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Abstract: The Frailty is a significant health issue in older adults that increases the risk of disability, decline in 
physiologic reserve and function, hospitalization, and even death. The social and economic impact of frailty 
increased due to the higher healthcare costs and the medical resources. The intervention of early frailty 
detection can prevent its progression and delay the disability, ultimately improving the quality of life in the 
elderly population. This study aims to propose a frailty classification system based on gait data collected from 
an Inertial Measurement Unit (IMU) sensor with the utilization of the Deep Learning (DL) approach. The 
individual’s frailty status is classified as robust, pre-frail, or frail. A publicly available dataset of 163 
participants was utilized to analyze the raw gait signals and find the most effective DL for extracting gait 
patterns for frailty classification. DeepConvLSTM model has shown effective performance on raw IMU gait 
data with a balanced accuracy, precision, recall, and F1-score of 91%. The results show that the proposed 
methodology successfully classifies the pre-frail individuals, which demonstrate its potential to enhance 
frailty detection and intervention in clinical settings. This ultimately provides an improved healthcare system 
and a quality of life in elderly populations. 

1 INTRODUCTION 

The number of elderly individuals is increasing 
dramatically as the world's population grows 
(Hernigou et al., 2024). World Health Organization 
data show this demographic trend: among the 8.1 
billion population, people aged 60 years and older 
will become 1.4 billion by 2030 and 2.1 billion by 
2050 (Sun et al., 2024; United Nation, 2024; World 
Health, 2024). Frailty is one of the most common and 
fatal disorders in the elderly population (Hakeem et 
al., 2023). Physical frailty is a multidimensional 
condition that is defined as a decline in physiological 
reserves. This makes older persons more vulnerable 
to stresses and increases the possibility of negative 
health effects (Kojima et al., 2018). Considering its 
consequences link to increased illness, disability, and 
death, this raises a significant public health concern 
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(Pasieczna et al., 2023). To reduce the burden of 
frailty on the healthcare system and enhance the 
quality of life for the aging population, it is essential 
to address it through early identification, precise 
assessment, and effective management. 

In order to reduce the risk of frailty among older 
adults, it is essential to develop an objective 
healthcare solution. Traditional clinical frailty 
assessment methods are time-consuming and need 
specialized equipment and experienced healthcare 
personnel (Obbia et al., 2020). To solve this issue, 
wearable technology and advanced Machine 
Learning (ML) algorithms have emerged as a 
potential solution (Fan et al., 2023; Minici et al., 
2022). These technologies provide continuous, real-
time remote monitoring, allowing for early 
identification and classification of frailty stages. 
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This study offers a smart stack of an Inertial 
Measurement Unit (IMU) sensor and Deep Learning 
(DL) technologies as a promising solution for frailty 
classification. An IMU sensor was worn by each 
participant to collect their raw IMU gait signals. 
These signals were then pre-processed and converted 
to the frequency domain in order to capture the 
underlying patterns. Following this, a Deep Learning 
(DL) algorithm was used to extract intrinsic gait 
parameters for frailty classification into frail, pre-
frail, or robust stages. 

This study has two main objectives: 1) analyzing 
the raw IMU gait signals for frailty classification and 
2) finding the most effective DL algorithm for frailty 
classification using raw IMU gait data. The ultimate 
goal of this research is to develop an early frailty 
detection system that will detect the frailty stage 
timely and prevent the frailty from progressing in 
older adults. Early detection of frailty allows 
individuals to seek medical advice and take 
appropriate measures, which lowers the total cost of 
healthcare for society. This study proposed an 
intelligent frailty assessment system that will be 
expanded into a real-time application, increasing its 
use and impact in clinical settings. 

The paper is organized as follows: Section 2 
outlines the relevant literature work; Section 3 
explains the research methodology, including the 
dataset and the application of the DL algorithm for 
frailty classification; Section 4 provides the results 
with discussion; and finally, Section 5 concludes the 
paper and suggests directions for future work. 

2 LITERATURE REVIEW 

For clinical gait analysis, the most commonly used 
DL algorithms in the previous studies are: 
Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), and Auto-Encoders (AE). 
These algorithms became popular due to their ability 
to analyze complex time-series data and 
automatically extract features from raw IMU sensor 
data, making them appropriate for applications such 
as gait analysis. 

