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Abstract: This study shows a simple yet effective approach to comparing decision models built using the Characteristic
Objects Method (COMET). The proposed approach is based on the Hamming Distance and its adaptation for
complex decision problems that involve structural division of the model. We demonstrate the simulation-based
proof-of-concept and then demonstrate the proposed approach to the case study of evaluating ten hydrogen
cars based on the information provided by the manufacturers. We compared six decision models created based
on the preferences of three decision makers expressed using Expected Solution Point (ESP) and Triad Support
algorithm. The results obtained provide, on the one hand, some useful insights into customers’ preferences
and expectations for hydrogen cars and, on the other hand, show the utilization of the proposed comparison
methodology.

1 INTRODUCTION

Multi-Criteria Decision Making (MCDM) is the do-
main of operational research that investigates com-
plex decision problems, which usually involve many
different criteria (Zavadskas and Turskis, 2011). In
case of complex problems, the decision maker can
turn to a vast choice of decision support methods,
from simple ones such as Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS)
(Li et al., 2023) or Stable Preference Ordering To-
wards Ideal Solution (SPOTIS) (Dezert et al., 2020),
to complex methods, such as Characteristic Objects
METhod (COMET) (Sałabun et al., 2019), which can
identify even complex decision maker’s preferences
in the complete domain of the decision problem.

The motivation for this study comes from the fact
that the COMET method and other pairwise compar-
ison methods lack a clear way to measure or compare
the results of different decision models. For example,
it may be necessary to include the opinions of mul-
tiple experts or to build several decision models and
use methods to combine their results (Dehe and Bam-
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ford, 2015). In these cases, correlation measures can
help identify and understand differences between the
results of different methods or models (Yelmikheiev
and Norek, 2021). However, there is no simple way to
compare COMET models or predict how much their
results might differ, creating a gap in the tools avail-
able for decision-making analysis.

In this paper, we present a simple yet effective ap-
proach to measuring the differences between COMET
decision models, demonstrated by using the exam-
ple of hydrogen cars. In such a case study was cho-
sen, the use of MCDM methods has become essen-
tial with the increasing number of hydrogen-powered
alternatives available not only in the transportation
field. Recently, there has been interest in research
in the MCDM field in hydrogen technologies, such
as covering production, infrastructure, and transporta-
tion systems.

The main contribution of this paper is to show
an approach on how to compare decision models
based on the COMET model using the Hamming dis-
tance and how to adapt this approach to the structural
models. To demonstrate our proposed approach, we
present a simulation that shows that it is possible to
predict the outcome of the ranking comparisons based
on the Hamming distance between Matrices of Expert
Judgements for different models. We also present this
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approach in a real-life case study on the evaluation of
hydrogen cars.

The rest of the paper is structured as follows. In
Section 3, we briefly present the methods and algo-
rithms used for this research. Next, in Section 4.1,
we present the proof of concept of the comparison of
COMET models using the Hamming distance, then in
Sections 4.2 and 4.3, we present the case study of hy-
drogen cars and a proposition for the comparison of
structural COMET models. Finally, in Section 5, we
summarize our findings and discuss the directions for
future works.

2 RELATED WORKS

The field of MCDM has seen extensive research, pro-
viding a wide array of methods to assist decision-
makers in addressing complex multi-criteria prob-
lems. Well-established techniques such as TOPSIS
and the Analytic Hierarchy Process (AHP), along
with their various modifications, offer clear and effi-
cient ranking mechanisms. However, more advanced
methods such as COMET are specifically designed
to capture and model intricate decision-maker pref-
erences. Despite the widespread application of these
methods, a significant research gap persists in the
comparison of decision models, particularly in the
case of approaches such as COMET or AHP, which
are being increasingly used in emerging areas. In this
section, we provide an overview of selected related
works and the usage of the AHP and COMET meth-
ods in practical applications.

Panchal et al. applied the AHP to address the crit-
ical issue of slope failure along highways in hilly re-
gions (Panchal and Shrivastava, 2022). In their study,
they developed a landslide hazard map for a section of
National Highway 5, using various causative factors.
Each of these factors was further divided into sub-
factors, with weights assigned according to the AHP
methodology. It shows the need to investigate how to
effectively compare MCDM models, especially when
different model structures can lead to varying results.
To facilitate such comparisons, additional tools and
methodologies are needed to ensure robust evalua-
tions of model effectiveness across different scenar-
ios.

