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Abstract: Knowledge graphs have progressively incorporated temporal dimensions to effectively mirror the dynamism
of real-world data, proving instrumental in applications ranging from question answering to event predic-
tion. While the ubiquity of data incompleteness and well-established challenges of traditional knowledge
graph embedding techniques remain acknowledged, this paper propels the frontier of this research area.
We introduce Multi-Time Perspective Relation-Time Context ComplEx Embedding (MPComplEx), a ten-
sor decomposition-based completion temporal knowledge graph model that not only assimilates temporal and
relational interactions specific to timestamps but also integrates advanced time perspective features from the
recent TPComplEx models. Our experimental evaluations illustrate dramatic enhancements over conventional
models, achieving state-of-the-art performance on benchmark datasets with notable increments: 4.30%/4.79%
on ICEWS-14, 11.70%/11.48% on ICEWS-05-15, 21.50%/31.20% on YAGO15k, and 26.90%/66.09% on
GDELT in term of absolute/relative performance gains on mean reciprocal rank (MMR).

1 INTRODUCTION

In the contemporary era of information proliferation,
many applications are swiftly emerging, leveraging
the robust framework of Knowledge Graphs (KGs).
These applications range from recommendation sys-
tems (Chen et al., 2022) to temporal question answer-
ing (Mavromatis et al., 2022). KGs act as repositories
of real-world knowledge, encapsulating this informa-
tion in the structured form of tuples (subject, relation,
object). To continue mining how events are involved
in the timeline, Temporal Knowledge Graphs (TKGs),
which extend KG, are constructed by introducing a
temporal dimension to the representation of evolution
knowledge. They facilitate the meticulous tracking of
the evolution of events, encoding events as quadruples
(subject, relation, object, timestamp), with timestamp
denoted by either time point or time interval. For ex-
ample, a depicted TKG in Fig.1 illustrates Albert Ein-
stein’s tenure at ETH Zurich from 1912 to 1914.

Temporal Knowledge Graph completion (TKGC)
is a reasoning task that aims to make the prediction for
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Figure 1: An example of a TKG is illustrated, with the task
of predicting a missing event depicted as a dashed line.

the missing events that have a high probability of oc-
curring, e.g., (Albert Einstein, collaborated, J. Robert
Oppenheimer, 1947-1955) shown in Fig. 1. Re-
cently, literature on this research field has divided into
two main categories: (1) extrapolation-based model,
which aims to predict future events based on histor-
ical fact records such as RE-GCN (Li et al., 2021)
and DaeMon (Dong et al., 2023). (2) the remaining
interpolation-based model is TKG embedding models
(TKGE), which aim to predict missing events based
on evaluating the plausibility of potential events via
a scoring function with embedding vectors of enti-
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ties, relations and their associated timestamps, includ-
ing TTransE (Leblay and Chekol, 2018), HyTE (Das-
gupta et al., 2018), and TA-DistMult (Garcı́a-Durán
et al., 2018). This approach focuses on events that
have no constraint on the occurring order. This work
focuses on designing a TKGE model to tackle issues
of existing interpolation-based models.

The recent development in interpolation-based
models has significantly improved performance for
this prediction task. Almost state-of-the-art mod-
els are based on tensor decomposition frame-
work (Trouillon et al., 2016) such as TCom-
plEx (Lacroix et al., 2019), TNTComplEx (Lacroix
et al., 2019), TPComplEx (Yang et al., 2024) and Mv-
TuckER (Wang et al., 2024). However, these mod-
els still face several challenges: (1) The flexibility of
these models is limited; (2) Not utilizing temporal in-
formation to improve the quality of learning embed-
ding during model training; (3) The connection be-
tween relations and the timestamps attached to them
has not been fully exploited. To our best knowledge,
TPComplEx (Yang et al., 2024) is the first model
to incorporate temporal information into the learning
model. Still, it does not consider the contribution of
this information to the score function. Furthermore,
temporal embedding and its additional are not linked
with relation embedding.

