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Abstract: The concept of clarity of text is one that can be quite subjective in nature. This work aims to evaluate the
clarity of published research in terms of two key components - Semantic Clarity and Quantitative Clarity.
Semantic clarity aims to assess how effectively the meaning of the text is structured, articulated, and conveyed
to the reader, and quantitative clarity employs a combination of previously defined formulations and metrics
to provide measurable insights into the clarity of the text. Semantic Clarity, predicted using a BERT Model
achieved a final validation Mean Squared Error of 0.0169, while the Quantitative Clarity, predicted using a
DistilBERT Model, achieved a training loss of 6.9776 and validation loss of 3.6322. By integrating these
two dimensions, this study seeks to enhance the overall evaluation process and contribute to a more nuanced
understanding of research quality.

1 INTRODUCTION

Clarity is essential for effective communication
across various fields. While often viewed as subjec-
tive, clarity can be quantified using numerical met-
rics and comparative methods. This study aims to
objectively assess clarity in written content, particu-
larly in academic publishing, where clarity and preci-
sion significantly impact manuscript acceptance and
influence. In this study, we propose a dual approach
that incorporates numerical metrics and comparative
scoring methods both. Numerical metrics are de-
rived from computational linguistic tools that anal-
yse textual features such as sentence structure, vo-
cabulary usage, and readability indices like the Fog
Index(Yaffe, 2022). These tools help assess fac-
tors like sentence length, cognitive load(Mikk, 2008),
lexical density(To et al., 2013), all of which con-
tribute to textual clarity. Comparative scoring, on
the other hand, involves benchmarking a text against
high-quality publications from prestigious A-star con-
ferences, providing a reference standard for clarity
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evaluation. This method also incorporates decision
models, such as those suggested by (McElfresh et al.,
2021), to address ambiguity and indecisiveness in
clarity scoring. The main contributions of this work
are listed below:

• Introduced two new aspects of text clarity: S-
clarity (semantic clarity using BERT) and Q-
clarity (quantitative clarity using established text
clarity scores), and developed a combined clar-
ity score (CSC) that integrates these assessments
equally.

• Proposed the concept of an indecisive score to
handle ambiguity in clarity assessments.

• Proposed an approach involving A-star confer-
ence benchmarking for clarity, using high-quality
academic papers as a reference standard for ob-
jective clarity scoring.

The motivation behind this study stems from the need
to assess the concept of ”clarity” in research commu-
nication, prompting the need to bridge the gap be-
tween subjective impressions of clarity and objective
measurements. By quantifying and comparing the
clarity of research papers, we aim to provide a sys-
tematic method that enhances clarity assessment, im-
proving the quality of communication not just in aca-
demic publishing but across various fields.
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2 RELATED WORK

(Liu et al., 2024) investigate how language mod-
els (LMs) handle long contexts and the challenges
they face in maintaining coherence over extended text
spans. The authors analyse performance on two tasks:
multi-document question answering and key-value re-
trieval, focusing on how the models utilise informa-
tion from the beginning and the end of the context.
It was found that while LMs are effective on short-
context texts, their performance seems to degrade as
the position of information is varied within a context.
Even explicitly long-context models find it difficult to
access relevant information in the middle of a context
as compared to when the required information is lo-
cated either at the beginning or the end of the context.
The study proposed by us also uses a language model
- BERT in order to extract and score the semantics of
text in research papers.

(Yu et al., 2024) address the challenge of seman-
tic similarity matching in patent documents which is
required for patent classification and related tasks. A
combination of an ensemble of BERT-related models
and a new text processing method is proposed. It uses
four variations of BERT to capture different semantic
aspects of patent text. The text processing method in-
volves advanced techniques of preprocessing and seg-
menting patent documents to improve the quality of
input given to the models. Improved semantic clar-
ity matching was observed as compared to existing
methods. The ensemble BERT-related models outper-
formed single-model approaches and showed that the
combined approach achieved higher precision and re-
call in semantic similarity tasks. The proposed study
also aims to leverage a fine-tuned BERT model for a
similar task.