Several other studies emphasize the importance of
the AHP method in various domains, demonstrating
its utility while avoiding the issue of model struc-
ture sensitivity and the need for tools to compare
MCDM models effectively. Awad and Jung applied
AHP to prioritize sustainable urban regeneration fac-
tors in Dubai, identifying the urban environment, eco-

nomic, and social / cultural sectors as key elements.
Although their findings were insightful, they did not
address how the structure of their model could have
influenced the results, leaving this challenge unad-
dressed (Awad and Jung, 2022). Similarly, Ekmek-
cioğlu et al. used fuzzy AHP to create a district-
based flood risk map for Istanbul, classifying land
use and storm return periods as the most signifi-
cant factors, but also did not explore how different
model structures could impact the results (Ekmek-
cioğlu et al., 2021). Yariyan et al. combined FAHP-
ANN for earthquake vulnerability mapping in Iran,
achieving superior accuracy compared to traditional
AHP, but again without investigating how varying
structures could affect their findings (Yariyan et al.,
2020). These examples highlight the widespread use
of AHP in decision making, but also show that none
of these studies addresses the critical issue of compar-
ing models with different structures, underscoring the
need for more advanced tools to fill this gap.

In current practice, the common approach to com-
paring MCDM methods typically involves analyz-
ing the results obtained from different methods and,
in some cases, applying distance metrics to assess
the similarities or differences between these results.
For example, Yelmikheiev and Norek compared the
COMET and TOPSIS methods for selecting optimal
vacuum cleaner robots based on criteria such as price,
engine power, and noise level. After ranking the al-
ternatives using both methods, they evaluated the re-
sults based on distance to the reference objects, show-
ing that the COMET method provided more accurate
results in their case (Yelmikheiev and Norek, 2021).
This highlights the utility of comparing results, but
also points to the limitations of relying solely on final
rankings, because it does not offer a true model com-
parison, which should focus on comparing the entire
structure of the models rather than discrete points or
outputs.

Shekhovtsov et al. tackled a similar problem
by using three different MCDM methods to evalu-
ate preferences across a set of alternatives. They
tested the impact of varying the number of alternatives
and criteria on the final rankings and then compared
the results using correlation coefficients (Shekhovtsov
et al., 2021). Their findings indicated that the rank-
ings were very similar and that an increase in alter-
natives and criteria improved this similarity. Więck-
owski and Dobryakova also explored this compara-
tive approach, applying the COMET method to eval-
uate swimming athletes for sprint events (Więckowski
and Dobryakova, 2021). They reduced the complex-
ity of the problem by dividing the initial structure
and later compared the COMET results with other
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MCDM methods using correlation metrics such as
Pearson and WS similarity coefficients. A more com-
prehensive approach was presented by Sałabun et al.,
who conducted a broad simulation study to bench-
mark multiple MCDA methods (Sałabun et al., 2020).
Their research compared a variety of MCDA tech-
niques, including TOPSIS, VIKOR, COPRAS, and
PROMETHEE II, by evaluating their performance us-
ing different criteria, parameters, and ranking similar-
ity coefficients such as Weighted Spearman correla-
tion and WS coefficients. Through extensive simu-
lations, the study revealed how factors like the num-
ber of attributes, decision variants, and normalization
techniques influenced the final rankings.

However, the current study builds on these efforts
by focusing on a more effective approach to com-
paring decision models identified through different
structures of the COMET method. Unlike previous
works that primarily evaluate ranking outcomes, this
study delves into the comparison of the entire struc-
ture of decision models. By shifting the focus from
merely comparing results to analyzing the underly-
ing model architectures within the COMET frame-
work, this research offers a deeper and more compre-
hensive understanding of the differences and similari-
ties between decision models identified using various
COMET structures.

3 PRELIMINARIES

In this section, we briefly describe the methods and al-
gorithms used in this study. Each subsection contains
a short description of the method and related refer-
ences.

