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Abstract: Mahjong, a tile-based game, is a complex four-player stochastic game of imperfect information involving
both strategy and luck. Due to its inherent randomness, accurately assessing the strength of players requires
a large number of games, which is time-consuming. This randomness primarily originates from two factors:
(1) the initial arrangement of the wall and (2) tile stealing by players. Both affect the tiles players draw and
thus influence game outcomes. To address the effect of these factors, especially the randomness introduced
by stealing, we propose a novel method, called the stable draw wall (abbr. SDW). The SDW partitions the
original wall into individual sub-walls for each player, ensuring that the tile drawing order of each player
remains consistent and does not change by stealing from any player. The experimental results showed that
when playing a small number of games, the win rate of a player by using the SDW is more accurate than
by using the original wall. Consequently, our proposed method significantly mitigates the randomness effect
caused by changing the order of draws, allowing a more reliable evaluation of the strength of players, which
should focus on strategic decision making.

1 INTRODUCTION

Mahjong is a traditional tile-based game that origi-
nates in China and is popular in eastern Asia. It is
a four-player stochastic imperfect information game.
The game involves strategy and a degree of luck, as
players aim to complete a winning hand by drawing,
stealing, and discarding tiles. There are many games
that include randomness during the gameplay, such as
Texas Hold’em, Blackjack, and Chinese dark chess.
Mahjong’s gameplay is complex due to large num-
ber of tiles and rounds, and hidden information. The
number of information sets and the average size of the
information sets are 10121 and 1048, respectively. This
indicates that Mahjong has more hidden information
than bridge and Texas Hold’em, making it challeng-
ing to develop a strong Mahjong AI (Li et al., 2022).

The inherent randomness in Mahjong competi-
tions requires a greater number of games for re-
searchers and contest organizers to accurately assess
the strength of players. The outcome of Mahjong
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competitions is often influenced by randomness, pro-
viding weaker players with opportunities to win. Al-
though the element of randomness in competition can
provide excitement and tension, it concurrently de-
creases the precision in evaluating the strength of
players. Thus, more games are necessary to generate
a stable assessment.

Two primary factors are identified as contributing
to this randomness: (1) the initial arrangement of the
wall and (2) the decisions made by the players to steal
tiles. The first factor, the initial arrangement of the
wall, plays a crucial role because the players draw the
tiles in a predetermined order. If no player steals a
tile during the game, the order of tiles drawn from
the wall is the same for all players, assuming that the
same wall is reused. In competitions for computer
program players, such as the Computer Olympiad,
multiple games are often played using the same wall,
with players switching seats between the games. (Lin
et al., 2011; Chen and Chen, 2022). After playing
these games, the same initial hands will be dealt to
all players, preventing any particularly good or bad
hand from being experienced by only a subset of play-
ers. This method mitigates the effect of randomness
from the initial arrangement of the wall, allowing for
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a more stable assessment of the strength of the play-
ers. However, the second factor, stealing by play-
ers, also changes the order of draws. For example,
if a player steals a tile, he/she will forgo his/her next
draw. Consequently, the subsequent tile may instead
be drawn by another player, leading to a different or-
der of draws. Moreover, players’ decisions to steal
tiles affect not only his/her immediate draw but all
draws of every player in the future. Thus, the player’s
outcomes are often changed by stealing, even though
he/she plays with the same wall and the same strategy.

In this paper, we introduce a method for the con-
struction of a specialized wall, called stable draw wall
(abbr. SDW), which is designed to significantly alle-
viate the impact of the change in the draw order by
stealing during the game. The main idea is to partition
the original wall into subwalls for all players so that
each player only draws tiles from their own subwalls.
This method prevents drawing another tile caused by
stealing. Note that the SDW must be used with the
aforementioned method, which uses the same wall
in multiple games and switches players’ seats across
these games. Thus, by using our proposed wall struc-
ture, the negative effect on a player can be reduced
when an opponent makes a different choice. This, in
turn, makes the players’ actions more decisive in de-
termining the outcome of the games. Finally, our goal
is to distinguish the relative strength of two computer
players more efficiently and to use a smaller number
of games to accurately evaluate their relative win rates
using the SDW.

