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Abstract: This work focuses on improving explanations for random forests, which, although efficient and providing
reliable predictions through the combination of multiple decision trees, are less interpretable than individual
decision trees. To improve their interpretability, we introduce k-majoritary reasons, which are minimal impli-
cants for inclusion supporting the decisions of at least k trees, where k is greater than or equal to the majority
of the trees in the forest. These reasons are robust and provide a better explanation of the forest’s decision.
However, due to their large size and our cognitive limitations, they may be too hard to interpret. To overcome
this obstacle, we propose probabilistic majoritary explanations, which provide a more concise interpretation
while maintaining a strict majority of trees. We identify the computational complexity of these explanations
and propose algorithms to generate them. Our experiments demonstrate the effectiveness of these algorithms
and the improvement in interpretability in terms of size provided by probabilistic majoritary explanations (δ-
probable majoritary reasons).

1 INTRODUCTION

Context. Understanding the predictions made by
machine learning (ML) models is a crucial issue that
has prompted significant research in artificial intelli-
gence in recent years (see, for example, (Adadi and
Berrada, 2018; Miller, 2019; Guidotti et al., 2019;
Molnar, 2019; Marques-Silva, 2023)). This paper fo-
cuses on classifications made by random forests, a
popular ensemble learning method that builds set of
decision trees during the training phase and predicts
by taking a majority vote among the base classifiers
(Breiman, 2001). The randomization of decision trees
is achieved through data subsampling (or bagging),
making random forests easy to implement with few
parameters to adjust. They often provide accurate and
robust predictions, even for small data samples and
high-dimensional feature spaces (Biau, 2012). For
these reasons, random forests are used in various ap-
plications, including computer vision (Criminisi and
Shotton, 2013), crime prediction (Bogomolov et al.,
2014), and medical diagnostics (Azar et al., 2014).

However, random forests are often considered less
interpretable than decision trees. While many XAI
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queries (Audemard et al., 2020) are tractable for deci-
sion trees, they are not for random forests (Audemard
et al., 2021). The prediction on a data instance can
be easily interpreted by following the direct reason
provided by the classifier (Audemard et al., 2022b).
For a decision tree, this corresponds to the unique
path from the root to the decision node that covers the
instance (or explanation restricted to the path) (Izza
et al., 2020). For random forests, the authors of (Au-
demard et al., 2022c) define the direct reason as the
union of the direct reasons from the trees that vote for
the predicted class. A key challenge is to formulate
abductive explanations, that is, to concisely explain
why an instance is classified as positive or negative.

Related Work. Explaining random forest predic-
tions has garnered increasing attention in recent years.
Several recent works (Bénard et al., 2021; Audemard
et al., 2022c; Audemard et al., 2022a; Choi et al.,
2020; Izza and Marques-Silva, 2021) have focused
on prime implicant explanations for instances given
a random forest, also called sufficient reasons (Dar-
wiche and Hirth, 2020). Simply put, if a random for-
est classifier is seen as a Boolean function f , a prime
implicant explanation for a data instance xxx classified
as positive by f is a minimal implicant for the inclu-
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sion of f that covers xxx. For a single decision tree, this
explanation can be generated in linear time. How-
ever, determining whether a term is a prime impli-
cant explanation for a random forest is a DP-complete
problem (Izza and Marques-Silva, 2021). Despite this
complexity, algorithms based on Minimal Unsatisfi-
able Subset (Liffiton and Sakallah, 2008) can be effi-
cient in practice. Nevertheless, for high-dimensional
instances or large forests, deriving a sufficient reason
becomes difficult. To overcome this challenge, (Au-
demard et al., 2022c) proposed majoritary reasons,
which are minimal implicants for the inclusion for the
majority of the trees and can be derived in linear time.
Additionally, there are model-agnostic approaches,
such as LIME (Ribeiro et al., 2016), SHAP (Lund-
berg and Lee, 2017), and Anchors (Ribeiro et al.,
2018), although these methods have the drawback of
producing explanations that may be consistent with
multiple predicted classes, reinforcing the interest in
formal methods (Ignatiev et al., 2019; Marques-Silva
and Huang, 2023).