(Vulić et al., 2020) investigate how well pretrained
language models (LMs) capture lexical semantics by
employing probing tasks. Probing classifiers were
used to assess the extent to which these models en-
code information about word meanings and their se-
mantic relationships. Probing tasks were designed
with a focus on various aspects of lexical semantics.
Different pretrained models were studied to under-
stand their lexical semantic knowledge. The authors
found that pretrained LMs contain significant infor-
mation about lexical semantics, but their effectiveness
depended on the model and probing task. The study
finds that models like BERT capture detailed semantic
information better than models like GPT-2, especially
for tasks requiring a deeper level of understanding.
Similar to this study, BERT model is also used in the
proposed work for lexical semantic analysis.

(Yaffe, 2022) critically examines the Fog Index,

a readability metric used to assess the complexity of
written text. An empirical analysis comparing the Fog
Index with other readability metrics was done. Its per-
formance is also evaluated across different genres and
audiences. The results suggest that while the Fog In-
dex provides a quick estimation of text readability, its
utility may be limited. It was found inconsistent in
its correlation with human evaluations, showing that
it may not accurately reflect actual comprehensibility
in all cases. The author concludes that the Fog Index
overlooks some factors but also that it can serve as a
preliminary tool for assessing readability along with
additional metrics and qualitative assessments for a
good, all round evaluation. In the proposed study, the
Fog Index is used along with 3 other quantitative met-
rics to assess the quantitative clarity of a paper which
is then combined with the semantic clarity to provide
a comprehensive evaluation metric.

(To et al., 2013) explore the relationship between
lexical density and readability in English textbooks.
Lexical density was evaluated by calculating the ra-
tio of content words to the total number of words in
the texts. Additional readability formulae were used
to assess the complexity of textbooks. The findings
showed a significant correlation between higher lex-
ical density and increased readability levels. Text-
books having greater lexical density were associated
with complex structures, which could pose compre-
hension challenges for students. Enhancing content
by using denser vocabulary may hinder certain learn-
ers from accessing the content. Thus, it was suggested
that balancing lexical density in educational publica-
tions is crucial to accommodate student engagement.
Comparable to the study, in the proposed work, lexi-
cal density is one of the parameters used to calculate
quantitative clarity.

(Matthews and Folivi, 2023) examine the influ-
ence of sentence length on perception, especially the
effect of complexity and word count on readability.
In several experiments, the authors presented partic-
ipants with sentences of differing length and struc-
tures, evaluating and analysing their subjective judge-
ments and cognitive processing times. The method
combined different metrics to assess participants’ per-
ceptions of clarity and ease of comprehension accord-
ing to the sentences’ characteristics. It was found that
shorter sentences were generally perceived as clearer
and easier to understand, while longer sentences of-
ten led to increased cognitive load and varied inter-
pretations. The results propose that sentence length
significantly affects readability, with implications for
writing and communication practices. The authors
conclude that optimising sentence length can comple-
ment comprehension and engagement, supporting the
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Figure 1: Proposed Approach for assessing the clarity of a research work.

notion that conciseness is essential for effective com-
munication. In this proposed study, to evaluate quan-
titative clarity mathematically, indecisiveness word
count and average sentence length along with other
parameters are used.
(Chiang and Lee, 2023) explore the feasibility of us-
ing large language models (LLMs) as substitutes for
human evaluators in various evaluation tasks. They
focus on a) whether LLMs can replace human judge-
ment in accurately assessing the outputs of other mod-
els and systems and b) if their evaluations are reliable
and rational as compared to human evaluations. The
authors find that while LLMs emulate human evalua-
tions for specific tasks involving straightforward met-
rics or well-defined criteria, they struggle with more
nuanced evaluations that require deep understanding.
They conclude that LLMs can be used to assist human
evaluations in order to provide additional insights and
scale evaluation processes. However, they are not
completely reliable due to their biases and current
limitations.

After an in-depth literature survey, the following
gaps are identified in the existing studies:

• While the above mentioned studies provide in-
sights into how language models handle long con-
texts, they do not explore specific techniques for
enhancing context optimization in similar tasks.

• They also evaluate the potential of large language
models as alternatives to human evaluators but
fail to address the variability in their performance
across different domains and the biases that may
affect the consistency of evaluations.

• The studies focusing on the quantitative aspects
elaborate on how the metrics are used in textbooks
and other written texts but have not tried using
them to evaluate research quality.