The rest of this article is organized as follows. In
section 2, we review some Mahjong competition plat-
forms and Mahjong agents. In Section 3, we present
our methods for constructing the SDW and using it in
Mahjong game. In Section 4, we present the experi-
mental results. In Section 5, we make the concluding
remarks.

2 BACKGROUND

In this section, we briefly review the general rules
of Mahjong in Subsection 2.1 and related works on
Mahjong competition platforms and player programs
in Subsection 2.2.

2.1 Rules of Mahjong

We introduce the rules and terms of Taiwanese
Mahjong. There are 144 tiles in Mahjong game,
categorized as four types, 34 patterns, and flowers.1

1Flower tiles are excluded in this paper.

These types are categorized into three suits and an
honor. The suits consist of 27 patterns which are
numbers 1 to 9 Character (or Man, represented by
C1 to C9), 1 to 9 Dot (or Pin, denoted by D1 to D9),
and 1 to 9 Bamboo (or Sou, denoted by B1 to B9). The
honor consists of four Winds (East, South, West, and
North) and three Dragons (White, Green, and Red).
Each pattern has four identical tiles.

To set up the initial game state, all tiles are shuf-
fled, placed face down, and arranged into the wall.
Starting with the dealer, each player draws four tiles
at a time from the front of the wall, repeating this pro-
cess four times. These 16 tiles form the player’s initial
hand. The goal of each player is to complete a win-
ning hand, typically consisting of five sets and one
pair. The players take turns drawing a tile from the
front of the wall or stealing a discarded tile from an
opponent to complete their winning hand. Stealing
includes chow, pong and gong. Chow signifies that a
player takes a tile discarded by the left player in the
previous turn and forming a sequence (three consecu-
tive number tiles of the same suit) with it. Pong sig-
nifies that a player takes a tile discarded by any other
player in the previous turn and forming a triplet (three
identical tiles). Gong signifies that a player takes a
tile discarded by any other player in the previous turn,
forming a quadruplet (four identical tiles), and must
then pick another tile. After drawing or stealing a
tile, if a player accomplishes a winning hand, he/she
wins the round; otherwise, they must discard a tile.
The game ends when a player completes a winning
hand or when only 16 tiles remain in the wall, which
is called the dead wall.

We introduce additional ways to draw tiles from
the wall. In addition to the standard draw, players can
also draw tiles after applying some specific actions
such as the gong. Unlike the standard drawing, where
players take a tile from the front of the wall, drawing
after these actions requires taking a tile from the back
of the wall, specifically from the dead wall. In these
cases, the tile drawn from the dead wall is referred to
as a supplementary tile.2

2.2 Related Works

In this section, we introduce research related to
Mahjong, focusing primarily on studies involving
competition platforms and computer player programs.
In Subsubsection 2.2.1 , we present several platforms
that provide interfaces for interaction with computer
player programs. In Subsubsection 2.2.2 , we discuss
research on various computer player programs, high-

2For more information, please refer to http://mahjong-
europe.org/.
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lighting those that have been ranked or actively par-
ticipated in competitions hosted on these platforms.

2.2.1 Competition Platforms

In the context of AI-driven Mahjong competitions,
two notable studies have provided important contri-
butions. (Lin et al., 2011) purposed a tournament
framework for computer Mahjong competitions. This
framework focused on organizing and facilitating fair
and competitive environments for AI agents playing
Mahjong. The authors addressed key aspects such
as game scheduling, ranking systems, and the han-
dling of randomness in the game, ensuring that AI
players were evaluated under standardized conditions.
Specifically in handling randomness, the framework
used a wall arrangement in several games and rotated
the seats of players. This framework was influential
in the promotion of the development and evaluation of
AI Mahjong programs by providing a structured com-
petitive platform. It had been used in the Mahjong
contests of Computer Olympiad until 2021. Similarly,
(Chen and Chen, 2022) designed a Mahjong frame-
work that was extended from the existing framework
of Chinese dark chess. The framework also used the
same method as in (Lin et al., 2011) to handle the
problem of randomness.