A significant limitation of the explanations pro-
vided for random forests, including minimum-size
majoritary reasons (Audemard et al., 2022c), is that
these explanations can be large, making them difficult
for users to interpret. It is essential to remember that
explanation is a social process where users, as human
beings, have cognitive limitations. As highlighted by
the psychologist G. Miller in his foundational article
on "chunking" (Miller, 1956), human memory is lim-
ited to units of 7±2 elements. To make explanations
more concise and user-friendly, recent research has
turned towards probabilistic explanations. However,
computing such explanations remains extremely com-
plex. The problem of deciding whether an instance
admits a δ-probable reason of size p under a Boolean
function is NPPP-complete (Wäldchen et al., 2021),
making this computation inapproximable in practice,
even for random forests. Despite recent efforts (Izza
et al., 2024) to propose efficient approximations, this
problem remains a major challenge when dealing with
classifiers that are difficult to explain.

Contributions. In this paper, we introduce the no-
tion of k-majoritary reasons, which are majoritary rea-
sons involving at least k trees, where k ≥

⌊m
2

⌋
+ 1

(with m representing the number of trees in the for-
est f ). A k-majoritary reason for an instance xxx given
a random forest f is a term t that covers xxx and con-
stitutes a minimal implicant for inclusion for at least
k trees in forest. We also define the notion of a δ-
probable majoritary reason, which is a δ-probable rea-
son (Louenas, 2024) for a strict majoritary of trees in
the forest, where these trees classify the instance in

the same way as the forest.
The k-majoritary reasons are particularly interest-

ing because they more robustly support the decision
made by the forest, making them more useful than
a simple arbitrary majoritary reason (denoted MAJ).
Although they can be derived in polynomial time,
identifying minimum-size k-majoritary reasons is an
NP-complete problem. To achieve this, an approach
based on a PARTIAL MAXSAT solver can be used.
While the δ-probable majoritary reasons offer gains
in intelligibility and size, as they are, by construction,
smaller than the majoritary or k-majoritary reasons,
making them more interpretable while improving the
intelligibility of random forests. We subsequently
propose algorithms to derive k-majoritary reasons
and δ-probable majoritary reasons to enable empiri-
cal comparison. Our experiments on standard bench-
marks show that the PARTIAL MAXSAT solver gen-
erally allows for the derivation of minimum-size k-
majoritary reasons, comparable in size to minimum-
size majoritary reasons (denoted minMAJ) while in-
volving a greater number of trees. The δ-probable ma-
joritary reasons, on the other hand, provide a signif-
icant reduction in size. Moreover, the computational
effort required to derive minimum-size k-majoritary
reasons is similar to that of minimum-size majoritary
reasons, while obtaining a δ-majoritary reason is less
costly than obtaining a probabilistic explanation (the
NPPP-complete problem (Wäldchen et al., 2021)). A
greedy algorithm will be employed to derive the δ-
probable majoritary reasons.

2 PRELIMINARIES

Preliminaries. Let [n] be the set {1, . . . ,n}. We de-
note by Fn the class of all Boolean functions from
{0,1}n to {0,1}, and use Xn = {x1, . . . ,xn} to rep-
resent the set of Boolean variables. Any assignment
xxx ∈ {0,1}n is called an instance. A literal ℓ is either a
variable xi or its negation ¬xi, also denoted xi. xi and
xi are complementary literals. A term t is a conjunc-
tion of literals, and a clause c is a disjunction of liter-
als. Lit( f ) denotes the set of all literals in f . A DNF
formula is a disjunction of terms, and a CNF formula is
a conjunction of clauses. The set of variables appear-
ing in a formula f is denoted by Var( f ). A formula
f is consistent if and only if it has at least one model.
A formula f1 implies a formula f2, denoted f1 |= f2,
if and only if every model of f1 is also a model of
f2. Two formulas f1 and f2 are equivalent, denoted
f1 ≡ f2, if and only if they have the same models.