3.1 Characteristic Objects Method
(COMET)

The Characteristic Objects Method (COMET) distin-
guishes itself from other Multiple Criteria Decision
Analysis (MCDA) methods by being completely im-
mune to the ranking reversal phenomenon (Sałabun
et al., 2019). It makes it possible to develop a Multi-
Criteria Decision Analysis (MCDA) model that al-
ways provides unambiguous results, no matter how
much the alternative set changed (Kizielewicz et al.,
2021). The key points of the algorithm of the COMET
method are as follows:
Step 1. Define the Problem Space – Identify the crite-
ria for the decision problem and assign fuzzy numbers
to represent each criterion.
Step 2. Generate Characteristic Objects – Use the
Cartesian product of fuzzy numbers to create a set of

Characteristic Objects representing all possible com-
binations.
Step 3. Rank the Characteristic Objects – Perform
pairwise comparisons of the Characteristic Objects to
rank them based on expert judgment. Summarize the
judgments and calculate the preference values.
Step 4. Build the Rule Base – Convert each character-
istic object and its preference value into a fuzzy rule.
Step 5. Inference and Final Ranking – Use the fuzzy
rule base and Mamdani’s inference method to evalu-
ate and rank alternatives. Alternatives with a higher
preference value are better.

In Step 3. of the COMET method, the identified
pairwise comparison matrix contains only the values
{0,0.5,1} and defines the decision model. The re-
search gap lies in the fact that there are no studies
showing how to compare such models without calcu-
lating the final results.

3.2 COMET Extensions

The main limitation of the COMET method is the
curse of dimensionality, which becomes a signifi-
cant challenge when the method is applied to de-
cision problems involving a large number of crite-
ria. This issue arises because the number of pair-
wise comparisons required grows exponentially with
the number of criteria, making it impractical for large
problems. However, recent advancements in research
have addressed these limitations, making the COMET
method more applicable even when larger sets of cri-
teria are involved in the decision-making process.

One such advancement is the Expected Solution
Point (ESP) in COMET, which automates the pair-
wise comparison step. This automation is achieved by
allowing the decision maker to provide an ESP, from
which the Matrix of Expert Judgements (MEJ) is au-
tomatically generated. This innovation significantly
reduces the decision maker’s workload and enhances
the efficiency of the model identification process, as
shown in recent studies (Shekhovtsov et al., 2023).

Another approach to mitigating the complexity
of the COMET method is the Triad Support Algo-
rithm, which minimizes the number of pairwise com-
parisons required. The algorithm assumes that if the
expert judgments are consistent and free from errors,
the evaluations of characteristic objects should form
a transitive relationship. Using this property, the al-
gorithm reduces the need for redundant comparisons,
thereby streamlining the process of identifying the
MEJ matrix (Shekhovtsov and Sałabun, 2023).

Finally, the Structural COMET approach offers a
solution by breaking down a complex decision prob-
lem into several smaller submodels, which are then
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aggregated to form the final decision model. This
method significantly reduces the size of the MEJ ma-
trices, which in turn reduces the number of pairwise
comparisons needed to build the model. This struc-
tural model approach makes COMET more manage-
able for larger decision problems and has proven to be
an effective way to handle the curse of dimensionality
(Shekhovtsov et al., 2020).

These advancements collectively represent sub-
stantial progress in overcoming the limitations of the
COMET method, making it more suitable for decision
problems with a larger number of criteria, while pre-
serving the method’s strengths in capturing complex
preferences.

3.3 Weighted Spearman’s Coefficient

The Weighted Spearman’s correlation coefficient is
often used in the MCDM domain because of its use-
ful properties for the decision-making process. This
approach places a larger weight on the comparison in
the head of the rankings, which is usually more im-
portant to the decision maker. This is the main differ-
ence from the Spearman rank correlation coefficient,
which has equal weights for all positions (Pinto da
Costa and Soares, 2005). Weighted Spearman’s cor-
relation coefficient rw is defined for two samples with
rank values xi and yi of size N as (1).

rw = 1− 6∑
N
i=1(xi − yi)

2((N − xi +1)+(N − yi +1))
N4 +N3 −N2 −N

(1)

4 CASE STUDY

In this section, we first show the proof of concept of
measuring the differences in MEJ matrices with nor-
malized Hamming distance using a simulation study,
and then we try to adapt the same approach to com-
plex structural models built for the evaluation of hy-
drogen cars.