BOTZONE is an online multi-agent competitive
platform designed for AI education (Zhou et al.,
2018) . It supports various competitive games, includ-
ing Mahjong, allowing students and researchers to de-
velop, test, and improve AI agents. The platform pro-
vides multiplayer real-time environments and exten-
sive logging of game data, which are valuable for an-
alyzing AI agent performance. BOTZONE’s flexibility
and accessibility has made it a widely used platform
in both educational and research settings, promoting
the development of AI strategies in competitive gam-
ing environments.

Mjx is an open source Mahjong framework for Ri-
ichi Mahjong (Koyamada et al., 2022). This frame-
work aimed to improve execution speed and provide
human-friendly framework.

2.2.2 Mahjong Player Programs

We introduce some Mahjong player programs in vari-
ant rules. In Taiwanese rules, (Chen et al., 2022) de-
signed a computer Mahjong program SIMCAT, us-
ing Monte Carlo simulation techniques to improve
decision making. The program generated hands af-
ter applying each legal action and simulated the win
rate of these hands using an optimistic strategy. The
program selected the action whose hand, after ap-
plying it, obtained the best win rate. Furthermore,

SIMCAT designed heuristic methods to handle some
special cases for better performance. (Lin and Lin,
2021) designed a computer Mahjong program SEO-
FON, which evaluated a hand by deconstructing its
composition and excluded unnecessary deconstruc-
tions based on the deficiency number. Throughout the
game, SEOFON collected information from discarded
tiles, which was then used to infer the tiles the oppo-
nents likely wanted. In the end game, this information
was crucial in defense strategies and in predicting the
number of tiles remaining of each type in the wall.

In Japanese rules (Riichi Mahjong), (Mizukami
and Tsuruoka, 2015) built the program BAKUUCHI,
which adopted Monte-Carlo simulation and trained
policy models and opponent models using super-
vised learning. SUPHX was developed by (Li et al.,
2020) and used supervised learning and reinforce-
ment learning to train models. It also used global
reward prediction, oracle guiding, and parametric
Monte-Carlo policy adaptation to improve perfor-
mance.

3 OUR METHODS

This section describes the method of constructing the
SDW and the usage of the SDW during the game.
The SDW ensures that when the SDW is used sev-
eral times in multiple games, the player in the specific
seat will draw the same tile in the same round. For
example, a player draws C1 in the i-th round of the
first game. When playing the second game using the
SDW, the player sitting in the same seat will draw C1
in the i-th round as well.

We introduce the method for constructing the
SDW in Subsection 3.1 and the wall usage in Sub-
section 3.2.

3.1 Design of the SDW

We introduce the method for constructing the SDW
from a given original wall. The SDW consists of
four sets, each containing a front subwall and a rear
subwall, and each player owns one set. The front
subwall contains the tiles which players draw during
normal play, and the rear subwall contains the sup-
plementary tiles which players draw from the end of
the original wall after stealing by gong. Let W o =
[wo

0,w
o
1, . . . ,w

o
135] denote the arrangement of 136 tiles

wo
i in the original wall, where i = 0, . . . ,135. Let

FSW p = [ f swp,0, f swp,1, . . . , f swp,np−1] and RSW p =

[rswp,0,rswp,1,rswp,2, f swp,3] denote the front sub-
wall and the rear subwall of the player p, respectively,
where p ∈ {0,1,2,3} and np is the number of tiles in
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the front subwall of p. When p = 0, p is the dealer.
The steps to construct the front subwall are as fol-

lows. First, we take 16 tiles as each player’s ini-
tial hand from the original wall and place them in
the player’s own front subwalls. According to the
Mahjong rules mentioned in Subsection 2.1, a game
starts from the dealer, and then each of the four play-
ers takes turns picking four tiles from the front of the
original wall and repeats this process four times. Eq. 1
shows that f swp,4n+k, the (4n+ k)-th tile in the front
subwall of p, is retrieved from the (16n+ 4p+ k)-th
tile in the original wall.