Given an assignment z ∈ {0,1}n, the corre-
sponding term is defined as tz =

∧n
i=1 xzi

i where x0
i =
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xi and x1
i = xi. A term t covers an assignment z if

t ⊆ tz. An implicant of a Boolean function f is a term
that implies f . A prime implicant of f is an implicant
t of f such that no subset of t is an implicant of f .

A partial instance is a tuple yyy ∈ {0,1,⊥}n. Intu-
itively, if y[i] =⊥, the value of the i-th feature is unde-
fined. We say that yyy is subsumed by xxx if it is possible
to obtain yyy from xxx by replacing some undefined val-
ues of yyy with values from xxx, denoted yyy⊆ xxx. We define
|yyy|⊥= |{i∈{1, . . . ,n} : yyy[i] =⊥}|, where⊥ represents
a missing value. The restriction of xxx to S, denoted xxxS,
is the partial instance in {0,1,⊥}n such that, for ev-
ery i∈ [n], (xxxS)i = xxxi if i∈ S, and (xxxS)i =⊥ otherwise.
Any instance yyy ∈ {0,1}n is covered by xxxS if and only
if yyyS = xxxS. We define P[ f (zzz)= f (xxx)|tS⊆tzzz]:

P[ f (zzz)= f (xxx)|tS⊆tzzz] =
|{zzz ∈ {0,1}n : f (zzz) = f (xxx),zS = xS}|

2n−|S|

=
h f ,x(S)
2n−|S| (1)

P[ f (z)= f (x)|tS⊆tz] can be seen as the probability of classi-
fying an instance xxx′′′, which shares a subset of features S
with an instance xxx, in the same way by a classifier rep-
resented by a Boolean function f . For δ ∈ (0,1], the
term tS is said to be a δ-probable reason for xxx given f if
h f ,x(S)
2n−|S| ≥ δ. Furthermore, for any ℓ ∈ tS, this condition is

not satisfied. If δ = 1, tS is a prime implicant for xxx given
f .

A binary decision tree on Xn is a binary tree T , where
each internal node is labeled with one of the n Boolean
input variables from Xn, and each leaf is labeled with ei-
ther 0 or 1. Each variable is assumed to appear at most
once on any path from the root to a leaf (read-once prop-
erty). The value T (x) ∈ {0,1} of T for an input instance
xxx is determined by the label of the leaf reached from the
root node.
A random forest on Xn is a set F = {T1, · · · ,Tm}, where
each Ti (i ∈ [m]) is a decision tree on Xn, and the value
F(xxx) is given by

F(xxx) =

{
1 if 1

m ∑
m
i=1 Ti(xxx)> 1

2
0 otherwise.

The size of F is given by |F |= ∑
m
i=1 |Ti|, where |Ti| is

the number of nodes present in Ti. The class of decision
trees on Xn is denoted by DTn, and the class of random
forests with at most m decision trees (for m ≥ 1) on DTn
is denoted by RFn,m. Finally, RFn =

⋃
m≥1 RFn,m and RF=⋃

n≥1 RFn. It is well known that any decision tree T ∈
DTn can be transformed in linear time into an equivalent
DNF (or an equivalent CNF). This DNF is an orthogonal
DNF (Audemard et al., 2022b). However, when moving
to random forests, the situation is quite different. Any
formula in CNF or DNF can be converted in linear time into
an equivalent random forest, but there is no polynomial

space conversion from a random forest to CNF or DNF

(Audemard et al., 2022c).

Example 1. The random forest F = {T1,T2,T3} pre-
sented in Figure 1 consists of three trees. It classifies
bank loans using the features {x1,x2,x3,x4}.
Consider the instance xxx = (1,1,1,1). Since F(xxx) = 1,
the client xxx is granted a bank loan. The direct reason for
xxx, given by F, is PF

xxx = x1∧x2∧x3∧x4. Now consider the
instance xxx′ = (0,0,1,0), which is recognized as a loan
rejection since F(xxx′) = 0. The direct reason for xxx′ and F
is PF

xxx′ = x1∧ x2∧ x3∧ x4.