The proposed work aims to address the above issues
and uses large language models only for assessing the
concept of clarity, which can in turn be used with

other criteria or methods in a pipeline in order to come
up with a holistic evaluation.

3 PROPOSED METHODOLOGY

In this study, a procedure-oriented approach as seen
in Fig 1, was employed to develop a model that is
able to predict the clarity of abstracts. The concept of
text clarity can be seen as a combination of different
aspects, here explored as semantic and quantitative
clarity, where the former refers to actual understand-
ability of the text and motives, and the latter refers to
clarity as defined by existing established quantitative
scores.

3.1 Semantic Clarity

In this study, text is said to be semantically clear if,
upon reading through the text, the intentions of the
writer are conveyed in an efficient and understand-
able manner. As this quality of text is difficult to sim-
ply define using manual scoring, the concept of A*
Conferences was employed and a pre-trained BERT
model was fine tuned in order to predict scores for
unseen text.

3.1.1 Data Retrieval and Annotation

The process began with retrieval of substantial text
data. This data consisted of 1,00,000 abstracts from
published research present in the S2ORC dataset(Lo
et al., 2019). This dataset is a comprehensive resource
that contains both metadata as well as full-text ab-
stracts from published academic papers. Specifically,
papers were retrieved using keyword based filtering
using the terms “Computer Science” and “Technol-
ogy”, After cleaning the data and filtering out any null
values, the resultant dataset consisted of 80,000 en-
tries.
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Next, another filtering process was applied to ex-
tract the abstracts of papers published in A* confer-
ence venues. These papers are those that are recog-
nized for their high standards and rigorous peer re-
view. The list of A* conferences used to filter the
abstracts was identified using the list maintained by
CORE (The Computing Research and Education As-
sociation of Australasia)(Simon et al., 2023), an or-
ganisation that ranks academic conferences based on
their quality and impact. Focusing on these high-
quality abstracts ensured that the training data repre-
sented well-written and assuredly clear content, pro-
viding a strong foundation for the model.

A novel approach used in order to label the ab-
stracts with scores involved using prompt engineering
with ChatGPT(Marvin et al., 2023). A score, lying
between 0 and 1, was assigned to each abstract. This
assignment was based on criteria like citation metrics,
acceptance rates, and expert opinion. As it would be
incorrect to say papers published in non A* venues
are semantically unclear, certain purposeful data aug-
mentation was performed on such abstracts. This in-
cluded randomised paraphrasing, simplification, and
deliberate error injection followed by assignment of
lower clarity scores. After the labelling of every ab-
stract was completed, the final dataset ensured diver-
sity reflecting both high-quality and lower-quality ab-
stracts.

3.1.2 Model Fine Tuning

For the first step in the model training, A
BERT tokenizer (‘bert-base-uncased‘)(Stankevičius
and Lukoševičius, 2024) was employed to preprocess
the abstracts in the dataset. Initially, the tokenizer
converted every abstract into a distinct sequence of
tokens. These were transformed into PyTorch ten-
sors. This step was taken in order to ensure that
the text was structured in a way that was appropri-
ate for the BERT model. After this, a custom Py-
Torch Dataset class was developed mainly to pair the
tokenized abstracts with their corresponding semantic
clarity score. This custom dataset was given to the Py-
Torch ‘DataLoader‘ in order to handle the processes
of batching and shuffling. This optimised the model’s
exposure to varied sequences seen in the training loop.
This step was essential if the model was to be gener-
alised and overfitting was to be prevented as much as
possible.

In order to make the pre-trained BERT model
(‘bert-base-uncased‘)(Stankevičius and Lukoševičius,
2024) work for regression tasks, it was adjusted with
a single regression output head that could output con-
tinuous values. For the training process, the AdamW
optimizer was used with a learning rate of 1e-5. In

the training loop, the tokenized abstracts were given
to the BERT model which in turn generated clarity
score predictions. To update the model weights peri-
odically, backpropagation was done.

The model was able to achieve a mean squared
error of 0.0169 on the validation data and the over-
all training and testing loss during the epochs can be
visualised in Fig 2. In order to test the model’s perfor-
mance further, unseen abstracts from various venues
were scored using a custom prediction function. This
function first tokenizes the input text, sends it through
the trained BERT model, and finally outputs a pre-
dicted clarity score.