The studies (García et al., 2022; Kou et al., 2024), 
and (Li et al., 2024) classify the fall risks using CNN-
LSTM and CNN-BiLSTM algorithms. The study 
(García et al., 2022) used a 3-D IMU device placed 
on a wrist and leveraged the CNN-LSTM model to 
achieve an accuracy of 93.60%. Whereas the study 
(Kou et al., 2024) achieved an F1-score of 95.18% 
and the study (Li et al., 2024) obtained an accuracy of 
98.40%. 

The study (Kamran et al., 2021) explored the 
utility of 1-D CNN for automatically assessing 
balance using data from a single IMU worn on the 
lower back. They also compared the results with 
handcrafted features. DL provided significant results 
with an AUROC of 0.81. Another study (Hauth et al., 
2021) utilized three IMU sensors while performing 
daily activities. The BiLSTM model outperformed 
with an AUROC score of 0.87. 

Another approach used in the previous studies 
(Butt et al., 2020; San-Segundo et al., 2019; Sánchez-
DelaCruz et al., 2019) is the transformation of raw 
IMU signals into images. This structured format of 
input leverages the DL algorithms to extract more 
enhanced features. The overview of previous studies 
that utilized raw IMU gait signals with DL algorithms 
is shown in Table 1. 

Table 1: Overview of relevant studies that utilized raw IMU 
gait data for frailty analysis.  

Ref. Algorithms Task Outcomes 

(García et 
al., 2022) CNN-LSTM 

Falls risks 

Accuracy = 
93.60% 

(Kou et al., 
2024) CNN-LSTM F1-score = 

95.18% 

(Li et al., 
2024) 

CNN-
BiLSTM 

Accuracy = 
98.40%. 

(Kamran et 
al., 2021) 1-D CNN 

Assess 
balance 

AUROC = 
0.81 

(Hauth et al., 
2021) BiLSTM AUROC = 

0.87 

3 METHOD 

The research methodology consists of key steps, 
which include: 1) the analysis of raw IMU gait data 
and assigning the frailty status label to each 
participant; 2) pre-processing of the raw IMU data 
and data formatting using sliding window technique 
and wavelet transformation; and 3) implementation of 
the DL algorithm to classify the frailty into frail, pre-
frail, or robust stages. The research methodology is 
illustrated in Figure 1. 
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Figure 1: Research methodology. 

3.1 Dataset 

The GSTRIDE (García-de-Villa et al., 2023) dataset 
was utilized in this study. It’s a publicly available 

dataset that consists of 163 (45 mean and 118 women) 
older adults. Their ages range from 70 to 98 years and 
an average weight of 64.2 to 77.3 kg. The list of 
parameters available in the GSTRIDE database is 
shown in Table 2. 

Table 2: List of Parameters available in GSTRIDE 
database.  

Category Parameter Description 

Socio 
Demo-
graphic 

Age Average age of the 
subjects (years) 

Gender Male/Female 

Living 
Environment 

Type of living 
environment (e.g., 

Home, Assisted 
Living) 

Anatomical 

Weight Average weight of 
the subjects (kg) 

Height Average height of 
the subjects (cm) 

Body Mass Index 
(BMI) 

Average BMI of 
the subjects 

(kg/m²) 

Cognitive 
Global 

Deterioration 
Scale (GDS) 

Index 

Average GDS 
index of the 

subjects (scale 1-
7) 

Functional 

4-metre Gait 
Speed Test 

Average time 
taken (seconds) 

Hand Grip 
Strength 

Average hand grip 
strength (kg) 

Timed Up and 
Go (TUG) 

Average time 
taken for TUG test 

(seconds) 
Short Physical 
Performance 

Battery (SPPB) 

Average SPPB 
score 

Short Falls 
Efficacy Scale 
International 

(FES-I) 

Average FES-I 
score 

 

For raw IMU signal acquisition, two IMU sensors 
(CSIC and Gaitup) were used, with only one sensor 
worn on the foot of each participant during 15 
minutes of gait (García-de-Villa et al., 2023). The 
reason for using two different sensors with varying 
frequencies was to assess the effect of varying 
configurations of sensors on the spatio-temporal 
estimation. The authors reported a minimal effect of 
these varying configurations of sensors on spatio-
temporal estimation, although there was a slight 
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variation in the accuracy of estimation (García-
Villamil et al., 2021). 