We conclude this section by recalling some impor-
tant properties and definitions for what follows. The
first property concerns the fact that the evaluation of the
function h f ,x(S) in formula 1 is a #-SAT problem when
considering a classifier represented by a Boolean func-
tion f (for example, a random forest). However, for a
binary decision tree T , hx,T (S) can be rewritten in the
form hx,T (S) = w(DNF(T ) | tS), where DNF(T ) is the dis-
junctive normal form representation of the tree T , and
w(DNF(T ) | tS) is the number of models of the formula
DNF(T ) | tS. This formula is also an orthogonal DNF (Dar-
wiche, 1999), and therefore w(DNF(T ) | tS) can be evalu-
ated in linear time (Bounia and Koriche, 2023).
A central result to recall in this work is the encoding of
a random forest into a CNF formula, as well as the ability
to perform an implication test via a call to a SAT oracle,
as demonstrated in (Audemard et al., 2022c).

Proposition 1. Let F = {T1, . . . ,Tm} be a random forest
from RFn,m, and let t be a term over Xn and k ∈ N. Let H
be the following CNF formula:

H = {(yi∨c) : i ∈ [m],c ∈ CNF(¬Ti)}∪CNF

(
m

∑
i=1

yi > k

)
where {y1, . . . ,ym} are new variables and

CNF(∑m
i=1 yi > k) is the CNF encoding of the cardi-

nality constraint ∑
m
i=1 yi > k. For k = m

2 , t is an
implicant of F (an implicant of the strict majority of the
trees) if and only if H ∧ t is unsatisfiable.

Based on such encoding, explanations by prime im-
plicants (or sufficient reasons) for an instance xxx given a
random forest F can be characterized in terms of MUS
(minimal unsatisfiable subsets (Liffiton and Sakallah,
2008)). However, their very high computational cost
(the DP-complete problem) makes their derivation chal-
lenging to perform. A natural question arises: are there
minimal abductive explanations for inclusion that can be
computed in polynomial time? The answer is yes, with
the majoritary reasons (Audemard et al., 2022c), which
are abductive explanations. For an instance xxx, a majori-
tary reason is an implicant of a strict majority of the trees
in the forest F .

A limitation of majoritary explanations, including
those of minimum-size, is that they involve only a strict
majority of trees, which can make them too large to be
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Figure 1: A random forest for bank loan allocation based on the features {x1,x2,x3,x4}.

interpretable. In this work, we proposed k-majoritary
explanations (of minimum-size), which, although diffi-
cult to compute, better explain the decision made by the
forest, thus improving upon existing majoritary explana-
tions. Furthermore, to provide more concise and inter-
pretable explanations, we introduced δ-probable majori-
tary reasons, which are δ-probable explanations for the
strict majority of trees, thereby offering an alternative to
traditional probabilistic explanations.

3 FOR BETTER EXPLANATIONS
FOR RANDOM FORESTS

The concepts of δ-probable majoritary reasons and prob-
abilistic explanations, as defined in (Wäldchen, 2022),
do not coincide. A probabilistic explanation is a δ-
probable reason for xxx given forest F , while a δ-probable
majoritary reason is a δ-probable reason for a strict ma-
jority of decision trees in F , with the additional con-
dition that t is minimal for inclusion for at least one
tree. Majoritary δ-probable reasons can be considered
simplified versions of probabilistic explanations, poten-
tially including irrelevant features. Now, consider a
random forest F ∈ RFn,m and an instance xxx. The set
Fc = {Ti | Ti(xxx) = F(xxx)} represents the trees classifying
xxx in the same way as the forest F , with m

2 ≤ |Fc| ≤ m.

3.1 k-Majoritary Reason

Definition 1 (k-Majoritary Reason). Let
F = {T1, . . . ,Tm} be a random forest in RFn,m
and xxx ∈ {0,1}n an instance, with k ∈ N such that⌊m

2

⌋
+ 1 ≤ k ≤ |Fc|. A k- majoritary reason (k-MAJ) for

xxx given F is a term t covering xxx, which is an implicant
of at least k trees. Furthermore, for each literal l ∈ t,
t \{l} no longer satisfies this condition. A minimum-size

k-majoritary reason (k-minMAJ) is one that contains the
minimal number of literals.