3.2 Quantitative Clarity

3.2.1 Data Annotations and Formulations

The clarity of textual content in research papers can
be assessed using quantitative metrics and scores.
In order to demonstrate the same, 80,000 research
paper abstracts were subjected to four formulations:
Gunning Fog Index, Indecisiveness Word Count,
Lexical Density and Average Sentence Length.
These formulations are essential in evaluating several
key aspects of textual clarity thereby providing a
complete understanding of the clarity and readability
of the text.

1. Gunning Fog Index. The Gunning Fog In-
dex (Gu and Dodoo, 2020), visualised in equation
(1), is a popular readability metric that approximates
the number of years of formal education required by
a reader to understand the text when read for the first
time. The index offers an intuitive way to gauge the
complexity of articles. This makes it a popular choice
for analysing the readability of text across various
fields like education, journalism and legal writing.
The index is calculated by taking two key factors into
consideration: the average sentence length and the
percentage of complex words. Complex words are
assumed to be those words that contain three or more
syllables

Fog Index = 0.4×
(

W
S
+100× C

W

)
(1)

Where:
• W = Number of words
• S = Number of sentences
• C = Number of complex words (words with 3 or

more syllables)
The formulation highlights two important drivers of
clarity: sentences that are longer demand more cog-
nitive effort on the reader’s part and complex words
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require a higher level of linguistic understanding.
A higher Gunning Fog Index means that the text is
difficult to read and understand. In this study, the
index is capped at 20, indicating the upper bound of
difficulty.

2. Indecisiveness Word Count. The Indecisive-
ness Word Count Score measures the presence
of words or phrases that indicate the chances of
uncertainty or lack of clarity. This includes terms
like ”maybe”, ”it could be”, ”possibly”, to name a
few. The score was further enhanced by applying
position-based and contextual penalties.

• Position-Based Penalty: Higher penalties are ap-
plied if an indecisive term appears at the begin-
ning or end of the sentence where the impact of its
presence is most pronounced. A medium penalty
is enforced when the term appears near the start
or end of the text, within 20% of the total words.

• Contextual Penalty: The presence of assertive
words like ”certainly”, ”definitely” and ”undoubt-
edly” in the vicinity of the indecisive term reduces
the penalty. If the term is not surrounded by such
assertive words, a higher penalty is applied since
this reinforces the presence of uncertainty.
In addition to this, the frequency of indecisive

words has also been considered. A more severe
penalty is imposed if such indecisive terms appear
more often within the text. The final score is inversely
proportional to the density of these words. This ap-
proach provides an indication of how uncertainty
reflected in the writing style impacts its clarity.

3. Lexical Density. Lexical density(Amer, 2021) is a
measure of the informational content present in the
text. It is calculated as a ratio of content words which
include nouns, verbs, adjectives and adverbs to the
total number of words available. A higher value of
lexical density indicates a text that is rich in content,
which can either increase clarity by being informative
or reduce clarity if the content is highly dense and
complex. This formulation as seen in equation (2)
helps in understanding the balance between content
and readability in the abstracts.

Lexical Density =
CW

W
(2)

Where:
• CW = Number of content words (nouns, verbs, ad-

jectives, and adverbs)
• W = Total number of words

4. Average Sentence Length:
Average sentence length is a metric that calculates the

average number of words per sentence in the text. The
formulation used for the same is seen in equation (3).
Shorter sentences are generally easier to understand,
while longer sentences can increase the cognitive load
on the reader, potentially reducing clarity.

Average Sentence Length =
∑Ls

ns
(3)

Where:
• ∑Ls = Total number of words in all sentences
• ns = Number of sentences

3.2.2 Data Preparation

Data preparation, a critical step in this study, involved
the processing of abstracts from several research pa-
pers followed by the annotations based on the four
distinct textual clarity formulations. Firstly, the text
was preprocessed by tokenizing the sentences and
words followed by removal of stop words. Subse-
quently, the four formulations were applied on the
abstracts. The final output was a JSON file where
each object contained the abstract along with the four
scores. This comprehensive data preparation ensured
that the abstracts were evaluated in a systematic man-
ner for the evaluation of textual clarity. The data was
split into training(90%) and testing(10%) sets.