To address the challenges outlined above, we in-
troduce the Multi-Time Perspective Relation-Time
Context ComplEx Embedding (MPComplEx), a
novel model specifically designed to enhance the flex-
ibility and performance of TKGC tasks within the ten-
sor decomposition framework. The significance of
this model lies in its ability to capture the dynamic
nature of relations in knowledge graphs over differ-
ent periods, thereby improving the accuracy of tem-
poral knowledge graph completion tasks. We mainly
introduce adjustable weights for entities and addi-
tional time embeddings to obtain a more flexible scor-
ing function, thereby increasing the model’s flexibil-
ity in learning from any dataset and adapting to var-
ious tensor decomposition models. Furthermore, the
connection between temporal and relation embedding
is investigated and modeled as relation-time embed-
ding and incorporated with relation embedding via
weighted combination action, thus allowing the time
evolution information to join the decision process.
Compared to TPComplEx, our proposed model has
better generalization with the adjustable contribution
of time information for head and tail entities. More-
over, the new fusion representation for relation helps
enhance the embedded representation quality. The
main contributions of our work are summarized as
follows:

• We propose a novel temporal knowledge graph
completion model, MPComplEx, based on tensor
decomposition frameworks with weighted feature
combination strategy and incorporating the fea-
ture of connection between relation and its asso-
ciated timestamp.

• In the proposed model, we introduce weights as-
sociated with head and tail entities for control-
ling their behaviors. Besides that, the participants
of additional temporal embeddings are also con-
trolled similarly to capture multiple time perspec-
tives. Furthermore, the correlation of relation -
timestamp is modeled via a dot product and is
combined and weighted with relational embed-
ding to enhance the quality of learned embedding.

• Our experimental results on standard benchmark
datasets of TKGs show significant improvements
over conventional models across all link predic-
tion metrics.

The remainder of our paper is organized as follows:
Section 2 introduces related works, focusing mainly
on TKGC models based on tensor decomposition.
Section 3 details our proposed model. Section 4 dis-
cusses the experimental setup, primary findings, and
ablation studies. Finally, Section 5 summarizes our
findings and outlines potential exciting directions for
future research.

2 RELATED WORK

Conventional KGE models, such as TransE (Bordes
et al., 2013) and ComplEx (Trouillon et al., 2016), try
to forecast connections by acquiring embeddings for
entities and predicates, hence evaluating the credibil-
ity of facts. These models have developed to effec-
tively process intricate relational patterns, with recent
innovations such as RotatE (Sun et al., 2019) specif-
ically designed to handle various relational patterns
such as symmetric and anti-symmetric relation pat-
terns.

Building upon this paradigm, TKGE models in-
tegrate temporal events to capture evolving relation-
ships. For instance, TTransE (Leblay and Chekol,
2018) incorporates relations and timestamps into a
unified space, enhancing the original TransE model.
HyTE (Dasgupta et al., 2018) applies a mapping
function to each timestamp, translating entities and
relations by adjusting them to a hyperplane. The
TeRo (Xu et al., 2020) model enhances entity embed-
dings by incorporating timestamps to represent tem-
poral progression. It utilizes relational rotations to
capture temporal dynamics. Recent models such as
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TA-DistMult (Garcı́a-Durán et al., 2018) and TCom-
plEx (Lacroix et al., 2019) extended based on previ-
ous models based on tensor decomposition for static
data with more advantages to capture the time evolu-
tion. TA-DistMult decomposes timestamps into indi-
vidual tokens and incorporates them into relation rep-
resentations using Recurrent Neural Networks. Also,
TComplEx enhances the ComplEx model by utilizing
complex-valued vectors to handle relations that are
not symmetric. TimePlex (Jain et al., 2020b) lever-
ages the recurring nature of events to facilitate dy-
namic relational interactions. ChronoR (Sadeghian
et al., 2021) extends the RotatE model by connecting
timestamps with relations and seeing their combina-
tion as a rotational transformation. TPCompEx (Yang
et al., 2024) introduces modules incorporating distinct
temporal embeddings into things, considering various
time perspectives. However, dealing with events with
the same relation and co-occur takes work.

