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Abstract: Besides being very useful in solving decision-making problems, classical Multi-Criteria Decision-Making
(MCDM) techniques were designed to consider only profit and cost criteria. However, in some cases, it can
be necessary to include more complex preferences of decision makers to better fit the problem. In such cases,
modern MCDM methods such as Stable Preference Ordering Towards Ideal Solution (SPOTIS) can be used.
The SPOTIS method allows for providing the Expected Solution Point (ESP) as input data for the decision
problem. However, this approach can lead to unsatisfactory results if provided expert preferences are unreli-
able. To solve this problem, we propose a novel Balanced SPOTIS method with an ESP confidence parameter,
which allows us to obtain a solution that is balanced between objectively ideal solutions and subjective expert
preferences. We show how this new approach works in the case study of selecting a used car and provide an
in-depth analysis of the problem using the new ESP confidence parameter for sensitivity analysis. Finally, to
underline the advantages of the proposed approach, we compare it with the Expected Solution Point - Charac-
teristic Objects Method (ESP-COMET).

1 INTRODUCTION

Multi-Criteria Decision Making (MCDM) is a part of
operational research that concentrates on providing
comprehensive tools and algorithms for solving and
analyzing decision-making problems. Such problems
usually involve different criteria and decision alterna-
tives and require some domain knowledge to evaluate
them (Torres et al., 2024). MCDM methods can be
helpful in aiding the expert or a decision maker in the
appropriate and satisfying solution of decision prob-
lems based on the input and preferences provided by
the expert (Shekhovtsov, 2022).

Most of the MCDM methods concentrate on find-
ing the optimal solution in the set of decision alter-
natives based on the criteria types and importance
weights. However, this narrows the ability to per-
sonalize the decision-making process, mostly because
most MCDM methods allow only profit (maximiza-
tion) and cost (minimization) criteria types. However,
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there are different types of problems in which the type
of ”target” criterion is involved (Jahan et al., 2012).
The target criterion indicates that this criterion should
not be maximized or minimized, but our expected (or
most suitable) value is somewhere between the mini-
mum and maximum values for this criterion.

There are methods designed to operate on target
criteria through the input of the decision maker, such
as Stable Preference Ordering toward the Ideal So-
lution (SPOTIS) (Dezert et al., 2020), Characteris-
tic Objects METhod (COMET) (Shekhovtsov et al.,
2023), and Reference Ideal Method (RIM) (Cables
et al., 2016). While the COMET method requires the
preparation of the pairwise comparison matrix, both
SPOTIS and RIM methods allow the definition of the
expected (target) solution in the form of the vector of
expected values for the different criteria. For exam-
ple, in material selection decision makers can expect
some specific value for material’s property, making
this an expected solution value. These methods are
also notable because of their robustness, as they are
resistant to rank reversal by design. Classical MCDM
methods can usually be extended with advanced nor-
malization techniques to include target criteria in the
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problem (Jahan et al., 2012), but the potential and us-
ability of such extensions are rather low and limited
to concrete decision problems.

In this study, we focus on the SPOTIS method,
which is a relatively new decision support method
proposed by Dezert et al. (Dezert et al., 2020).
This method allows the decision maker to provide
the Expected Solution Point (ESP) to personalize the
decision-making process to suit the specific needs of
the decision maker. However, this approach has some
practical limitations. Changes in ESP can have a great
impact on the final ranking, which implies that ESP
provided by inexperienced or not confident decision
makers can lead to an unsatisfactory solution to the
problem.

The main contribution of the paper is:

• to propose a Balanced SPOTIS method, which
extends the standard algorithm of the SPOTIS
method with ESP confidence parameter, which al-
lows for balancing between rankings built towards
ideal and expected solutions.

• The usefulness of the method is demonstrated in
the case study of choosing a used car based on
mileage, price, and year of manufacture.