f swp,4n+k = wo
16n+4p+k (1)

where 0 ≤ n,k ≤ 3. Next, each player takes turns
drawing tiles from the original wall until only 16 tiles
remain in the dead wall. Thus, excluding 4×16 tiles
in hands and 16 tiles in the dead wall, there are 56 tiles
that can be drawn by four players during gameplay.
These tiles are placed sequentially in the front sub-
wall of each player, so 14 tiles are added in each front
subwall. Eq. 2 shows that f swp,16+k, the (16+ k)-
th tile in the front subwall of p, is retrieved from the
(64+4k+ p)-th tile in the original wall.

f swp,16+k = wo
64+4k+p (2)

where 0 ≤ k ≤ 13. Hence, the front subwall of each
player consists of 30 tiles.

The steps to construct the rear subwall are as fol-
lows. Beginning with the dealer once again, each
player takes turns picking a tile from the end of the
dead wall and placing it in his/her own rear subwall.
Eq. 3 shows that rswp,k, the k-th tile in the rear sub-
wall of p, is retrieved from the (135−(4k+ p))-th tile
in the original wall. Hence, the rear subwall of each
player consists of 4 tiles.

rswp,k = wo
135−(4k+p) (3)

Note that the idea of the rear subwall is the same
as that of the front subwall, but is from the end of
the original wall. More specifically, a player always
draws the same tile by a gong no matter whether an-
other gong by other players occurs before. Algo-
rithm 1 shows the pseudocode for constructing the
SDW from an original wall.

3.2 Using the SDW in Gameplay

We apply the constructed SDW during a Mahjong
game. The players take their initial hand and draw
tiles from their own front subwall. Two key issues
must be addressed when using the SDW in a game.
First, a player should draw the (16+ i)-th tile from the
front subwall at the i-th round. However, if a player

Function CONSTRUCTING SDW:
Input: W o: List of 136 tiles arranged in the

original wall.
Output: FSW , RSW : List of front subwalls

FSWp and rear subwalls RSWp,
respectively, where p ∈ {0, . . . ,3}.
The subwalls are also lists.

/* Construct hand tile part of
front subwalls. */

for n = 0 to 3 do
for p = 0 to 3 do

for k = 0 to 3 do
f swp,4n+k←W o[idx];
FSWp.push back( f swp,4n+k);
idx← idx+1;

end
end

end
/* Construct remaining part of

front subwalls. */
for k = 0 to 13 do

for p = 0 to 3 do
f swp,4n+k←W o[idx];
FSWp.push back( f swp,16+k);
idx← idx+1;

end
end
/* Construct rear subwalls. */
idx← 0;
for k = 0 to 3 do

for p = 0 to 3 do
rswp,k←W o[135− idx];
RSWp.push back(rswp,k);
idx← idx+1;

end
end
Algorithm 1: Pseudocode of Constructing the SDW.

steals a tile at the i-th round instead, he/she will draw
the (16+ i)-th tile at the (i+ 1)-th round, which is
supposed to draw the (17+ i)-th tile. This is incon-
sistent with our purpose: to prevent drawing another
tile caused by stealing. Second, a player may draw
more than 14 tiles, exhausting all tiles in his/her front
subwall. This happens because, although the drawn
tiles are fixed using the SDW, the playing order may
be changed due to stealing. As a result, some play-
ers may draw more tiles than others. For example,
after a player steals the discarded tile from the player
on his/her right side by pong, the turn goes back, and
that player draws one more tile.

