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Abstract: We address the problem of computing discrete geometric moments on 2D binary images encoded in the
quadtree data structure. We do this by precomputing central moments of the squares of side length 2k, and
using the connection between ordinary and central moments. Compared with the state of the art for images
encoded as quadtrees, our method considerably improves the efficiency of moment computation.

1 INTRODUCTION

Moments have been used in a wide spectrum of ap-
plication domains, ranging from engineering and me-
chanics to image processing and pattern recognition,
as they form a basis for defining shape descriptors in-
variant to similarity transformations (Hu, 1962). Mo-
ments computation is a well-studied field with long
history (Flusser et al., 2016), with many existing al-
gorithms based on different computational paradigms
and image data structures. We propose another such
algorithm, based on the quadtree data structure, which
represents images of size 2n × 2n as the union of
squares of side length 2k, 0 ≤ k ≤ n. The algorithm
precomputes the moments of such squares centered at
the origin, and uses the well known connection be-
tween the ordinary and central moments to compute
the moments of the object encoded in the image.

2 BACKGROUND NOTIONS

We consider a binary 2D world, where the object of
interest O is black, and the background is white. This
world can be continuous or digital. In the latter case,
the world is an image, i.e., a raster of pixels, each
either black or white.
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2.1 Geometric (Cartesian) Moments

For an object O in the continuous world, its geometric
(p,q)-moment mp,q(O) of order p+q is defined as

mp,q(O) =
∫
O

xpyqdxdy.

For a digital object O, the geometric moment is usu-
ally approximated by

mp,q(O) = ∑
(i, j)∈O

ip jq. (1)

The centroid (barycenter) of O is the point (x̄, ȳ) =
(m1,0/m0,0,m0,1/m0,0). Central moments are defined
by

µp,q(O) =
∫
O

(x− x̄)p(y− ȳ)qdxdy.

and are approximated by

µp,q(O) = ∑
(i, j)∈O

(i− x̄)p( j− ȳ)q. (2)

Central moments (of order up to three) can be ex-
pressed through ordinary moments, e.g., as

µ0,0 = m0,0
µ1,0 = 0
µ2,0 = m2,0 − x̄m1,0
µ3,0 = m3,0 −3x̄m2,0 +2x̄2m1,0
µ0,1 = 0
µ1,1 = m1,1 − ȳm1,0 = m1,1 − x̄m0,1
µ2,1 = m2,1 −2x̄m1,1 − ȳm2,0 +2x̄2m0,1
µ0,2 = m0,2 − ȳm0,1
µ1,2 = m1,2 −2ȳm1,1 − x̄m0,2 +2ȳ2m1,0
µ0,3 = m0,3 −3ȳm0,2 +2ȳ2m0,1

(3)
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The inverse expressions are

m0,0 = µ0,0
m1,0 = x̄m0,0
m2,0 = µ2,0 + x̄m1,0
m3,0 = µ3,0 +3x̄m2,0 −2x̄2m1,0
m0,1 = ȳm0,0
m1,1 = µ1,1 + ȳm1,0 = µ1,1 + x̄m0,1
m2,1 = µ2,1 +2x̄m1,1 + ȳm2,0 −2x̄2m0,1
m0,2 = µ0,2 + ȳm0,1
m1,2 = µ1,2 +2ȳm1,1 + x̄m0,2 −2ȳ2m1,0
m0,3 = µ0,3 +3ȳm0,2 +2ȳ2m0,1

(4)

2.2 Quadtrees

A quadtree (Samet, 1990) provides a compact hierar-
chical representation of an image. Assuming a square
image of 2n ×2n pixels for some natural n, a quadtree
is a quaternary tree inductively defined as follows:

• if all pixels have the same color, the tree consists
of a single node labelled with that color;

• otherwise the tree consists of a root node and four
children, where each child is the quadtree repre-
sentation of one of the four quadrants obtained by
cutting the given image into half horizontally and
vertically.

The worst case size for a quadtree occurs in a
chessboard image, where the tree consists of n + 1
full levels, the last level having 2n × 2n leaves (one
for each pixel of the image). Instead, if the image
presents large areas of uniform color, the quadtree
may be much more compact than the original image.
Figure 1 shows a quadtree representation of an image
of size 8×8.