4.1 Simulation Proof of Concept

The Hamming distance can be easily adapted to mea-
sure the differences between two different COMET
models expressed as MEJ matrices. Suppose that we
have two MEJ matrices of size N ×N with elements
α
(1)
i j and α

(2)
i j , respectively. In this notation, the gen-

eral formula for the Hamming distance will take the
form of (2):

dH =
∑

N
i=1 ∑

N
j=1 δ(α

(1)
i j ,α

(2)
i j )

N2 , (2)

where δ(α
(1)
i j ,α

(2)
i j ) is a special function equal to 1

only and only if xi and yi are different. In this way, the
Hamming distance provides a simple way to quantify
the differences between two MEJ matrices (Norouzi
et al., 2012).

We designed a simple simulation experiment to
check if there is any correlation between the Ham-
ming distance, which allows us to measure the dif-
ferences between models, and Weighted Spearman’s
correlation, which allows us to measure differences in
the resulting rankings. The single run of the simula-
tion can be described as follows:

1. Define the decision matrix X of a specific size.

2. Calculate two random ESP points esp1 and esp2
in the problem domain.

3. Identify two COMET models using generated
ESPs.

4. Calculate the Hamming distance between identi-
fied models and save it for further analysis.

5. Calculate two rankings, one using the COMET
model defined by esp1 and the other using
COMET defined by esp2.

6. Calculate the correlation rw between these rank-
ings and save it for further analysis.

Notice that both the decision matrix values and the
ESP points values were generated from the uniform
random distribution in the range [0,1).

We ran the simulation 1000 times for all combi-
nations of a number of criteria m ∈ {3,4,5,6,7} and
a number of alternatives m ∈ {10,15,20} to include
results for different decision matrix sizes. However,
all those results turn out to be very similar, and there-
fore, in Fig. 1, we present 15000 simulation runs to-
tal. The upper and right parts of this figure present
the distribution of the normalized Hamming distance
and the rw values, respectively. The middle part of
the figure presents the joint distribution of simulation
results. The black line determines the sigmoid func-
tion fitted to the data. As can be seen, there is a cer-
tain dependency of rw value and Hamming distance
for monolithic models (e.g., the model with no sub-
models). It can be observed that we got lower simi-
larity in the results for those models for larger values
of the Hamming distance. To be sure that we will get
similar results, we need to have models that are dif-
ferent for no more than 0.1-0.15 Hamming distance.
Besides the fact that it is possible to get similar rank-
ings with models with a 0.4 distance value, it is much
more possible to obtain results that are uncorrelated or
even inverted. On the other side of the visualization,
there are a small number of examples when generated
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Figure 1: Simulation results.

Table 1: Criteria description.

Ci Criteria names Units CV1 CV2 CV3
C1 Year – 2015 2022 2024
C2 Estimated price $K 30 60 100
C3 Range km 400 600 800
C4 Power output KW 100 150 400
C5 Hydrogen tank capacity kg 4.4 5.5 6
C6 Horse power – 130 180 550
C7 Max torque Nm 260 350 410
C8 0 to 100 acceleration time s 4.5 8 12.5
C9 Max speed km/h 130 170 250

COMET models have almost inverted MEJ (normal-
ized Hamming distance close to 1), and it is expected
that the resulted rankings for those models are almost
reversed (rw value close to -1). The Pearson r cor-
relation between those two vectors is approximately
−0.85, implying a negative correlation between those
variables.

4.2 Example of Hydrogen Cars
Evaluation

We present a case study of the evaluation of hydrogen
cars based on the following criteria: year of the start
of the production, approximated or estimated price,
range of the car, technical parameters of the engine,
tank capacity, acceleration and maximum speed. All
criteria are presented in Table 1 along with the mea-
surement units and characteristic values required to
create and identify the COMET model.

The data of the alternatives were manually col-
lected from the manufacturer’s websites during the
preliminary stage of the study, and the characteristic
values were selected based on the minimum, maxi-

mum, and median values of the collected alternatives.
The alternatives and the respective values of the crite-
ria are presented in Table 2.

Table 2: Alternatives’ data.
Ai C1 C2 C3 C4 C5 C6 C7 C8 C9
A1 2023 50.00 646 128 5.60 182 406 9.20 161
A2 2023 60.00 612 135 6.33 161 394 9.20 179
A3 2021 59.00 579 103 5.46 174 299 9.00 165
A4 2019 45.00 437 155 4.40 211 364 5.80 160
A5 2022 30.00 400 150 4.40 134 260 7.80 130
A6 2015 66.50 594 100 5.64 136 406 12.50 160
A7 2024 90.00 504 295 6.00 401 347 6.00 180
A8 2023 45.00 590 134 5.60 182 300 7.80 170
A9 2022 68.00 800 220 5.43 300 347 6.50 200
A10 2022 100.00 800 400 5.43 550 347 4.50 250