• We demonstrate how to conduct a solution sen-
sitivity analysis with the new method, which can
be used to better understand the problem and the
preferences of the decision maker, providing a
more reliable and informed decision.

• Additionally, we show the comparison with the
ESP-COMET method, as it can handle several
ESP points, making these methods comparable.

The rest of the paper is structured as follows. In
Section 2, we describe some related works on the
topic. In Section 3, we describe the original SPOTIS
method, and in Section 3.3, we describe our proposal
on the extension of this method. Then, in Section 4,
we demonstrate the application of this new method in
a practical case study of choosing a used car in Poland
and we make the analysis of the decision made de-
pending on the confidence factor chosen by the de-
cision maker. Next, in Section 5, we summarize the
research results and propose some possible perspec-
tives.

2 RELATED WORKS

Most popular MCDA methods, such as the Tech-
nique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and the Analytic Hierarchy Pro-
cess (AHP), suffer from the rank reversal paradox,

which can make the results unreliable in certain cases
(Chakraborty, 2022; Yulistia et al., 2023). This para-
dox typically arises when the set of alternatives is
modified, causing shifts in the previously established
ranking. In such cases, it can be difficult to determine
which alternative should be ranked higher due to con-
flicting results.

To address the rank-reversal problem, many ex-
tensions of the affected methods have been proposed
(Yulistia et al., 2023). However, it seems more bene-
ficial, in terms of simplicity, to develop methods that
are inherently robust to this issue by design. Methods
such as RIM (Cables et al., 2016) and SPOTIS (Dez-
ert et al., 2020) rely on data normalization and crite-
ria bounds to create decision models that are resistant
to rank reversal. Other approaches, like the COMET
and its extension ESP-COMET (Shekhovtsov et al.,
2023), use fuzzy logic and rule-based systems to
model the full domain of the decision problem.

These methods have demonstrated their applica-
bility and usefulness in practical case studies. For
example, Torres successfully applied the SPOTIS
method for the selection of unmanned aerial ve-
hicle systems (Torres et al., 2024). Furthermore,
Shekhovtsov investigated the possibility of apply-
ing the SPOTIS method to personal decision-making
problems, incorporating the ESP approach within the
SPOTIS framework (Shekhovtsov, 2022).

The RIM was applied by Hsiung et al. in a
case study assessing the risk of COVID-19 in hos-
pital screening procedures (Hsiung et al., 2023). To
address potential uncertainty in the data, the authors
used Single-Valued Trapezoidal Neutrosophic Sets in
combination with the Best-Worth Method (BMW),
followed by the RIM method, to rank the risk models
and identify areas for improvement. Similarly, Patil et
al. (Patil and Majumdar, 2021) sought to identify at-
tributes that influence the use of two-wheelers in India
and prioritized these attributes using several MCDA
methods, including the RIM method.

The COMET method was applied by (Więck-
owski and Zwiech, 2021) to select the most energy-
efficient material. In other work, (Kizielewicz and
Dobryakova, 2020) proposed using the COMET
method to assess the performance of NBA players.
They showed that, even with missing data, it is possi-
ble to accurately rank players.

Despite their high applicability, both the COMET
and RIM methods have certain limitations. The
COMET method suffers from the curse of dimension-
ality and requires the creation of a pairwise compari-
son matrix, which can be time consuming. The RIM
method, on the other hand, is easier to use and builds
a ranking towards a reference ideal interval. However,
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it is not possible to prioritize solutions in the interval
leading to a tie for all alternatives within the reference
interval.

Our proposed method, Balanced SPOTIS, ad-
dresses these issues. Although it remains as easy to
use and understand as the original SPOTIS method, it
allows the incorporation of both Ideal Solution Points
(ISP) and Expected Solution Points (ESP), along with
the ability to adjust the importance of ESP using a
confidence parameter α. This approach not only en-
ables the preference of ESP over ISP to some ex-
tent but also offers analytical advantages, providing
deeper insights into the decision problem and prefer-
ences of decision makers.