Lemma 1. Let F be a random forest in RFn,m, an in-
stance xxx ∈ {0,1}n, and k ≥

⌊m
2

⌋
+1. We can always de-

rive a majoritary reason (MAJ) from a k-majoritary rea-
son (k-MAJ) using a greedy algorithm.

Example 2. Based on example 1, the minMAJ reasons
for xxx given F are x1 ∧ x2 ∧ x4, x1 ∧ x3 ∧ x4, and x2 ∧ x3 ∧
x4. Each of these explanations is more concise than the
direct reason PF

xxx , but none of these explanations is a 3-
MAJreason, as they only involve 2 trees.
In contrast, for the instance xxx′, x1∧ x2∧ x4 and x2∧ x3∧
x4 are minMAJ reasons, but x1 ∧ x2 ∧ x4 is the unique 3-
minMAJ reason for xxx′ given F.

The k-MAJ reasons ensure coverage by a larger num-
ber of decision trees, making them more robust and re-
liable (as shown in Example 2). Naturally, the user will
be interested in deriving concise reasons, particularly the
k-minMAJ reasons. However, it is important to remember
the inherent complexity in deriving them.

Proposition 2. Let F ∈ RFn,m, xxx ∈ {0,1}n, k ≥
[m

2

]
+1,

and p ∈ N. Deciding whether there exists a k-minMAJ
reason t for xxx given the random forest F such that t con-
tains at most p features is an NP-complete problem.

A common approach to resolve NP optimization
problems is to rely on modern SAT solvers. In this per-
spective, recall that a PARTIAL MAXSAT problem con-
sists of a pair (Csoft,Chard) where Csoft and Chard are (fi-
nite) sets of clauses. The goal is to find a Boolean as-
signment that maximizes the number of clauses c in Csoft
that are satisfied, while satisfying all clauses in Chard.

Proposition 3. Let F = {T1, · · · ,Tm} (F ∈ RFn,m), xxx ∈
{0,1}n and k≥ m

2 . Let (Csoft,Chard) be an instance of the
PARTIAL MAXSAT problem such that:
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Csoft = {xi : xi ∈ txxx}∪{xi : xi ∈ txxx}
Chard = {(yi∨ c|xxx) : i ∈ [m],c ∈ CNF(T±i )}

∪CNF

(
m

∑
i=1

yi > k

)
where c|xxx = c∩ txxx is the restriction of c to the literals in
txxx, {y1, . . . ,ym} are auxiliary variables, T±i = Ti (i ∈ [m])
if F(xxx) = 1, Ti =¬Ti if F(xxx) = 0, and CNF(∑m

i=1 yi > k) is
the CNF encoding of the cardinality constraint ∑

m
i=1 yi >

k. Let zzz∗ be an optimal solution of (Csoft,Chard). Then,
txxx∩ tzzz∗ is a k-minMAJ reason for xxx given F.

Thanks to this characterization result, it is possible to
leverage the many algorithms that have been developed
so far for PARTIAL MAXSAT (see, for example, (An-
sótegui et al., 2013; Saikko et al., 2016; Ignatiev, 2019))
to compute k-minMAJ reasons.

3.2 Majoritary Probabilistic
Explanation (δ-Probable Majoritary
Reason)

The concepts of majoritary reason and prime implicant
explanation are considered natural explanation concepts
for random forests. However, these reasons are often
large in size, making them difficult to interpret (Aude-
mard et al., 2022a; Izza and Marques-Silva, 2021; Au-
demard et al., 2022c). To mitigate this limitation, a prob-
abilistic generalization of explanations was proposed by
(Wäldchen et al., 2021). However, deriving probabilis-
tic explanations is NPPP-hard. Therefore, we propose a
more easily derivable alternative: δ-probable majoritary
reasons.