3.2 Class Labelling of Participants 

The Standardized Fried's phenotype (Fried et al., 
2001) test was adopted to label the frailty status of 
each participant. In this test, the Frailty Index (FI) 
score is calculated using the five parameters. Each 
parameter’s score is assigned a score of 0 or 1. The 
final FI score is calculated by summing the score of 
all parameters (ranges from 0 to 5) (García-de-Villa 
et al., 2023). The class label is assigned to each 
participant based on FI score. If the FI score is 0, then 
the frailty class label is “Robust”. If the FI score is 1 
or 2, then the frailty class label is “Pre-frail”, 
otherwise the frailty label is “Frail”, as shown in 
Figure 2.  

 
Figure 2: Criteria for assigning the frailty label to each 
participant. 

3.3 Data Pre-Processing 

After raw IMU signal data acquisition and labelling, 
pre-processing became a critical step for further 
analysis. In this stage, outliers were removed from 
raw IMU signals, and the signals were normalized 
using the “StandardScaler” function. The data was 
then segmented into smaller chunks using the 
“Sliding Window” technique (Jaén-Vargas et al., 
2022), which allows the extraction of spatio-temporal 
features from the time-series IMU signals. The 
window size set in this study was 200, with a stride of 
50. Next, a wavelet transformation is applied to each 
segment to capture both time and frequency domain 
features. The “pywt.wavedec” function was used for 
Daubechies wavelet of order 1 (“db1”). This 
frequency transformation is suitable for raw IMU 
signals to capture the sharp changes in the signals 

(Chakraborty et al., 2020; Kuduz et al., 2023; Michau 
et al., 2022).  

At the end, the segmented windows were divided 
into 75% training set. The remaining segments were 
divided into equal sets for validation and testing. The 
code is implemented in Python, version 3.5, using 
Spyder as the development environment. 

3.4 Deep Learning (DL) Algorithm 
Architecture 

The input data is ready after pre-processing steps. It 
can be input to a DL algorithm for frailty 
classification. The DeepConvLSTM (Ordóñez et al., 
2016) algorithm was utilized for this purpose. The 
model consists of a convolutional layer with Long 
Short-Term Memory (LSTM) layers to capture both 
the spatial and temporal (spatio-temporal) features in 
raw IMU signals, which makes it an effective 
algorithm for frailty classification. 

Two different DeepConvLSTM models were 
created and trained on the training dataset. The best 
model was selected based on high accuracy and 
minimum losses on both training and validation 
datasets. After finalizing the training process, the best 
model’s hyperparameters were saved and tested on 
the test dataset. The models were created using an 
open-source Python’s library, McFly (van Kuppevelt 
et al., 2020). 

In this study, the architecture of the best 
DeepConvLSTM model was initialized with a 
“BatchNormalization” layer followed by a reshape 
operation. Following this, a 2D convolutional layer 
with 54 filters was applied, followed by normalized 
and activated layers. After convolution, the resulting 
tensor is reshaped to prepare it for recurrent 
processing. Mathematically, the convolutional 
process is defined as: for an input 𝒙 ∈ ℝ ்ൈௐൈுൈ  (where 𝑇 is time, 𝑊 is width, H is height, and 𝐶 is 
channels), the convolutional process is depicted in 
(1). 𝒙௩ ൌ 𝐶𝑜𝑛𝑣ଶ(𝒙ሻ                     (1) 

Conv2D represents the 2D convolutional operation 
in the model; the overall equation of the 
convolutional process with filters F is: 𝒙௩[𝑡, 𝑤, ℎ, 𝑐] ൌ    𝒙[𝑡, 𝑤  𝑖, ℎ  𝑗, 𝑘] ∙ 𝑭[𝑖, 𝑗, 𝑘, 𝑐]  𝑏[𝑐]ிషభ

ୀ
ிಹషభ
ୀ

ிೈషభ
ୀ (2)
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Table 3: DeepConvLSTM model performance on test dataset. 

 
DeepConvLSTM performance (Test Set) 

Precision Recall F1-score Support Accuracy 

Robust 0.94 0.93 0.93 39063 

0.91 
Pre-frail 0.92 0.90 0.91 38269 

Frail 0.67 0.85 0.75 6541 

Weighted Avg. 0.91 0.91 0.91 83873 

In (2), the FW and FH are filter weight and height, 
respectively. Whereas the FC represents input 
channels and bias is represented with b[c]. 

