.
BOLD time series, allows finer brain segmentation
and achieves better results than the ICA time series.

The best results on the depression dataset were
achieved with the range of the derivative of the cere-
bellum’s ICA time series. For the ASD dataset, the
highest results were obtained for the peak frequency
of the lateral sensorimotor network (extracted from
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Table 4: Highest test results (AUC score) for the autism dataset based on BOLD time series statistics obtained with AAL3 atlas
(best result in boldface). The tables include Feature Vector - the feature vector used for prediction; AUC - Area Under the
ROC Curve; TA - Test Accuracy; TPR - True Positive Rate (Sensitivity); TNR - True Negative Rate (Specificity); Features
Selected - number of features chosen; Signal - type of signal used; Selection Method - method for selecting features; Model

- algorithm achieving the reported performance.

Feature Vector AUC TA TPR

TNR Features Selected Signal

Selection Method Model

PF 074 074 078 0.70
KURT 074 074 070 0.78
KURT 073 0.73 0.68 0.78
KURT 073 073 0.72 0.74
KURT 071 071 0.70 0.82

1 DER MI RF
1 SIG ANOVA vC
1 SIG ANOVA KNN
1 SIG ANOVA RF
1 SIG ANOVA SVM

Table 5: Highest test results (AUC score) for the autism dataset based on BOLD time series statistics obtained with the

Harvard-Oxford atlas (best result in boldface).

Feature Vector AUC TA TPR

TNR Features Selected Signal

Selection Method Model

KURT 0.72 0.72 0.68 0.76 10 DER MI vC

KURT 0.71 0.71 0.64 0.78 9 DER MI vC

KURT 0.71 0.71 054 0.88 10 DER ANOVA KNN

KURT 0.70 0.70 0.58 0.82 10 DER MI vC

KURT 0.68 0.68 0.60 0.76 8 DER MI RF
the derivative of the ICA time series) and of the right REFERENCES

ventral anterior region (extracted from the BOLD
time series, AAL3). The achieved test accuracies are
69%, 67%, and 74%, respectively.

While the results do not reach the diagnostic per-
formance of deep-learning methods described in the
literature (Supekar et al., 2022), (Liu et al., 2024),
they are obtained on a small set of statistical fea-
tures. The identified features are interpretable and
show aberrations in networks known to be related to
the respective disorders. Besides providing informa-
tion that enriches knowledge about psychopathology,
it is clear what the decision is based on should these
features be used in the diagnostic practice. This pro-
vides interpretable diagnostic support to the clinician.

This study has three important contributions.
First, using the ICA time series to diagnose depres-
sion and ASD. Second, comparing ICA and BOLD-
based diagnostics. Third, the proposed method iden-
tified brain networks and regions that were significant
in discriminating between the disorder and control
groups. These contributions show that diagnostic ap-
proaches based on fMRI time series statistics provide
a valuable baseline. If the results of this paper prove
reproducible on larger datasets, this paper could mark
an advancement toward finding objective biomarkers
for depression and ASD.
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