3 METHODOLOGY

3.1 Stable Preference Ordering
Towards Ideal Solution (SPOTIS)

The SPOTIS method is a MCDA method proposed
by (Dezert et al., 2020). This method uses reference
objects to evaluate decision alternatives. However, in
contrast to other methods, which usually deduce ref-
erence objects based on the data in the decision ma-
trix, the SPOTIS method requires them to be defined
by the decision-maker.

To apply the SPOTIS method, the decision maker
must first define the data boundaries that will form
reference objects for alternative evaluation. For each
criterion C j ( j ∈ {1,2, . . . ,N}) the maximum Smax

j and
minimum Smin

j bounds must be defined. Next, the ISP
SSS∗ = {S∗1, . . .S

∗
j , . . .S

∗
m} is selected as S∗j = Smax

j for
the profit criterion and as S∗j = Smin

j for the cost crite-
rion. The decision matrix is defined as S = (Si j)M×N ,
where Si j is the attribute value of the i-th alternative
Ai for the j-th criterion C j.

The algorithm of the SPOTIS method presented in
(Dezert et al., 2020) is as follows:
Step 1. Calculation of the normalized distances to
ISP (1).

di j(Ai,S∗j) =
|Si j −S∗j |

|Smax
j −Smin

j |
(1)

Step 2. Calculation of the weighted normalized dis-
tances from ISP d(Ai,SSS∗) ∈ [0,1], according to (2).

d(Ai,SSS∗) =
N

∑
j=1

w jdi j(Ai,S∗j) (2)

Step 3. Determine the final ranking by ordering the

alternatives by the values d(Ai,SSS∗). The better alter-
natives have smaller values of d(Ai,S∗).

The interesting features of this method are its sim-
plicity, its robustness to the rank reversal paradox, and
also its ability to use the so-called Expected Solution
Point (ESP), which allows the definition of an out-
come expected by the decision maker and builds the
ranking toward this point instead of the ISP. In order
to use the SPOTIS method with selected ESP SSS+ one
should apply the normal SPOTIS procedure, substi-
tuting values of Ideal Solution Point S∗j to values of
ESP S+j . The decision maker should choose the val-
ues of SSS+ to fit the given decision problem. How-
ever, it is essential to ensure that the chosen ESP is
within the scope of the problem, i.e., S+j must satisfy
Smin

j ≤ S+j ≤ Smax
j for every j.

3.2 Expected Solution Point COMET

The Expected Solution Point COMET was devel-
oped to address the dimensionality curse present in
the COMET method (Shekhovtsov et al., 2023). To
overcome this challenge, the ESP-COMET method
was introduced as an alternative approach to build-
ing the pairwise comparison matrix in the original
COMET method. In this approach, the expert or de-
cision maker first defines one or more Expected So-
lution Points (ESPs) based on their preferences and
domain expertise. Each ESP vector contains N val-
ues, where N represents the number of criteria in the
decision problem.

The short version of the algorithm is defined as
follows.
Step 1. Define the criteria for the decision problem
and assign fuzzy numbers to represent each criterion.
Define ESP points which should be used to build the
pairwise comparison matrix.
Step 2. Use the Cartesian product of fuzzy numbers
to create a set of Characteristic Objects representing
all possible combinations.
Step 3. Use the defined Expected Solution Points to
identify pairwise comparison matrix, rather than us-
ing manual comparisons. The preference values for
the Characteristic Objects then defined based on the
identified matrix.
Step 4. Convert each characteristic object and its
preference value into a fuzzy rule.
Step 5. Use the fuzzy rule base and Mamdani’s infer-
ence method to evaluate and rank alternatives. Alter-
natives with a higher preference value are better.

The complete algorithm of the ESP-COMET
method is presented in (Shekhovtsov et al., 2023),
while implementation of the method can be found
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and used in pymcdm Python library (Kizielewicz et al.,
2023).