3 THE PROPOSED MODEL

Given temporal knowledge graph G = {Q ,E ,R ,T },
where E , R , T , and Q respectively represent the sets
of entities, relations, timestamps, and quadruplets. A
quadruplet is denoted as (s,r,o, t), where r ∈ R rep-
resents the connection between a subject (head entity)
s ∈ E and an object (tail entity) o ∈ E at a specific
timestamp t ∈ T . In any TKG, the number of rela-
tions is much less than that of entities, so entity pre-
diction is more challenging than relation prediction.
Therefore, TKC tasks often focus on predicting miss-
ing entities in a given data set like (s,r,?, t) where ?
donates the missing element.

3.1 Baseline Models: TComplEx and
TPComplEx

This section examines two decomposition models,
TComplEx and TPComplex, for the TKC prob-
lem. In order to address the TKC problem, TCom-
plEx (Lacroix et al., 2019) is an augmented iteration
of the ComplEx decomposition model. This approach
uses complex vector embedding and Hermitian prod-
ucts to compute scores for a collection of four facts.
Its score function can be formulated as follows:

φ(s,r,o, t) = Re
(〈

Cs,Cr,Co,Ct
〉)

, (1)

where φ() denotes the scoring function, Re(.) re-
turns the real vector component for input embed-
ding; Cs,Cr,Co,Ct ∈ R2×d denotes the complex em-
bedding with embedding rank d for subject, relation,

object, and timestamp, respectively. Recently, TP-
ComplEx (Yang et al., 2024) investigated that TCom-
plEx can not handle inversion relation on timestamp,
i.e., its temporal complex embedding will degenerate
to the real or imaginary part if this relation type ex-
ists. Introducing additional temporal complex embed-
dings shows the potential in modeling relations with
the property of simultaneousness. Its score function
can be formulated as follows:

φ(s,r,o, t) = Re
(〈

Cs +Ct2 ,Cr,Co +Ct3 ,Ct1
〉)

, (2)

where Ct1 is the temporal embedding, and Ct2 ,Ct3 are
additional temporal embedding for subject and object,
respectively.

Based on these theoretical considerations, TP-
ComplEx possesses the capability to represent rela-
tional patterns that adhere to the property of simulta-
neousness (see (Yang et al., 2024, Definition 3)). Of-
ten, the limitations obtained for temporal embedding
are excessively stringent. In addition, according to
our observations, TPComplEx fails to consider the re-
lationship between a given relation and the time com-
ponent, which might significantly impact the ability to
reason about missing links in graph data. In the fol-
lowing section, we present a detailed and systematic
guide to implementing our proposed strategy, which
offers more significant potential in integrating diverse
perspectives of time and the underlying connections
between relation and its associated timestamps.

3.2 Fusing Relation-Time Context and
Time Properties

Following the methodology of TPComplEx, we
incorporate additional temporal embeddings into
TComplEx with control variables α1,α2 ∈ R+ ∪{0}
and β1,β2 ∈ R+ ∪{0} for subject and object embed-
ding, respectively. Consequently, the score function
becomes:

φ1(s,r,o, t) = φbase(s,r,o, t)+Gt2
r (Ct2)

+Gt3
r (Ct3)+Gt4

r (Ct4),
(3)

where φbase(s,r,o, t) = Re
(〈

α1Cs,Cr,β1Co,Ct1
〉)

, Ct1
represents the temporal embedding, while Ct2 ,Ct3 ,Ct4
denote additional temporal embeddings. The weights
{α1,β1,} are associated with the subject and object
embeddings, respectively. And {α2,β2} correspond
to the additional temporal embeddings Ct2 , and Ct3 ,
respectively. For Ct4 embedding, we will handle it
later to simplify the model structure.

For subject and object aggregation (see (Yang
et al., 2024, Definition 4)), we define two first addi-
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Table 1: Model parameters and embedding ranks for our baselines and proposed models.