Each decision maker has their own preferences,
and therefore we need to identify personalized deci-
sion models using the COMET method. However,
if we try a straightforward approach to solving this
problem using this decision problem, we will fail
because of the dimensionality problem. The deci-
sion maker will need to compare t = 39 = 19683
characteristic objects, which will result in t(t−1)

2 =
193,700,403 pairwise comparisons. However, as we
showed in Section 3, there are several methods to
drastically reduce the number of pairwise compar-
isons, namely the ESP-COMET approach, the Triad
Support algorithm, and the structural model approach.

P1 Power Efficiency

P2 Engine

P3 Speed Performance

C1

C2

C3

C5

C4

C6

C7

C8

C9

P F
 - 

Fi
na

l m
od

el

P

Figure 2: Structural division of the problem.

Taking this into account, we first divide our deci-
sion problem into four submodels, as shown in Fig.
2. This structure logically aggregates the criteria that
determine the power efficiency of the vehicle, engine
power, speed performance, and price and production
year in the final model. Next, we asked three decision
makers E1, E2, and E3 for input to identify six deci-
sion models with this structure: Each decision maker
identifies two models, one using the ESP-COMET ap-
proach and the other using the Triad Support algo-
rithm. Exemplary results of the identification process
can be seen in Fig. 3, where three MEJ matrices iden-
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tified using the Triad Support algorithm are presented.
The final model for each decision maker was automat-
ically calculated based on the importance weights of
the criteria provided by each of them. Using the ESP-
COMET approach does not require pairwise compari-
son and manual identification. Usage of the structural
approach requires only 423 pairwise comparisons in-
stead of 193 million, which is more than 450 thousand
times less. However, the Triad Support algorithm pro-
vides an additional reduction, which depends on the
decision maker and, in the case of E1 (Fig. 3), results
in only 182 comparisons.

Figure 3: The MEJ matrices for submodels identified by
the first expert with the help of Triad Support algorithm.
Green, blue and red values represent values 1, 0.5 and 0
respectively.

For the sake of shortness, we do not demonstrate
the rest of the models but present the resulting rank-
ings Ri in Table 3 for the six identified models: E1,
ESP(E1), E2, ESP(E2), E3, ESP(E3), where E j is a
model built using the Triad Support algorithm by j−th
decision maker and ESP(E j) is the model built using
the ESP-COMET approach using input from j−th de-
cision maker.

Table 3: Rankings obtained using all six models.

Ai Ri E1 Ri ESP(E1) Ri E2 Ri ESP(E2) Ri E3 Ri ESP(E3)

A1 1 1 3 5 2 2
A2 7 8 9 9 7 7
A3 6 4 7 7 6 6
A4 5 6 5 3 4 4
A5 3 5 10 10 1 1
A6 8 7 8 8 10 9
A7 10 10 4 4 9 10
A8 2 2 6 6 3 3
A9 4 3 2 2 5 5
A10 9 9 1 1 8 8

Table 3 contains the ranking for all identified mod-
els. As we can see, there are little differences between
Ri E j and Ri ESP(E j) rankings which are expected
behavior. For the E1, the most preferred alternative is

A1, and the least preferred is A7. Notice that the differ-
ences in rankings between the models identified man-
ually and automatically for E1 begin at the second po-
sition of the ranking. The most preferred alternative
for a second expert is A10, which landed ninth and
eighth in other rankings. The second most preferred
alternative for E2 is A9, and the differences in these
rankings can be visible only at the 3rd and 5th posi-
tions. The rankings Ri E3 and Ri ESP(E3) are almost
the same, with only two last alternatives swapped. In
further investigation, we can see that the rankings cre-
ated using models from E1 and E3 are generally simi-
lar, but the rankings provided by the E2 models differ
significantly.

The conclusions about the similarity of the rank-
ings are clearly visible in Fig. 4 where the heatmap
of Weighted Spearman’s rw correlation values is pre-
sented. As expected, we can see that the rankings pro-
vided by the models identified by the input of E j ex-
pert (e.g. E j and ESP(E j)) are similar. Between mod-
els of the expert E1 Weighted Spearman’s correlation
value is 0.92. This correlation is equal to 0.94 for E2
and 0.997 for E3. It proves the point that automatic
identification using ESP can provide results that are
very similar to the manually identified models. The
rankings of the E1 models are generally similar to the
ranks obtained with E3 due to the similar preferences
of both experts. However, the correlation values of
the models E1 and E3 with models of E2 are close
to zero, which implies that these rankings have really
low correlation or are not correlated at all. This shows
that E2 has very different preferences from the other
two experts.