3.3 Proposed Approach

The SPOTIS method is quite effective and can be
helpful even in complex decision-making problems.
If ESP is used in the SPOTIS method it can also be
useful in the case of personalized decision-making,
where the target criteria appear in the problem (Jahan
et al., 2012; Shekhovtsov, 2022). However, this ap-
proach has some limitations because the selection of
ESP has a critical impact on the final ranking, which
can lead to unsatisfactory outcome.

To address this issue, we propose the improve-
ment of the SPOTIS method named Balanced SPO-
TIS (B-SPOTIS), as well as a sensitive analysis algo-
rithm that can be used to comprehensively analyze the
decision problem. This hybrid approach allows users
to define the level of confidence (or trust) in ESP, al-
lowing them to perform a finer analysis of the deci-
sion problem.

The application of the proposed B-SPOTIS
method requires the definition of the criteria bounds
Smin

j and Smax
j for all criteria C j and the ESP values

S+j . Next, the decision maker should choose which
criteria values are preferred if they are smaller and
which are preferred if they are larger than ESP. Based
on this information, it is necessary to define the Ideal
Solution Point S∗j as Smin

j if the decision maker prefers
the values smaller than ESP or as Smax

j if larger values
are preferred than ESP for the jth criterion. Next, it is
required to choose the value of the confidence param-
eter of the ESP α ∈ [0,1], which regulates the trust of
the decision maker to the provided values.

When all values are defined, the B-SPOTIS proce-
dure can be applied in three steps as follows:

1. Apply the standard SPOTIS algorithm to calculate
the weighted normalized distances d(Ai,SSS+) from
ESP SSS+. Those values will allow one to choose
the closest alternative to ESP.

2. Apply the standard SPOTIS algorithm to calculate
the weighted normalized distances d(Ai,SSS∗) from
the ISP SSS∗. Those values will allow one to choose
the closest alternative to the ISP.

3. Calculate the final compromise (i.e. balanced)
distances Pi = d(Ai,SSS∗,SSS+,α) for each alternative
Ai using the convex combination of d(Ai,SSS∗) and
d(Ai,SSS+) given in (3):

Pi = α ·d(Ai,SSS+)+(1−α) ·d(Ai,SSS∗) (3)

Manipulation of the ESP confidence parameter α

can be useful to provide certain information on which

alternatives are closer to the objectively chosen Ideal
Solution and which are closer to the subjectively se-
lected Expected Solution. This type of analysis can
be useful to get a different perspective on the problem
and the preferences chosen, which can help to make
more deliberate and informed decisions.

4 EXPERIMENTS AND RESULTS

4.1 Case Study

To demonstrate the application of the Balanced SPO-
TIS, we present the case study of choosing a used car
in Poland. In Table 1, we present the primary crite-
ria involved in the decision problem. The criterion
C1 describes the mileage of the car in thousands of
kilometers; criterion C2 is a price and is defined in
thousands of Polish złoty (PLN), as the data were col-
lected from the Polish Web pages. The last criterion,
C3, is a production year.

For this example, we consider eight decision al-
ternatives in which the criteria data are within the
range of minimum and maximum criteria values (Smin

j
and Smax

j ) defined by the decision maker. The impor-
tance weights of the criteria presented in Table 1 were
identified by the decision maker using the RANking
COMparison method (RANCOM), which creates nu-
merical weights based on the importance established
by the expert (Więckowski et al., 2023).

Table 1: Criteria description.

C j Name Unit w j Type Smin
j Smax

j
C1 Mileage k km 0.33 Min 70 360
C2 Price k PLN 0.56 Min 35 70
C3 Year Year 0.11 Max 2013 2018

The data collected are presented in Table 2. The
alternatives A1 - A8 were established based on adver-
tisements for one specific car model, but from differ-
ent advertisements. We also include the ESP S+ de-
fined by the decision maker, as well as the Ideal So-
lution Point S∗ defined based on the types and limits
of criteria (see Table 1). It can be seen that both ESP
and ISP set the criterion C3 (production year) to 2018,
and none of the alternatives considered can satisfy this
value. However, ESP and ISP differ in terms of car
price and mileage, which presents subjective prefer-
ences of the decision maker and an objective ideal so-
lution.