3.2.3 Model Training

The dataset was first loaded and split into training and
testing sets. The text data was tokenized using the
DistilBERT tokenizer (Shah et al., 2024), after which
a custom dataset was created to handle both the to-
kenized inputs and the four scores. Mixed Precision
Training (AMP) was employed to optimise the mem-
ory usage and speed up the computation at the time of
fine-tuning DistilBERT. The model was trained using
the AdamW optimizer which handled the weight de-
cay seamlessly. A custom linear learning rate sched-
uler was also used to adjust the learning rates dynam-
ically during the training process. To optimise the
performance even further, gradient accumulation was
utilised. This allowed processing of larger batches by
aggregating gradients over multiple steps before up-
dating the weights of the model. These techniques
together helped the model handle the large dataset ef-
ficiently and helped ensure a faster convergence. To
assess the results, several tests were conducted on the
trained model using contrasting pieces of text: one
clear and the other unclear.

3.2.4 Final Quantitative Clarity Score

In order to obtain the final quantitative clarity score,
the four scores were normalised and assigned weights
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based on their importance in determining the textual
clarity. The Gunning Fog Index was given a weigh-
tage of 0.35 as it is a well established metric that in-
dicates clarity and readability. The Indecisive Word
Count Score was assigned a slightly lower weigh-
tage of 0.25 as it is already a penalty based score.
The relation between clarity and Lexical Density was
seen to follow a Gaussian bell shaped distribution.
Hence, Lexical Density was normalised using a Gaus-
sian function(Thorpe, 2023) and given a weightage
of 0.25 as it balances with the indecisive word count
score in indicating how clear the text is. Owing to the
potential variability in the Average Sentence Length,
a lower weightage of 0.15 was assigned to it. A
weighted score combining the four metrics gave the
overall quantitative clarity score as seen in equation
(4).

CSQ = (0.35×G)+(0.25× I)+(0.25×L)+(0.15×A)
(4)

Where:
• CSQ = Final Quantitative Clarity Score

• G = Normalised Gunning Fog Index Score

• I = Indecisive Word Count Score

• L = Normalised Lexical Density Score

• A = Normalised Average Sentence Length Score

3.3 Combined Clarity Score

Once both the individual models to predict a seman-
tic and quantitative score for a given abstract were
fine tuned and ready for use, a final pipeline was
developed. The final semantic clarity model was
able to predict clarity by generating a score from
the input text. Simultaneously, the final quantitative
clarity model evaluated various linguistic attributes
such as lexical density, sentence length, the Gunning
Fog Index, and the presence of indecisive language
and provided a final quantitative clarity score to the
text. Finally, an equally weighted combination of
these 2 scores was used to calculate the final clar-
ity score. Making use of a custom function to exe-
cute both models concurrently(Sodian et al., 2022),
the final clarity score was computed by summation of
the equally weighted semantic and quantitative clar-
ity scores, as seen in equation (5). The decision
to assign equal weights of 0.5 for the semantic and
quantitative clarity scores, stems from the fact that
both scores assess clarity from different perspectives
that are equally essential to the overall assessment.
Weighing the two aspects equally avoids bias toward
one type of clarity. Using the coefficient of 0.5 ef-
fectively averages the scores, ensuring that the final

combined clarity score lies on the same scale as the
two input scores, that is between 0 and 1.

CSC = (0.5×CSS)+(0.5×CSQ) (5)

Where:

• CSC = Combined Clarity Score

• CSS = Semantic Clarity Score

• CSQ = Quantitative Clarity Score

This approach ensured a comprehensive analy-
sis accounting for the content’s conveyed meaning as
well as its linguistic structure, yielding a robust clarity
evaluation.

4 RESULTS AND DISCUSSION

In the semantic clarity part of the pipeline, the BERT
model was trained for three epochs and its training
and testing loss can be visualised using Fig 2. The
Mean Squared Error on the validation data was a
promising 0.0169. While for the Quantitative Clar-
ity part of the pipeline, the model was made to run for
a total of 5 epochs. As seen in Fig 3, the model gave
good results with the training loss being 6.9776 and
the validation loss being 3.6322.