Although a quadtree can be constructed top-down
following the inductive definition, the efficient con-
struction algorithm (Samet, 1990) works bottom-up
by merging groups of four pixels (in the first itera-
tion) or of four nodes (in the other ones) having the
same color.

3 RELATED WORK

The algorithms for the computation of the geometric
moments of 2D binary objects can broadly be clas-
sified as decomposition-based and boundary-based
(Flusser et al., 2016). The algorithms in the first
class decompose the image into non-overlapping sim-
ple shapes (rectangles) for which the moment compu-
tation is straightforward. The algorithms in the sec-
ond class consider only the border black pixels (ad-
jacent to a white pixel). We will review only decom-

position based algorithms, as our algorithm falls into
this category.

Decomposition-based algorithms algorithms work
on a decomposition of the image into runs, rectangles
or squares. A run (a maximal set of contiguous black
pixels in one row of the image) is a rectangle with one
side of length 1, and a square is a rectangle of equal
sides. The algorithms are either based on a specific
data structure used to encode the image (quadtree, run
length or contour chain code), or they compute a de-
composition of the image into rectangles or squares in
a preprocessing step.

Shneier (Shneier, 1981) proposed an algorithm for
computation of m1,0 and m0,1, based on the quadtree
representation of the image. For each block, the coor-
dinates of upper left pixel are determined (the size of
the block is given by its level in the tree) and the mo-
ments of black blocks (leaves) are computed in O(1)
time. Worst-case time complexity is O(22n) for chess-
board image of size 2n × 2n. No discussion on other
values of p and q has been provided.

Wu et al. (Wu et al., 2001) proposed an algo-
rithm for computing moments of order up to three on
a quadtree decomposition of the image. A detailed
description of a parallel implementation is also given.

Zakaria et al. (Zakaria et al., 1987) proposed
a method for computing the discrete low-order mo-
ments based on run-length encoding of a horizontally
convex image (with at most one run in each row).
Li (Li, 1993) generalized the algorithm by Zakaria et
al. to the computation of low-order moments of non-
convex objects (Flusser and Suk, 1999). Spiliotis and
Mertzios (Spiliotis and Mertzios, 1996; Spiliotis and
Mertzios, 1998) proposed another extension of the
algorithm of Zakaria et al., which first decomposes
an image into disjoint rectangular blocks by merging
consecutive runs of equal spread into rectangles and
then computes the discrete moments of arbitrary order
on the rectangles.

Sossa-Azuela et al. (Sossa-Azuela et al., 2001)
proposed to use morphological erosion to decom-
pose the image into a set of non-overlapping squares,
whose moments are computed through closed form
formulas. The squares are of odd side length, be-
cause the structuring element is of size 3 × 3 (but
even side length could be obtained by using structur-
ing element of size 2× 2 (Suk and Flusser, 2010)).
Many iterations of morphological erosion are needed
to find all the squares of the decomposition, from
the largest to the smallest ones (equal to one pixel).
Sossa-Azuela and Flusser (Sossa-Azuela and Flusser,
2004) extended the above decomposition method to
the computation of continuous moments.

Suk and Flusser (Suk and Flusser, 2010) proposed
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Figure 1: An example of an image quadtree: the image decomposition (left) and the tree (right). Leaf nodes are black or
white, internal nodes are called gray and shown with a pattern in the figure.

to use the distance transform instead of the morpho-
logical erosion to obtain the decomposition of the im-
age into squares.

4 THE NEW ALGORITHM

We suppose that the object O is contained in an image
of size 2n×2n and encoded in a quadtree. If the image
has a different size, it is completed with white (i.e.,
background) pixels to the nearest larger power of two.
Therefore, O is a set of pixels and the leaves in the
quadtree representing it are (black or white) squares
of side equal to 2k with 0 < k ≤ n or single pixels for
k = 0.

4.1 Idea of the Method

The algorithm precomputes the moments of axis-
aligned black squares with edges equal to a power of
two and centered in (0,0). Later, such moments will
be used to obtain the moments of the black leaves of
the quadtrees with a limited number of operations.