We then calculate three preference vectors and
three ranking using the standard algorithm of the
SPOTIS method with regard to the Ideal Solution
Point (ranking P(∗)

i and ranking R(∗)
i ), with regard to
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Table 2: Alternatives data (Ai) with ESP S+ and ISP S∗.

Ai C1 C2 C3
A1 94.0 69.9 2017
A2 297.0 42.0 2013
A3 205.0 68.9 2015
A4 360.0 36.9 2014
A5 86.0 59.9 2017
A6 79.6 63.8 2017
A7 113.0 56.9 2015
A8 171.0 58.0 2016
SSS+ 110.0 45.0 2018
SSS∗ 70.0 35.0 2018

the Expected Solution Point (P(+)
i and R(+)

i ) and us-
ing the proposed Balanced SPOTIS algorithm with
the confidence parameter ESP α set to 0.5 (P(0.5)

i and
R(0.5)

i ). Those preferences and rankings for all alter-
natives are presented in Table 3. Keep in mind that
both SPOTIS and Balanced SPOTIS evaluate alterna-
tives in terms of distance to the Ideal or Expected So-
lution. Therefore, smaller values of Pi indicate better
alternatives.

To analyze the results presented in Table 3, we
will concentrate on the first three ranking positions.
As we can see, in the case of ranking R(∗)

i built to-
wards ISP, the best alternatives are A5, A4 and A7,
however, in the case of both R(+)

i and R(0.5)
i rankings,

the order of the best alternatives is A7, A5 and A8.
Two alternatives, A7 and A5, are especially interest-
ing for our analysis. It can be seen that A7 is closest
to ESP and A5 is closest to ISP and if we analyze pref-
erences obtained using the Balanced SPOTIS method
with α = 0.5 (see P(0.5)

i ) we can see that these two al-
ternatives performed very similar (A5 got 0.3632 and
A7 0.3626), therefore this can be seen as a tie from a
certain point of view. However, the decision maker
decided that for his case, alternative A5 is the best,
showing that in addition to being closer to ISP than
ESP, it can be a good solution for the personalized
decision-making process.

We also add the resulted preference values for the
ESP SSS+ and ISP SSS∗ vectors in Table 3. It can be seen
that in the ranking built towards ISP, the ESP pref-
erence is 0.2055, and for the ranking built towards
ESP, the ISP preference is the same value (0.2055).
However, in the results of the Balanced SPOTIS with
α= 0.5, both ESP and ISP received a preference value
equal to 0.1028. This property is derived from the lin-
ear behavior of the SPOTIS algorithm and is proved
as follows.
Theorem. In the case of using α = 0.5 ESP, ISP and
all the alternatives places between them will be eval-
uated equally.

Table 3: Preferences Pi and rankings Ri for ESP (+),
ISP (∗) and Balanced SPOTIS with α = 0.5 algorithms.

Ai P(∗)
i P(+)

i P(0.5)
i R(∗)

i R(+)
i R(0.5)

i
A1 0.6077 0.4386 0.5232 7 6 7
A2 0.4803 0.3708 0.4256 4 5 4
A3 0.7620 0.5565 0.6593 8 8 8
A4 0.4484 0.5021 0.4752 2 7 6
A5 0.4386 0.2877 0.3632 1 2 2
A6 0.4937 0.3574 0.4256 5 4 5
A7 0.4653 0.2598 0.3626 3 1 1
A8 0.5269 0.3214 0.4242 6 3 3
SSS+ 0.2055 0.0000 0.1028 - - -
SSS∗ 0.0000 0.2055 0.1028 - - -