Models Parameters ICEWS14 ICEWS05-15 YAGO15k GDELT

ComplEx 2d(|E |+2|R |) 1820 860 1960 3820
TComplEx 2d(|E |+ |T |+2|R |) 1740 1360 1940 2270
TPComplEx 2d(|E |+3|T |+2|R |) 1594 886 1892 1256
MPComplEx 2d(|E |+3|T |+2|R |) 1500 800 1500 1200

tional embeddings as:

Gt2
r (Ct2) = Re

(〈
Cr,Co,Ct1 ,α2Ct2

〉)
, (4)

Gt3
r (Ct3) = Re

(〈
Cs,Cr,Ct1 ,β2Ct3

〉)
. (5)

And for modelling the associated relation and times-
tamp (see (Yang et al., 2024, Definition 5)), we can
formulate Gt4

r (Ct4) = Re(⟨Cr,Ct1 ,Ct4⟩). To simplify
the model structure, the additional embedding Ct4 can
be defined as Ct4 =

〈
α2Ct2 ,β2Ct3

〉
. Thus, we have:

Gt4
r (Ct4) = Re

(〈
Cr,Ct1 ,α2Ct2 ,β2Ct3

〉)
. (6)

To construct the score function, we put Eq. 4, 5
and 6 into the Eq. 3. Thus, we obtain a new score
function, which is defined as:

φ1(s,r,o, t) = φbase(s,r,o, t)

+Re
(〈

Cr,β1Co,Ct1 ,α2Ct2
〉)

+Re
(〈

α1Cs,Cr,Ct1 ,β2Ct3
〉)

+Re
(〈

Cr,Ct1 ,α2Ct2 ,β2Ct3
〉) (7)

Simplifying the above expression, we have:

φ1(s,r,o, t) = Re
(〈

Cst2 ,Cr,Cot3 ,Ct1
〉)

, (8)

where Cst2 = α1Cs +α2Ct2 , Cot3 = β1Co +β2Ct3 . This
version is called eTPComplEx (extended TPCom-
plEx). Clearly, when α1 = α2 = β1 = β2 = 1, Eq. 8
becomes the score function of TPComplEx.

To capture the interaction between relation em-
bedding and temporal embedding, we design a new
embedding that can model the interaction between
them. This embedding, referred to as the relation-time
context embedding, is denoted by Crt = ⟨Cr,Ct⟩. Uti-
lizing this embedding, we then construct a score func-
tion with previous defined additional temporal em-
bedding Ct2 , Ct3 and Ct4 as follows:

φ2(s,r,o, t) = φbase(s,r,o, t)+Gt2
r (α2Ct2)

+Gt3
r (β2Ct3)+Gt4

r (Ct4).
(9)

By expanding the above score function similar to
Eq. 7, we have the score function when using relation-
time context embedding as follows:

φ2(s,r,o, t) = Re
(〈

Cst2 ,Crt ,Cot3 ,Ct1
〉)

, (10)

This version is called cTPComplEx (relation-time
context TPComplEx).

By combining the weighted score functions from
Eq. 10 and Eq. 8, we derive a more generalized score
function, which is formulated as follows:

φ(s,r,o, t) = φ1(s,r,o, t)+(1− γ)φ2(s,r,o, t)

= Re
(〈

Cst2 ,Crc,Cot3 ,Ct1
〉)

,
(11)

where the combined embedding Crc is defined as
Crc = γCr + (1− γ)Crt . Here, γ is the weight factor
that balances the percentage of features of the relation
derived from Cr and the relation-time context embed-
ding Crt . This version is named MPComplEx.

Clearly, when α1 = α2 = 1,β1 = β2 = 0,γ = 1, the
score function in Eq. 11 becomes the score function
of TComplEx. Moreover, in the case of α1 = α2 =
β1 = β2 = 1,γ = 1, the score function of MPComplEx
becomes the score function of TPComplEx.