For a square S of (even) size 2k × 2k, 1 ≤ k ≤ n,
centered at the origin, µp,q(S) = mp,q(S), and

mp,q(S) =
2k−1−1

∑
i=−2k−1

(i+ 1
2 )

p
2k−1−1

∑
j=−2k−1

( j+ 1
2 )

q

(5)
and thus its moments of order p+ q, with odd p or
q, are equal to 0. Therefore only (central) moments
µ0,0,µ0,2 and µ2,0 must be computed, with µ0,2 = µ2,0
because of the symmetry of S w.r.t. the x- and y-axes.

Given any other square R with same side length
as S and centered at any point (x̄, ȳ), the moments of
R can be computed from its central moments, which
are the same as the central moments of S, by using
Formulas (4).

Taking into account that all central moments, with
the exception of µ0,0,µ2,0,µ0,2, are null, the Formulas

(4) for the square R can be rewritten as:

m0,0 = µ0,0
m1,0 = x̄m0,0
m2,0 = µ2,0 + x̄m1,0
m3,0 = 3x̄m2,0 −2x̄2m1,0
m0,1 = ȳm0,0
m1,1 = ȳm1,0
m2,1 = ȳm2,0
m0,2 = µ0,2 + ȳm0,1
m1,2 = x̄m0,2
m0,3 = 3ȳm0,2 −2ȳ2m0,1

(6)

4.2 Algorithm Description

The algorithm computes all the moments mp,q of the
object O represented in the image encoded in the
quadtree, for p+q ≤ 3. It consists of three stages:

1. Compute all the central moments µ0,0 and µ0,2 =
µ2,0 for all the squares having side length equal to
1,2,4, . . .2n (i.e., for all the possible sizes of the
quadtree nodes). Such values are stored in a table
for later use.

2. Initialize all the moments of the object O to zero.

3. Traverse the quadtree. For each black node, cov-
ering a square R, compute the moments of the
node from the central moments computed in step
1, by using the formulas (6). The moments of the
node are added to the current moments.

4. At the end of the quadtree traversal, the moments
of the object O have been computed.

5 EXPERIMENTAL EVALUATION

This section presents the experiments performed to
compare our new algorithm with the state of the
art. Our comparison is restricted to decomposition-
based algorithms for computing image moments and,
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among them, to the ones using general-purpose de-
compositions. The quadtree, as well as the run-length
encoding, are general compression schemes for im-
ages, so it is likely that an input image is already
given in this format. Other decompositions (such as
those from morphological erosion or distance trans-
form) do not correspond to an image format, and they
should be constructed ad-hoc for moment computa-
tion. Therefore, they are not considered in this com-
parison. Some preliminary experiments also showed
that the quadtree-based approach is faster than the one
based on runs, so we concentrate our comparison on
methods working with quadtrees.

We compared our new algorithm with the algo-
rithm by Wu et al. (Wu et al., 2001), the only one in
the literature using a quadtree. We used a sequential
implementation of both algorithms.

Both algorithms have been implemented in
Python and share the same module for the manage-
ment of the quadtree. They differ in the main pro-
cedure used for computing the moments. The used
quadtree implementation maintains a list of all the
leaves, therefore it is not necessary to descend the tree
from the root in order to process all the leaves. The
programs were run on a PC equipped with an Intel
CPU i7-2600K CPU at 3.4 Gigahertz with 32 Giga-
bytes of RAM.

We tested the algorithms on 80 im-
ages from the MPEG7 set available at
https://dabi.temple.edu/external/shape/
MPEG7/MPEG7dataset.zip and featuring different
object shapes and sizes. This set contains 70 classes
of object types with 20 elements each. We selected
the first four elements of twenty classes. Figure 2
shows an element for each selected class.

Note that each class contains semantically the
same object (e.g., an apple or a camel), but the im-
age sizes, the size of the object inside the image, the
thickness of the set of black pixels, may be very dif-
ferent. The given images present a white object on a
black background, and the colors have been inverted
to meet our convention. Figure 3 shows the four se-
lected images in the ”beetle” class.