To address the first issue, when a player steals a
tile at the i-th round, it implicitly indicates that he/she
relinquishes the opportunity to draw a tile. We move
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the first tile from his/her front subwall to a pile, called
a relinquished-tile pile. Hence, we ensure that the tile
drawn at the (i+ 1)-th round is exactly the (i+ 1)-th
tile in his/her front subwall. Combined with drawing
tiles only from the front subwall of each player, the
subsequent drawn tiles will not be changed by his/her
stealing.

To address the second issue, we design a method
called reshuffle. Let nr be the total number of tiles
in the relinquished-tile pile and the eight subwalls.
Assume that the turn goes to the player pturn, who
exhausts all tiles in his/her front subwall or rear sub-
wall. We collect the nr tiles, and all subwalls become
empty. These tiles are shuffled into an arrangement
W ′ = [w′0,w

′
1, . . . ,w

′
nr−1], and then are redistributed to

four players, similar to the method described in Sub-
section 3.1. More specifically, nr−16 tiles are used to
construct front subwalls. Let q = (p− pturn) mod 4,
where q represents the position of the player p rel-
ative to pturn. For example, if p = 3 and pturn = 2,
q = 1, representing p is the next player of pturn. Start-
ing from pturn, each player takes turns draw a tile from
W ′ and place it in his/her front subwall. Thus, the ar-
rangement of tiles in each player’s front subwall is
shown in Eq. 4.

f swp,k = w′4k+q (4)

where k≥ 0 and 4k+q≤ nr. Then, we use the last 16
tiles to construct rear subwalls. The arrangement of
tiles in each player’s rear subwall is shown in Eq. 5.

rswp,k = w′nr−(4k+q) (5)

where 0 ≤ k ≤ 3. The detailed implementation for
reshuffling the SDW is presented in Algorithm 2.

After the reshuffle, the game resumes with pturn
by drawing a tile from his/her reshuffled front sub-
wall. Algorithm 3 presents the pseudocode for the
entire procedure of drawing a tile from the SDW.

4 EXPERIMENTS

In the experiments, we analyzed the efficiency for the
assessment of the relative strength of game-playing
programs using the SDW. We used the game-playing
program, SIMCAT (Chen et al., 2022), and created a
weaker variant, called SIMCAT-ε, whose strength is
adjusted by the parameter ε. More specifically, SIM-
CAT-ε selected the action given by SIMCAT with a
probability of 1− ε or a random action with a proba-
bility of ε. Note that to prevent a significant drop in
the strength of programs, random actions of SIMCAT-
ε were restricted to those that maintain the deficiency
number. For example, for the hand {C2C2C2C6C9},

Function RESHUFFLE SDW:
Input: FSW , RSW : List of front subwalls

FSWp and rear subwalls RSWp,
respectively, where p ∈ {0, . . . ,3}.
The subwalls are also lists.
RT P: List indicating the pile of the
relinquished tiles.
pturn: an integer indicating the current
player.

Output: None.
/* Collecting the tiles remained in

subwalls. */
W ′← [ ];
for FSWp in FSW do

while FSWp is not empty do
t← FSWp.front();
W ′.append(t);
FSWp.pop front();

end
end
for RSWp in RSW do

while RSWp is not empty do
t← RSWp.front();
W ′.append(t);
RSWp.pop front();

end
end
for rt in RT P do

W ′.append(rt);
end
/* Reshuffle them. */
nr←W ′.size();
idx← 0;
for k = 0 to 3 do

for p = 0 to 3 do
rswp,k←W ′[nr− idx];
RSWp.push back(rswp,k);
idx← idx+1;

end
end
p← pturn;
while W ′ is not empty do

f swp,k←W ′.front();
FSWp.push back( f swp,k);
W ′.pop front();
p← (p+1) mod 4;

end
Algorithm 2: Pseudocode of Reshuffle.

C2C2C2 is a triplet, and discarding a tile from the
triplet makes the deficiency number increase, so the
random actions considered only include C6 and C9.
Obviously, SIMCAT-ε is stronger with a smaller ε. In
the experiments, the values of ε were set to 1.0, 0.5,
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FunctionDRAW A TILE FROM SDW:
Input: p: an integer that indicate the player.

draw f rom rear: True if drawing
from rear or not.
is relinquished draw: True if player
stole a tile and relinquished to draw.