3.3 Optimization

Following the methodologies outlined in (Lacroix
et al., 2019; Yang et al., 2024), we compute the in-
stantaneous multi-class loss for each training quadru-
ple (s,r,o, t) as follows:

L =−φ(s,r,o, t)+ log

 ∑
o′ ̸=o
o′∈E

exp
(
φ(s,r,o′, t

)
)

 ,

(12)

where φ(.) represents the score function. In addition,
we include a regularization term, Lreg. Therefore, the
final loss function used for training is given by:

Ltotal = L +Lreg. (13)

Similarly to TPComplEx (Yang et al., 2024), our
model incorporates entities with temporal bias into
the regularization process and adopts N3 regulariza-
tion as defined by (Lacroix et al., 2019). The regular-
ization function is expressed as:

Lreg = λ1

(
∥Cst2∥

3
3 +∥Crc∥3

3 +∥Cot3∥
3
3

)
+λ2 ∥Ct∥3

3 ,
(14)

where λ1 and λ2 are the regularization weights for
the entity-relation and temporal embeddings, respec-
tively.
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Table 2: Statistic information of four standard benchmark datasets. The first three columns present the number of entities,
relations, and timestamps, and remain columns present the number of quadruples for each dataset.

Dataset #Entities #Relations #Timestamps #Train #Validation #Test

ICEWS14 7128 230 365 72,826 8941 8963
ICEWS05-15 10,488 251 4017 386,962 46,275 46,092
YAGO15k 15,403 34 198 110,441 13,815 13,800
GDELT 500 20 366 2,735,685 341,961 341,961

3.4 Computational Complexity

Table 1 presents the computational complexity of em-
bedding models through the number of parameters re-
quired for training and the embedding ranks or dimen-
sions. It demonstrates that our models maintain the
same parameter count as other tensor decomposition-
based TKGC models, such as TComplEx and TP-
ComplEx.

4 EXPERIMENTS AND RESULTS

4.1 Experiment Setup

4.1.1 Standard Benchmark Datasets

During the experiment process, four standard bench-
mark datasets of TKGs are used, namely ICEWS14,
ICEWS05-15, YAGO15k (Garcı́a-Durán et al., 2018),
and GDELT (Trivedi et al., 2017). Table 2 summa-
rizes the details of the four datasets.

4.1.2 Baselines

We evaluate our proposed models by comparing them
to previous well-performed TKGE models that are
considered to be at the forefront of the field, in-
clude: TTransE (Leblay and Chekol, 2018); TCom-
plEx, TNTComplEx (Lacroix et al., 2019); Time-
Plex (Jain et al., 2020a); ChronoR (Sadeghian et al.,
2021); TeLM (Xu et al., 2021); BTDG (Lai et al.,
2022); TBDRI (Yu et al., 2023); SANe (Li et al.,
2024); MTComplEx (Zhang et al., 2024); TPCom-
plEx (Yang et al., 2024); MvTuckER (Wang et al.,
2024). Our model is based on TPComplEx, are de-
signed to improve performance while maintaining the
same number of embedding parameters.

4.1.3 Metrics and Implementation Details

To evaluate our proposed model, after ranking all the
candidates according to their scores calculated by the
scoring function, we employ two metrics that are used

widely in temporal knowledge graph research includ-
ing Mean Reciprocal Rank (MRR), and Hit@k. The
higher MRR and Hits@n indicate better performance.
Our models are based on TComplEx (Lacroix et al.,
2019) and TPComplEx (Yang et al., 2024), utilizing
the PyTorch library (Paszke et al., 2019) and running
on NVIDIA GeForce RTX 3070 8Gb VRAM. Fol-
lowing the methodologies of TPComplEx, we tune
our models using grid search to optimize hyperpa-
rameters based on validation dataset performance.
Control variables for entity embeddings, such as
α1,α2,β1,β2, are adjusted within {1, 1.5, 2, 2.5},
while those for relation embedding, γ, range from
{0, 0.25, 0.5, 0.75, 0.85, 0.95}. Regularization rates
λ1 and λ2 are set within {0.1, 0.01, 0.001, 0.0001,
0.00001}. During training, we maintain a consistent
batch size of 1000 and employ Adagrad (Duchi et al.,
2011) to optimize our model with a fixed learning rate
of 0.1 across all datasets. Our source codes is avail-
able at https://github.com/lnhutnam/MPComplEx.