The convolutional operation results were input 
into the stack of LSTM layers. Four LSTM layers 
were used in the model with 29, 95, 94, and 46 units, 
respectively. After that, the dropout layer was added 
to prevent the model overfitting. The model 
concluded with the “TimeDistributed” layer with 3 
units followed by “softmax” activation for the 
classification task. The final description of a model 
can be represented as: 
Conv(54)−BN−LSTM(29)−LSTM(95)−LSTM(94)−
LSTM(46)−D−TD(3)−S. 

4 RESULTS AND DISCUSSION 

The evaluation criteria in this study consist of two 
phases. In the first phase, the two created 
DeepConvLSTM models were evaluated in the 
training process based on their best training and 
validation accuracy and minimum losses, 
respectively. The second phase evaluated the best 
selected DeepConvLSTM model on the testing 
dataset using metrics such as accuracy, precision, 
recall, and F1-score (Wasikowski et al., 2010). 

In the training phase, the hyperparameters of 
DeepConvLSTM models were fine-tuned using 25 
epochs with a batch size of 64 and a stopping patience 
of 3. The hyperparameters of the best model were 
reported as a learning rate of 0.0268, a regularization 
rate of 0.0004, and convolutional filters and LSTM 
dimensions as 54 and (29, 95, 94, 46), respectively. 
The model achieved training and validation accuracy 
of 95.18% and 94.14% with corresponding losses of 
0.1163 and 0.1415, respectively, as shown in Figure 
3. 

 
Figure 3: Training and validation losses of 
DeepConvLSTM in training phase. 

The DeepConvLSTM model’s performance on 
test data is reported in Table 3. It shows that the 
DeepConvLSTM achieved an accuracy of 91% on 
test data. Whereas the overall frailty stage-wise 
confusion matrix is depicted in Figure 4. 

The results in Table 3 suggested that the model 
effectively classified the pre-frail and robust 
individuals but reported low precision in the case of 
the frail class. This is due to the highly class-
imbalanced, as the frail class has fewer instances, 
which may overlap the features with other classes. 
This problem can be overcome by adding more frail 
instances utilizing data augmentation techniques to 
synthetically increase the number of frail samples or 
applying class-weighted loss functions and 
oversampling methods like Synthetic Minority Over-
Sampling Technique (SMOTE) (Hosseini et al., 
2024) during model training. However, this study 
used raw IMU sensor signals as input, keeping the 
original data with its spatio-temporal properties. 
This ensures the effectiveness of the DL model for 
frailty classification. 
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Figure 4: Confusion matrix represents the performance of 
DeepConvLSTM model. 

Accurate classification is a major concern in 
clinical settings, as it directly influences patient care 
and intervention strategies. Overall, the DL model 
performed effectively; better performance on frail 
individuals will enhance clinical decision-making 
and personalized care. 

The proposed approach may have some 
challenges when applied in the clinical healthcare 
system. These challenges include maintaining the 
privacy of data, facilitating real-time processing with 
wearable IMU sensors, and smoothly integrating into 
clinical workflows. Furthermore, it is crucial to 
validate the system in real-world settings and achieve 
generalizability across a variety of demographics. 
The method's potential for the early frailty detection 
task is highlighted by its adaptability to diverse 
operational circumstances and scalability to multiple 
sensor configurations. 

5 CONCLUSION 

In the world of a growing elderly population, frailty 
is an important factor in the adverse health outcomes 
among elders. Early and accurate detection of frailty 
can significantly enhance clinical decision-making, 
leading to better patient care and management. 

This study proposed a sensor-based approach with 
a DL algorithm to classify the frailty into robust, pre-
frail, or frail stages. The DeepConvLSTM model 
demonstrated its effectiveness in frailty classification 
using raw IMU sensor data, with an overall accuracy 
of 91%. The performance of the DL model has shown 
it's potential to develop a frailty classification system 
that depicts the real-world clinical scenario.  

The limitations of this research work are: 1) The 
small size of the dataset limited the performance of 
the DL model; and 2) A diverse dataset and the 

selection of features may also affect the DL 
performance. Future studies should focus on the 
diverse types of sensors for the data collection. There 
is also a need to develop a real-time application to 
monitor the frailty status in a real-world clinical 
environment. 
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