Output: t: NULL or the tile drawn from the
SDW.

if is relinquished draw is True then
t← NULL;
rt← FSWp.front();
RT P.push back(rt);
FSWp.pop front();

else
if draw f rom rear is True then

if RSWp is empty then
reshuffle(FSW , RSW , RT P, p);

end
t← RSWp.front();
RSWp.pop front();

else
if FSWp is empty then

reshuffle(FSW , RSW , RT P, p);
end
t← FSWp.front();
FSWp.pop front();

end
end

Algorithm 3: Pseudocode of Drawing Tiles from the SDW.

and 0.2. There are two teams, one using SIMCAT
and the other using SIMCAT-ε. Two players in each
team used the same program and sat on the opposite
sides of the square table. To mitigate the effects of the
initial wall arrangement, each wall was played twice,
with players rotating to the seat on their right side af-
ter the first game as mentioned in Section 1.

The experiments were conducted on a computer
with an AMD Ryzen 5 2600 6-core processor and
32GB of memory. In Subsection 4.1, we analyzed
the average number of actions and stealing by play-
ers. In Subsection 4.2, we compared the consistency
of the draws between the original wall and the SDW.
In Subsection 4.3, we analyzed data on reshuffles that
occurred when using the SDW. Finally, in Subsec-
tion 4.4, we compared the win rate and the error be-
tween the original wall and the SDW in a small num-
ber of games.

4.1 The Number of Actions in a Game

We analyzed the number of actions as the parameter ε

varies from a large to a small value. Let nsteal denote
the average number of stealing actions by a player per

game. Let ntotal denote the total number of actions,
including stealing and drawing, by a player per game.
Let rsteal = nsteal/ntotal denote the the frequency of
stealing by a player per game.

The experimental results are shown in Table 1.
First, nsteal increases as ε decreases. The reason is
that the program with a smaller ε has a higher pos-
sibility of choosing to steal. Second, ntotal decreases
as ε decreases. The reason is that stronger programs
win a game more quickly, resulting in fewer actions.
The trends of ntotal and nsteal are opposite, with one
increasing and the other decreasing as ε varies. Third,
rsteal ranges from 13.26% to 16.13%. Fourth, whether
using the original wall or the SDW have very little in-
fluence on the number of actions, both nsteal and ntotal .
This suggests that using the SDW instead of the origi-
nal wall almost does not affect the duration of a game
and the frequency of stealing.

Table 1: Average count of draw and stealing.

Opponent ε = 1.0 ε = 0.5 ε = 0.2

Original

nsteal 1.31 1.44 1.50

ntotal 9.88 9.61 9.33

rsteal 13.26% 14.98% 16.08%

SDW

nsteal 1.31 1.44 1.50

ntotal 9.86 9.61 9.30

rsteal 13.29% 14.98% 16.13%

We divide the course of a game into five intervals
based on the number of actions. The ratios of ac-
tions within each interval are shown in Table 2. Most
games finish when a player makes 5 ∼ 14 actions,
ranging from 89.26% to 92.90%.

Table 2: Ratios of actions.

ntotal ε = 1.0 ε = 0.5 ε = 0.2
0∼ 4 3.04% 3.07% 3.22%
5∼ 9 43.78% 47.19% 51.45%

10∼ 14 45.48% 44.11% 41.14%
15∼ 19 7.70% 5.63% 4.20%
≥ 20 0.00% 0.00% 0.00%

A player can steal at most five times in a game. Ta-
ble 3 shows the percentage of games based on nsteal .
Given an ε, each column shows the ratio that a player
makes nsteal stealing actions. When nsteal = 0, it in-
dicates that the player did not steal in the game. By
observing the first row, the ratio of no stealing actions
decreases from 24.42% to 15.37% as ε decreases. It
indicates that more stealing actions are made for a
stronger program. Moreover, a player steals less than
two times in most games.
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Table 3: Ratios of stealing actions.