Proof. Consider N > 2 criteria C j ( j = 1,2, . . . ,N)
with their importance weights w j ≥ 0
( j = 1,2, . . . ,N), and an alternative Ai with its
score vector SSSi = [Si1, . . . ,Si j, . . . ,SiN ]. Suppose that
for any criterion C j the condition S∗j ≤ Si j ≤ S∗j
satisfied, where S∗j is the j-th component of ISP point
and S+j is the j-th component of ESP point, which
can be written more concisely as SSS∗ ≤ SSSi ≤ SSS+. The
distance of Ai to ISP and the distance of Ai to ESP
are respectively given by

d(Ai,SSS∗) =
N

∑
j=1

w j
|Si j −S∗j |

δ j
(4)

d(Ai,SSS+) =
N

∑
j=1

w j
|Si j −S+j |

δ j
(5)

where δ j ≜ |Smax
j −Smin

j |.
The Balanced SPOTIS solution is given by

Pi = α ·d(Ai,SSS+)+(1−α) ·d(Ai,SSS∗) (6)

and for α = 1/2 we get

Pi =
1
2

N

∑
j=1

w j
|Si j −S+j |

δ j
+

1
2

N

∑
j=1

w j
|Si j −S∗j |

δ j
(7)

=
1
2

N

∑
j=1

w j
|Si j −S+j |+ |Si j −S∗j |

δ j
(8)

Because we have the inequality S∗j ≤ Si j ≤ S∗j sat-
isfied, we get |Si j − S+j | = S+j − Si j and |Si j − S∗j | =
Si j − S∗j . Therefore |Si j − S+j |+ |Si j − S∗j | = S+j −
S∗j , whence for any alternative Ai we always have

Pi =
1
2 ∑

N
j=1 w j

S+j −S∗j
δ j

, which is actually independent
of the alternative scores Si j. In this very particular bal-
anced case where SSS∗ ≤ SSSi ≤ SSS+ with α = 1/2 none of
the alternatives can be preferred and we have a total
uncertain situation showing indifference between all
the alternatives. The similar remark holds for the case
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where the condition S+j ≤ Si j ≤ S+j for j = 1,2, . . . ,N
is satisfied (i.e. SSS+ ≤ SSSi ≤ SSS∗ holds) because we will

get Pi =
1
2 ∑

N
j=1 w j

S∗j−S+j
δ j

.
This behavior implies that there is no possibility

to differentiate or order alternatives between ESP and
ISP when α = 0.5. This reflects a situation with full
uncertainty on which alternative should be preferred
as it lies within a range between equally preferred val-
ues. To ensure that this paradox does not interfere
with the results, it is advisable to always investigate
several possible α values or to ensure that there are
no alternatives between Expected and Ideal solutions.

Going further with the analysis of the rankings
presented in Table 3 we can check the values of
the Weighted Spearman correlation coefficient rw be-
tween the rankings (Pinto da Costa and Soares, 2005).
The correlation between the rankings R(∗)

i and R(+)
i is

0.4709, which implies that these rankings are quite
different but not uncorrelated. Then, rw correlation
between R(0.5)

i and R(∗)
i is 0.5873, but for pair R(0.5)

i

and R(+)
i we got the value 0.9630. This shows that a

balanced ranking is much closer to the ranking built
toward ESP than ISP. It can be expected that a bal-
anced ranking would have a similar correlation to the
ESP and ISP rankings. However, it is very depen-
dent on the decision problem and the correlation co-
efficient used. In the case of the Weighted Spearman
correlation, R(0.5)

i is closer to R(+)
i due to the similar

heading of the ranking, as this correlation coefficient
puts more weight on the top alternatives.