Figure 2: Training and testing loss variation per epoch for
BERT Model to predict S-Clarity score.

Currently in literature, textual clarity has not been
evaluated using the two aspects used in this work.
There has been research undertaken to assess clarity
in terms of scores(Assamarqandi et al., 2023) simi-
lar to the ones incorporated in the QClarity section of
this work, or even using natural language processing
techniques separately(Choi, 2024). However combin-
ing these two aspects is a novelty presented in the re-
search presented by us.

A plethora of research paper abstracts were scored
using the proposed Combined Clarity Model of which
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Table 1: Clarity Scores for Various Papers.

Paper Type CSS CSQ CSC
(Desai and Chin, 2023) A* 0.920 0.434 0.677
(Liao et al., 2023) A* 0.860 0.499 0.679
(Kulkarni et al., 2024) Non-A* 0.865 0.480 0.672
(Goldstein et al., 2024) A* 0.958 0.488 0.723
(Bagayatkar and Ivin, 2024) Non-A* 0.748 0.316 0.532
(Shewale et al., 2024) Non-A* 0.676 0.448 0.562
(Kingma, 2014) A* 0.858 0.516 0.687
(LeCun et al., 2015) Non-A* 0.772 0.383 0.577
(He et al., 2016) A 0.845 0.583 0.714
(Reddy et al., 2022) Non-A* 0.941 0.475 0.708
(Gargiulo et al., 2017) Non-A* 0.662 0.526 0.594
(Egele et al., 2021) A 0.947 0.439 0.693
(Yudistira et al., 2022) Non-A* 0.767 0.467 0.617
(Cacace et al., 2023) Non-A* 0.747 0.490 0.619
(Kromidha, 2023) Non-A* 0.735 0.473 0.604
(Koivisto and Hamari, 2019) Non-A* 0.711 0.488 0.600
(Jiménez-Luna et al., 2020) Non-A* 0.696 0.317 0.507
(Huang et al., 2024) A* 0.956 0.462 0.709
(Cabitza et al., 2023) A* 0.969 0.494 0.731
(Zulfiqar et al., 2023) A* 0.942 0.506 0.724

Figure 3: Training and testing loss variation per epoch for
DistilBERT Model to predict Q-Clarity score.

20 of the results are tabulated in Table 1. The pa-
pers published in A* venues have consistently scored
slightly higher indicating the better clarity of re-
search published in such venues. However, publica-
tion venue is not the sole parameter on the basis of
which clarity can be judged. Hence, there are cases
where the constituent scores are higher even if the pa-
per was published in a Non A* venue. The quantita-
tive clarity score has been put together using prede-
fined ranges and justified weighting, hence the score
is slightly critical. The two scores considering dif-
ferent aspects of clarity work in tandem to provide a
comprehensive combined clarity score.

5 CONCLUSION

The proposed clarity scoring pipeline offers a com-
prehensive method for evaluating textual clarity by
making use of semantic clarity and quantitative clar-
ity BERT-based models. This hybrid methodology
successfully differentiates between clear and unclear
texts, as demonstrated by the robust results. By as-
sessing both the semantic understanding and struc-
tural coherence of text, the system provides a depend-
able solution for clarity analysis. This makes it a valu-
able tool for a variety of applications, including eval-
uating academic abstracts, enhancing the quality of
automated writing systems, and conducting in-depth
readability assessments.

Future work could focus on various enhancements
to further improve the system’s assessment qual-
ity. Fine-tuning the weighting between semantic and
quantitative models could allow greater adaptabil-
ity to specific types of content, like creative writing
or technical documents. Advanced natural language
processing (NLP) techniques, such as context-aware
embeddings and domain-specific language models,
could incorporated in order to refine the pipeline’s
sensitivity to more clarity features. User feedback
loops could also be added to provide dynamic ad-
justments to the scoring mechanism, thus improving
relevance over time. Finally, using more diverse text
types and languages in the dataset could increase the
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system’s generalizability and effectiveness in multi-
lingual and multicultural contexts. This could easily
make the system more global and multidisciplinary,
making way for broader applications.
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