nsteal ε = 1.0 ε = 0.5 ε = 0.2
0 24.42% 17.51% 15.37%
1 36.00% 36.96% 36.44%
2 26.34% 31.27% 32.88%
3 11.14% 12.32% 13.25%
4 2.06% 1.89% 2.02%
5 0.05% 0.04% 0.04%

4.2 Consistency in Draws

We investigate whether a player can draw the same
tile when other players may take different stealing ac-
tions. Assume that the wall W = [w0,w1, . . . ,w135],
where w0, . . . ,w63 are used in the initial hands of all
players. If no stealing is allowed, the player p will
pick w64+4k+p in the k-th round. If stealing is allowed
and the tile player p draws in the k-th round is the
same as w64+4k+p, we call the draw consistent with
W . The consistent rate of a game log to W is the ratio
of consistent draws among all draws, that is, the num-
ber of consistent draws divided by the number of all
draws.

We compared the consistent rates of the logs
played with the original wall and with the SDW. The
experimental results are shown in Table 4. The data
reveal that when using the original wall, the consis-
tent rates for all ε ranged from 20.98% to 23.43%,
indicating that on average, 76.57% ∼ 79.02% of the
drawn tiles were affected by changes in the order of
draws caused by stealing. This result demonstrates
that such a high percentage of tiles is changed, so that
simply rotating the player seat, as discussed in Sec-
tion 1, is insufficient to mitigate randomness in the
game. In contrast, when using the SDW, the consis-
tent rate increased to 94.72% ∼ 95.00%, indicating
that only 5.00% ∼ 5.28% of the tiles were different.
This result shows that the use of the SDW effectively
reduces the likelihood of changes in the tiles drawn
by the players. Consequently, in competition, the dif-
ference in the tiles drawn by players who sat in the
same seat is significantly reduced.

Table 4: Ratio of consistent draws.

Consistent rate ε = 1.0 ε = 0.5 ε = 0.2
Original 20.98% 22.49% 23.43%

SDW 94.72% 94.71% 95.00%

4.3 Effect of Reshuffle

We analyze the influence of reshuffle described in
Subsection 3.2 on the consistent rate. In a game, let
nrs f be the times of reshuffles, and let nrad be the num-

ber of the available draws in the SDW when reshuf-
fling.

Table 5 shows the percentage of 20,000 games
based on nrs f . By observing nrs f = 0, most games
do not need to reshuffle, ranged from 87.10% to
92.47%. When ε decreases, the percentage of games
with nrs f = 0 increases, indicating that the times of
reshuffles decrease. It may be caused by more early
termination of games mentioned in Subsection 4.1, so
there are still tiles in the front wall when a game ends.
Moreover, by observing nrs f = 1, for games need to
reshuffle, most of them are reshuffled only once.

Table 5: The average times of reshuffle in a game.

nrs f ε = 1.0 ε = 0.5 ε = 0.2
0 87.10% 90.37% 92.47%
1 11.12% 8.48% 6.91%
2 1.61% 1.02% 0.54%
3 0.18% 0.13% 0.09%
4 0.08% 0.01% 0.00%
≥ 5 0.00% 0.00% 0.00%

Let gnrad be the number of games shuffled with
nrad tiles. The average nrad is calculated by dividing
the weighted sum of gnrad , where each nrad is multi-
plied by gnrad , by the total number of games as fol-
lows.

Average nrad =
∑

56
nrad=1

(
nrad×gnrad

)
∑

56
nrad=1 gnrad

Although the maximum number of draws is 56,
the average nrad are 6.54, 7.47, and 8.11 when ε= 1.0,
0.5, and 0.2, respectively. When ε decreases, the av-
erage nrad increases, indicating that reshuffles occur
earlier. The reason may be that programs with lower
ε steal more tiles as mentioned in Subsection 4.1, so
more drawing turns of players were skipped as men-
tioned in Subsection 3.2. It makes more possibly hap-
pen that some players have more turns, so they ex-
haust all tiles in his/her front subwall and need to
reshuffle in earlier stage.