4.2 Comparative Study

To evaluate the capabilities of MPComplEx, we con-
ducted a comparative assessment against the current
state-of-the-art TKGC models, with results presented
in Table 3. The performance metrics for all baseline
models were directly sourced from the original pa-
per on TPComplEx. Our findings indicate that the
proposed model consistently outperforms all baseline
models across the four evaluation datasets. Specif-
ically, compared to the top-performing model, TP-
ComplEx, our proposed approach demonstrates sig-
nificant improvements across all metrics. The differ-
ences between our MPComplEx model and TPCom-
plEx are quantified through absolute performance
gains (APG) and relative performance gains (RPG).
In terms of APG, our model achieves improvements
of 4.3%, 11.7%, 21.5%, and 26.9% on MRR and
6.6%, 16.3%, 24.8%, and 30.1% in Hit@1 for the
ICEWS14, ICEWS05-15, YAGO15k, and GDELT
datasets, respectively. Moreover, with RPG, our
model achieves 4.79%, 11.48%, 31.20%, and 66.09%
on MRR and 7.63%, 17.38%, 38.10%, and 91.49%
on Hit@1 on these datasets.
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Table 3: Experiment results on the ICEWS14, ICEWS05-15, YAGO15k, and GDELT datasets. The highest score is high-
lighted in bold, and the second-best score is underlined. The absolute performance gains (APG) and the relative performance
gain (RPG) indicate the performance improvement of our model compared with the best-performing baseline TPComplEx.
APG and RPG are calculated by APG = Rours −Rbaseline and RPG = (Rours −Rbaseline)/Rbaseline where Rours and Rbaseline
are the results of our model and baseline TPComplEx, respectively.

Model MRR ↑ Hit@1 ↑ Hit@10 ↑ MRR ↑ Hit@1 ↑ Hit@10 ↑
ICEWS14 ICEWS05-15

TTransE (Leblay and Chekol, 2018) 0.255 0.074 0.601 0.271 0.084 0.616
TComplEx (Lacroix et al., 2019) 0.610 0.530 0.770 0.660 0.590 0.800
ChronoR (Sadeghian et al., 2021) 0.625 0.547 0.773 0.675 0.596 0.820
TeLM (Xu et al., 2021) 0.625 0.545 0.774 0.678 0.599 0.823
BTDG (Lai et al., 2022) 0.601 0.516 0.753 0.627 0.534 0.798
TBDRI (Yu et al., 2023) 0.652 0.552 0.785 0.709 0.646 0.821
SANe (Li et al., 2024) 0.638 0.558 0.782 0.683 0.605 0.823
MTComplEx (Zhang et al., 2024) 0.629 0.548 0.782 0.675 0.592 0.822
TPComplEx (Yang et al., 2024) 0.898 0.865 0.954 0.845 0.794 0.934
MvTuckER (Wang et al., 2024) 0.654 0.577 0.797 0.698 0.618 0.841

MPComplEx (Ours) 0.941 0.931 0.957 0.962 0.957 0.974

APG (%) ↑ 4.30 6.60 0.30 11.70 16.30 4.00
RPG (%) ↑ 4.79 7.63 0.31 11.48 17.38 2.78

YAGO15k GDELT

TTransE (Leblay and Chekol, 2018) 0.321 0.230 0.510 0.115 0.000 0.318
TComplEx (Lacroix et al., 2019) 0.360 0.280 0.540 0.298 0.213 0.464
ChronoR (Sadeghian et al., 2021) 0.366 0.292 0.538 - - -
TBDRI (Yu et al., 2023) 0.368 0.301 0.554 0.269 0.164 0.441
SANe (Li et al., 2024) - - - 0.301 0.212 0.476
TPComplEx (Yang et al., 2024) 0.689 0.651 0.762 0.407 0.329 0.559
MvTuckER (Wang et al., 2024) - - - 0.549 0.477 0.682