4.2 Sensitivity Analysis

As mentioned earlier, the ESP confidence parameter,
α, can be used to analyze which alternatives are closer
to the Expected Solution Point (ESP) and which are
closer to the Ideal Solution Point (ISP). This analy-
sis can be performed by gradually changing the value
of α within the range [0,1], using a chosen step size.
Figure 1 presents the proposed sensitivity analysis al-
gorithm.

Define the decision
problem including:

  - Decision matrix
  - Criteria weights and bounds
  - Ideal Solution Point (ISP)
  - Expected Solution Point (ESP)

Compute
ranking

toward ESP

Compute
ranking

toward ISP

Compute Balanced SPOTIS
rankings using different
values of α parameter

Analyze changes
in the rankings

1 2

34

Figure 1: Flowchart of the sensitivity analysis process.

In the current research, we demonstrate the appli-
cation of this sensitivity analysis framework with step
∆α = 0.1. It is worth mentioning that according to
Equation (3), using α = 0.0 will provide the same re-
sults as ISP SPOTIS, and the use of α = 1.0 is the
same as applying ESP SPOTIS. The results of the cal-
culations are shown in Figure 2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(ISP SPOTIS)                                          (ESP SPOTIS)

ESP confidence α

1
2
3
4
5
6
7
8Po

sit
io

n 
in

 ra
nk

in
g

A1

A2

A3

A4

A5

A6

A7

A8

Figure 2: Changes in alternatives’ positions in ranking for
different values of α parameter.

From the analysis of Figure 2, we can see that
there are not many changes in the ranking, because
the chosen ESP and ISP are similar. However, there
are two interesting cases that we want to discuss in
detail, specifically alternatives A4 and A8. The alter-
native A8 at the sixth position for α = 0.0, and the
increase of α improved the positions of the alterna-
tive A8, and in the ranking for α = 1.0, it took the
third position. It is interesting because most of the
alternatives do not change their rankings more than
one position up or down. If we look closer to Ta-
ble 2, this change can easily be explained: while A8
performs relatively poorly with regard to ISP because
of the large mileage and price, it is closer to ESP
than some other alternatives because ESP allows for a
higher price and mileage. However, the alternative A4
changes its position from seventh in the ranking with
α = 1.0 to second for α = 0.0. At first sight, it can be
very strange that this alternative got such a high posi-
tion, performing badly in mileage and year. However,
the most important criterion for the decision-maker is
price, and this alternative has the lowest price among
all alternatives.

To better explain how the ESP confidence fac-
tor α influences the results of the Balanced SPO-
TIS method, we show in Figure 3 how the prefer-
ence function changes depending on different val-
ues of α. We choose to present the plots only for
α ∈ {0.1,0.5,0.9}, as these three values are most
significant in understanding how the ESP confidence
factor influences preferences. The three subplots of
Figure 3 show the change of preferences for the three
α values based on criteria C1 and C2 when C3 is set to
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Figure 3: Visualization of the preference function shape for α ∈ {0.1,0.5,0.9}. For all evaluated points C3 is set to 2018.

2018 for all the evaluated points. The direction of the
criteria and the weights are drawn from Table 1. For
each subplot, the ESP is marked with a red plus sym-
bol and the ISP is marked with a red star symbol for
convenience. The black circles with white numbers
indicate the position of the eight alternatives.

It can be seen that for α = 0.1, the yellow region
of the smallest distances (more preferred solutions) is
placed around ISP, but for α = 0.9, the region with
the most preferred solutions is located around ESP,
which is in agreement with how the ESP confidence
parameter is expected to work. However, in the case
of α = 0.5, it can be observed that there is no yellow
region around ISP or ESP, but a light green region
that determines the equally preferred alternatives be-
tween ESP and ISP, as mentioned earlier in the pa-
per. It is also worth noting that the alternatives A5 and
A7, which were ranked best for both models, are visu-
ally closer to ESP and ISP than the other alternatives.
When A2 appears to be close to both ESP and ISP, it
ranked lower than A5 and A7 due to the lower value of
the criterion C3 (year).