Table 6 shows the results of nrad in the first reshuf-
fle only. By adding the values of nrad between 1 and
15, the percentages of games whose reshuffle happen
when there are less than or equal to 15 draws range
from 98.22% to 99.64%.

A concluding remark is as follows. When using
the SDW, at lease 87.10% of all games are unaffected
by reshuffle. Moreover, among the affected games (at
most 12.90%), most of them draw the same tiles dur-
ing the first 41 (= 56−15) draws. Hence, only a small
number of draws in all games is changed by reshuffle.
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Table 6: The remaining available draws in the first reshuffle.

nrad ε = 1.0 ε = 0.5 ε = 0.2
1∼ 5 25.72% 17.08% 13.98%
6∼ 10 61.55% 61.42% 60.35%

11∼ 15 12.37% 20.46% 23.89%
16∼ 20 0.35% 1.04% 1.77%
≥ 21 0.00% 0.00% 0.00%

Table 7: Comparison between the two walls.

(a) 500 games in a match

Opponent ε = 1.0 ε = 0.5 ε = 0.2
wrgr 71.58% 61.70% 54.90%

Avg. err (Original) 1.88% 1.54% 1.73%
Avg. err (SDW) 1.27% 1.51% 1.29%

(b) 1,000 games in a match

Opponent ε = 1.0 ε = 0.5 ε = 0.2
wrgr 71.58% 61.70% 54.90%

Avg. err (Original) 1.33% 1.27% 1.45%
Avg. err (SDW) 0.73% 0.93% 0.90%

4.4 Competitions Using Different Walls

We compare the accuracy of win rates using the orig-
inal wall and the SDW. We play a total of 20,000
games using the original wall and compute wrgr, the
win rate of SIMCAT, as the ground truth. Next, let a
match consist of a small number of games such as 500
or 1,000. For each match, we compute the win rate wr
of SIMCAT and the error err = wr−wrgr that repre-
sents the deviation between the match and the ground
truth. To obtain more accurate experiment results, we
play several matches and compute the average errors
of them.

In Table 7a, 40 matches of 500 games are played.
The average errors are 1.54%∼ 1.88% for the original
wall and 1.27% ∼ 1.51% for the SDW. In Table 7b,
20 matches of 1,000 games are played. The average
errors are 1.27% ∼ 1.45% for the original wall and
0.73% ∼ 0.93% for the SDW. Both results show that
the error values for matches using the SDW are con-
sistently lower than those using the original wall for
all ε. When playing a small number of games, us-
ing the SDW can obtain more reliable win rate than
using the original wall. Moreover, the average errors
of 1,000 games are reduced more than those of 500
games, as more games provide better accuracy.

5 CONCLUSIONS

In this paper, we proposed a newly designed wall for
Mahjong, called the stable draw wall (SDW). The

SDW prevents 94.72% to 95.00% of the drawn tiles
from being changed due to an opponent’s stealing. By
using the SDW, the impact of randomness from steal-
ing is alleviated, making the players’ actions more
decisive in determining the outcome of the games.
The experimental results show that the win rate using
the SDW is more accurate compared to the original
wall when only a small number of games are played.
Hence, if we want to distinguish the relative strength
of players by playing fewer games due to time con-
straints in real competitions, using the proposed SDW
instead of the original wall is more likely to achieve
it.

There are still many interesting topics for future
research. The remaining 5% to 5.28% of the draws
that can be changed due to stealing require further in-
vestigation. It is worthwhile to develop a clever de-
sign to manage this. Our idea to design the SDW
can be extended to other stochastic games, includ-
ing other variants of Mahjong, tile-based games, and
card games. A fast evaluation system for assessing
the strength of human and program players can also
be designed based on our proposed method.
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