MPComplEx (Ours) 0.904 0.899 0.914 0.676 0.630 0.762

APG (%) ↑ 21.50 24.80 15.20 26.90 30.1 20.30
RPG (%) ↑ 31.20 38.10 19.95 66.09 91.49 36.31

These experimental results demonstrate the ef-
fectiveness of incorporating weighted combinations
of additional temporal embeddings with their cor-
responding subject and object embeddings, which
significantly enhances the flexibility of our model
compared to TPComplEx. Furthermore, integrating
weighted time-relational features into relation em-
bedding has allowed the proposed model to substan-
tially improve over TPComplEx, particularly in cases
where the facts recorded by each timestamp are few
or unique, as observed in the YAGO15k dataset. Ad-
ditionally, for datasets with fewer entities and rela-
tions but a large number of facts, such as GDELT,
our model exhibits scalability with large-scale data,
requiring fewer hyperparameters than previous ten-
sor decomposition models like ComplEx, TComplEx
or TPComplEx while still delivering notable perfor-
mance across various evaluation metrics.

4.3 Ablation Study

4.3.1 Analysis of the Effects of Relation-Time
Context Features

To assess the effectiveness of relation-time features,
we varied the proportion of these features by adjusting
the hyperparameter γ. A value of γ = 1 corresponds
to using only the original relation embedding, while
γ = 0 indicates exclusive use of the relation-time fea-
ture embedding. The results, shown in Table 4, show
that relation-time features make the proposed model
better by an average of 0.76% across four datasets
compared to the model that does not use these fea-
tures. However, in the GDELT dataset, these features
do not significantly impact performance. This out-
come highlights the challenges in optimally tuning
control variables for original relations and relation-
time features.
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Table 4: The influence of relation-time context features on the datasets.

Case study MRR ↑ Hit@1 ↑ Hit@10 ↑ MRR ↑ Hit@1 ↑ Hit@10 ↑
ICEWS14 ICEWS05-15

Only relation-time 0.923 0.912 0.940 0.930 0.920 0.948
W/o relation-time 0.920 0.910 0.940 0.946 0.939 0.963
Fusion features 0.941 0.931 0.957 0.962 0.957 0.974

YAGO15k GDELT

Only relation-time 0.794 0.774 0.834 0.719 0.680 0.793
W/o relation-time 0.774 0.752 0.815 0.719 0.680 0.793
Fusion features 0.904 0.899 0.914 0.676 0.630 0.762

Figure 2: Visualization of the effect of α1,α2,β1,β2,γ for
MPComplEx on the ICEWS14, ICEWS05-15, YAGO15k,
and GDELT datasets.

4.3.2 Analysis of the Effects of Weight
Combinations

The proposed model incorporates weights for com-
bining entity embeddings with additional temporal
embeddings, specifically α1,α2,β1,β2, and relation
embeddings with relation-time embeddings, denoted
by γ. To evaluate the impact of these weights on
model performance, we conduct experiments with
different weight combinations across four datasets:
ICEWS14, ICEWS05-15, YAGO15k, and GDELT.
The results are presented in Fig. 2 which each hyper-
parameter combination has order α1,α2,β1,β2,γ. For
the ICEWS14, ICEWS05-15, and GDELT datasets,
the MPComplEx model consistently improves across

all evaluation metrics as the weight values increase,
with optimal performance observed when the relation
embedding weight is set to γ= 0.5. In contrast, for the
YAGO15k dataset, smaller weight values yield sub-
optimal results. However, when the weights are set
to 2.5 or higher, coupled with a relation embedding
weight of γ = 0.75, the model exhibits significant per-
formance gains, achieving its highest performance.

5 CONCLUSIONS

This paper introduces the Multi-Time Perspective
Relation-Time Context ComplEx Embedding model
(MPComplEx), which addresses several key chal-
lenges of interpolation models based on tensor de-
composition. By incorporating additional flexible
temporal embeddings with adjustable weights, our
model enhances flexibility and improves the ability
to capture various time perspective properties while
maintaining computational efficiency with a fixed
number of parameters compared to baseline models.
Especially, the correlation between relation embed-
dings and their corresponding timestamps is modeled
and integrated with weighted contributions into the
scoring function, thereby enhancing the quality of re-
lation embeddings through temporal information and
improving prediction results. Looking ahead, fur-
ther exploration of the model’s potential in managing
cross-temporal patterns and addressing the challenge
of extrapolation presents promising directions for fu-
ture research.
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