4.3 Comparison Between Balanced
SPOTIS and ESP-COMET

To highlight the advantages of the Balanced SPOTIS
method, we also present a comparison with the ESP-
COMET method. This method was chosen because
of the possibility to provide several expected solution
points and build the ranking based on them. How-
ever, the procedure of the ESP-COMET doesn’t pro-
vide the ability to prioritize one or another ESP. An-
other limitation is that there is no possibility to apply
criteria weights in this method.

Equation 9 shows the ranking produced using
the ESP-COMET method (R(E)). The ESP-COMET
ranking takes into account both the ESP and ISP
points utilized in the SPOTIS calculations. In the
ESP-COMET ranking, the alternative A5 holds the top
position, which is the same as in the SPOTIS ranking

toward ISP. However, the alternative A6, which ranked
second in the ESP-COMET method, is lower in the
other rankings (see Table 3). This is notable since A6
has criteria values similar to A5 and may be seen as a
better candidate for second place than A4.

It is important to note that the SPOTIS method in-
corporates the criteria weights of Table 1, while the
ESP-COMET method treats all criteria equally. Given
that Price is the most important criterion, it is reason-
able to expect A4 to rank higher and A6 lower, as re-
flected in the SPOTIS results. A similar discrepancy
can be observed with A1.

A1 A2 A3 A4 A5 A6 A7 A8
R(E) = [7 4 8 6 2 5 1 3]

(9)

In addition, in Figure 4, we present a visualization
of the preference function in the ESP-COMET model
for two criteria, with the third criterion held constant.
Note that in the COMET method, more preferred al-
ternatives receive higher preference values, so we re-
versed the colormap for convenience. Brighter, more
yellow regions represent more preferred alternatives.
The orange dots and lines indicate the grid of Charac-
teristic Objects.
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Figure 4: Visualization of the preference function shape
for ESP-COMET with two ESP selected. For all evaluated
points C3 is set to 2018.

The region between two ESPs (or an ESP and ISP)
in Figure 4 is particularly interesting. It shows that, in
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addition to the highly preferred yellow region, there
are two areas with slightly lower preference values.
This situation may seem counterintuitive. While hav-
ing all alternatives between the ISP and ESP receive
the same preference values, as observed in Balanced
SPOTIS with α = 0.5, seems more intuitive to us,
the differing preferences in this area can be harder
to justify. With B-SPOTIS, it is possible to eval-
uate multiple values of α, which is not possible in
ESP-COMET. Consequently, when decision-makers
encounter cases where two very similar alternatives
within the expected/ideal value range have different
preference values, it can lead to confusion.

5 CONCLUSIONS

In this paper, we proposed a Balanced SPOTIS
method, which can be helpful for personalized
decision-making and analysis of the decision prob-
lem. The usefulness of the proposed approach was
demonstrated in the case study of choosing a used
car, where the decision maker provided the ESP but
preferred the alternative, which was the best in the
ISP ranking. ESP trust (or confidence) parameter
α can be very useful in such situations when it is
necessary to perform a sensitivity analysis, investi-
gating the decision problem from different perspec-
tives. It can also be useful in cases where we do not
have too much confidence in the preferences provided
by the expert. We also performed a comparison be-
tween the Balanced SPOTIS and ESP-COMET meth-
ods, highlighting certain drawbacks of ESP-COMET.
Although ESP-COMET allows for the inclusion of
any number of ESPs, it faces issues such as the curse
of dimensionality and lacks a weighting mechanism,
leading to equal treatment of all criteria.

This work opens some interesting future research
directions. The Balanced SPOTIS method can be ex-
tended further to address the issue of aggregating sev-
eral ESP or expert preferences to provide a compre-
hensive compromise solution. We also want to fur-
ther investigate the properties of the proposed method
and compare its performance with different MCDM
methods in more real-life case studies. In the future,
we also plan to extend B-SPOTIS to handle imprecise
data.
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