The total running time of the two algorithms has
the same order of magnitude, and ranges from 0.04
to to 12.7 seconds depending on the size of the im-
age and on the size of the object contained in the im-
age. As Python is an interpreted language, it is easy
to obtain the running time of each executed function
separately. The execution time is dominated by the
construction of the quadtree, which takes from 87%
to 99% of the total time. Figure 4 shows the plot
of the times for building the quadtree (the graph of
the total running time would be almost superimposed

to this). In the figure we note three clusters of run-
ning times around 0.6, 3 and 12 seconds, respectively.
These clusters correspond to three different ranges of
image sizes. For example, among the four images of
class ”beetle” (see Figure 3), beetle-1 takes 12.171
seconds (first cluster from top), beetle-2 and beetle-
4 take 2.886 and 2.882 seconds, respectively (second
cluster), and beetle-3 takes 0.637 seconds (third clus-
ter).

Disregarding the time for building the quadtree,
the remaining time is the one actually used for com-
puting the moments, and is specific of each of the two
algorithms. Figure 5 provides a graphic comparison
of the times for computing the moments by our al-
gorithm (on the x-axis) and the algorithm by Wu et
al. (on the y-axis). Each point corresponds to a test
image. Our algorithm is faster where the point lies
over the bisector of the first quadrant. This happens
for all the test images, the ratio of our execution time
over that by Wu et. al. being on average 36% and at
most 69%. Indeed in Figure 5 we find three clusters
of dots, all aligned on a line of the form y = cx+ d
where c ≃ 5 and d is different in each cluster. As the
clusters of Figure 4, also these clusters correspond to
the three different ranges of image sizes. Finally, we
note that the time for computing the central moments
of squares in our algorithm is negligible (less than one
millisecond).

6 SUMMARY AND FUTURE
WORK

We proposed an algorithm for the computation of dis-
crete geometric moments of 2D binary objects en-
coded in the quadtree data structure. It is based on
precomputing the moments of the squares centered
at the origin, and using the connection between cen-
tral and ordinary moments to compute the moments
of the given object. Our algorithm improves the run-
ning time of the previous quadtree-based algorithm
for moments computation by Wu et al. (Wu et al.,
2001) in its sequential form. Both the construction
of the quadtree and the computation of the moments
from it could benefit from a parallel implementation,
as in Wu et al. (Wu et al., 2001).

This work has several possible extensions. It can
be extended to the computation of geometric mo-
ments of

• 3D objects encoded in the octree data structure;

• greyscale images by decomposing the image into
a binary image for each grey level, as done in (Pa-
pakostas et al., 2008);
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apple-1 beetle-1 bell-1 bird-1 camel-1
(256 x 256) (613 x 660) (252 x 255) (423 x 296) (391 x 355)

crown-1 cup-1 deer-1 dog-1 face-1
(633 x 521) (425 x 383) (693 x 703) (686 x 535) (269 x 337)

fly-1 fork-1 hat-1 jar-1 octopus-1
(308 x 253) (297 x 650) (251 x 216) (512 x 512) (256 x 256)

pocket-1 shoe-1 spring-1 tree-1 watch-1
(147 x 205) (551 x 307) (393 x 318) (256 x 256) (500 x 202)

Figure 2: The first element in each of the twenty considered classes.

beetle-1 beetle-2 beetle-3 beetle-4
(613 x 660) (273 x 303) (216 x 217) (258 x 442)

Figure 3: The four elements of class ”beetle”.
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Figure 4: Running times for building the quadtree on the
80 test images, sorted from the one giving the least to the
one giving the largest time. This is a common task in both
considered algorithms.

Figure 5: Comparison of running times for computing the
moments (total running time minus quadtree construction).
The x-axis represents the running time of our algorithm and
the y-axis that of the algorithm by Wu et al.

• moments of higher order by taking into account
that, for any p,q, we can express each µp,q
through mi, j, 0 ≤ i ≤ p, 0 ≤ j ≤ q as

µp,q =
p
∑

i=0

q
∑
j=0

(p
i

)(q
j

)
mp−i

1,0 mq− j
0,1 (−m0,0)

p+q−i− jmi, j

and conversely

mp,q =
p
∑

i=0

q
∑
j=0

(p
i

)(q
j

)
mp−i

1,0 mq− j
0,1 mp+q−i− j

0,0 µi, j.
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