Figure 4: Weighted Spearman’s rw correlation values be-
tween all rankings (rounded up to 3 positions).
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Figure 5: Relations between hamming distances between
MEJ and rw correlation between final rankings for each sub-
models.

However, is it possible to predict the similarity
of the results on the basis of the similarity of the
models? To investigate this, we prepare the visual-
ization in Figure 5 in which each dot represents a
comparison between submodels for two different ex-
perts. For example, one of the dots is created by cal-
culating the Hamming distance between the P1 sub-
model of E1 and the respective submodel of E3 and
Weighted Spearman’s correlation between final rank-
ings of those two models (e.g., E1 and E3 models).
In this visualization, we can see that there is no easy
way to tell if we get high or low similarity in the re-
sults based on the Hamming distances between differ-
ent submodels.

4.3 Weighted Average Hamming
Distance

The simulation designed showed that there is a cor-
relation between the Hamming distance between two
different MEJ matrices and the rw correlation between
the final ranking obtained using these two models in
the case of the monolithic model. However, the prob-
lem is less trivial if we need to compare structural
models. Therefore, we propose to use the Weighted
Average Normalized Hamming Distance dw,H , which
allows us to get a value that will aggregate all sub-
models. The weights should be determined based on
how many criteria are included in the specific sub-
model, and then the final results should be divided by
the sum of weights to obtain the normalized values
(3).

dw,H =
wi ·dH(MEJ(1)i ,MEJ(2)i )

∑
n
i=1 wi

, (3)

where wi is a weight for the i-th submodel,
dH(MEJ(1)i , MEJ(2)i ) is the normalized Hamming dis-
tance between MEJ for the i-th submodels for two dif-
ferent experts calculated according to (2).

Figure 6: Relations between Weighted Average normal-
ized Hamming distance between MEJ and rw correlation
between results in different models.

Based on the structure of the problem 2, we can
assign the following weight vector: w = {2,3,2,9}
for the set of submodels {P1,P2,P3,PF}, based on the
number of criteria aggregated using the model.

Next, we visualize the relation between the
Weighted Average Normalized Hamming distances
and the respective rw correlations in Figure 6. It can
be clearly seen that we can distinguish two clusters
with a Weighted Average Hamming distance lower
than or higher than 0.2. It can be seen that we obtain a
smaller distance and a higher similarity of results for
models identified toward similar preferences (that is,
rankings E1, E3, and ESP rankings for them, as well
as manual and ESP ranking for E2). However, if we
move to the combinations of other rankings with the
ranks identified based on the preferences of the expert
E3. Those models are more different, which can be
seen in the Weighted Average Normalized Hamming
distance values, and the final rankings are slightly re-
versed or uncorrelated (based on the respective values
rw. It shows that we can predict to a certain point if
or not we will get similar results in terms of rankings
even for the structural model, even if there are no al-
ternatives or we don’t want to evaluate them.

5 CONCLUSIONS

In this paper, we propose a simple but effective so-
lution to approximate the differences in the results of
the identified COMET models. We also show how
to adapt this approach to a more complex structural
model and show its efficiency in the practical case
study of choosing a hydrogen car. In addition to that,
we show that the ESP-COMET approach can provide
results that can be obtained using the manual or triad-
supported identification of the MEJ. This underlines
its usefulness in solving practical decision-making
problems, as this approach eliminated the pairwise
comparison step of model identification, but allowed
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us to achieve a similar level of accuracy.
However, the work has some limitations that

should be addressed in future research. In addition
to the fact that the normalized Hamming distance and
the average normalized Hamming distance provide
satisfactory results in predicting rw values for both
monolithic and structural models, the precision of this
method can be higher and this fact should be investi-
gated in future work. This approach should also be
investigated in depth in other study cases to show its
practical applicability, as well as extended to a larger
sample of people, to better investigate differences in
models and preferences. There is also a possibility
to generalize the approach for other methods such as
AHP or Ranking Comparison (RANCOM) methods.
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