Definition 2 (δ-Probable Majoritary Reason). Let F =
{T1, . . . ,Tm} be a random forest in RFn,m and xxx ∈ {0,1}n,
with δ ∈ (0,1]. A majoritary δ-probable reason for xxx
given F is a subset of features S (or its term tS that covers
xxx) that satisfies:

∑
Ti∈Fc

1[ hx,Ti
(S)

2n−|S| ≥δ

] ≥ m
2

And for each l ∈ S, S \ {l} does not satisfy this last
condition.

A minimum-size δ-probable majoritary reason for xxx
given F is a δ-probable majoritary reason for xxx given F
that contains a minimal number of features.

The definition of a δ-probable majoritary reason
aims to improve the interpretability of explanations for
random forests. By specifying a subset of features that
meet a probabilistic threshold δ, this definition allows
for explanations that are representative of the model’s
decision-making process while ensuring a significant
level of confidence. The requirement for support by
a majority of trees ensures that these explanations are
based on collective judgment, thereby increasing their

reliability. Furthermore, the constraint that removing a
feature compromises support highlights the importance
of each attribute in the decision. This approach thus bal-
ances concise explanations with a probabilistic frame-
work, enhancing user confidence and understanding in
the face of complex predictions.

Example 3. Based on example 1 and for the instance
xxx, given F, S = {x1,x4} (the term associated with S is
tS = x1 ∧ x4) is a 0.75-probable majoritary reason for xxx
given F.
We have :

• hx,T1 ({x1,x4})
4 = 0.75

• hx,T2 ({x1,x4})
4 = 1

• hx,T3 ({x1,x4})
4 = 0.75

Thus, tS is a 0.75-probable reason for a strict major-
ity of trees and is smaller than all of minMAJ reasons for
xxx given F.

Deriving a δ-probable explanation for an instance
xxx given a decision tree T is generally an NP-complete
problem (Arenas et al., 2022). Given that a decision
tree is a particular random forest (composed of a single
tree) and that a δ-probable majoritary reason is equiva-
lent to a δ-probable reason, we suggest that calculating
a δ-probable majoritary reason for a random forest F is
also NP-hard.

Remark 1 (Complexity of δ-probable majoritary rea-
sons). In this work, we did not define the exact complex-
ity of the problem of computing δ-probable majoritary
reasons, but we know that this problem belongs to the
complexity class NP. By drawing an analogy with the
fact that computing a probabilistic explanation for de-
cision trees is an NP-hard problem, we suggest that the
problem of computing a probabilistic majoritary expla-
nation is also an NP-hard problem.

Based on the previous remark and the results pre-
sented in (Arenas et al., 2022; Bounia and Koriche,
2023; Izza et al., 2024; Louenas, 2023), which clearly
show that deriving a δ-probable reason is out of reach
when the classifier in question is a complex tree and the
size of the input instance is high-dimensional, we sug-
gest that deriving δ-probable majoritary reasons is also
out of reach when the classifier is a random forest. Based
on these results, we therefore propose a greedy algorithm
to derive minimum-size majoritary probabilistic reasons
for inclusion, although they are not necessarily minimal
in size.

Greedy Algorithm. In the following, we propose an
algorithm to derive δ-probable majoritary reasons from
a random forest. This algorithm (see Algorithm 1) aims
to identify a reason that meets a given confidence thresh-
old. It takes as input a random forest composed of deci-
sion trees, an input instance, and a confidence threshold
δ. The algorithm examines the literals of a term and ad-
justs the set of literals based on the classifications of the
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decision trees, thereby ensuring that the resulting reason
is predominantly compelling according to the specified
threshold. Here is the algorithm:

Input: Random forest F = {T1, · · · ,Tm},
instance xxx ∈ {0,1}n, confidence
threshold δ ∈ (0,1]

Output: A δ-probable majoritary reason

S← t /*t is a term (a set of
literals) */

Fc = {Ti : F(xxx) = Ti(xxx)} /*The trees that
classify xxx as F */

for l ∈ t do

if ∑
Ti∈Fc

1[ hx,Ti
(S)

2n−|S| ≥δ

] ≥ m
2 then

if hx,Ti(S)≥ δ then

Fc← Fc−{Ti}
end

S← S−{l} /*Remove literal l
from S */

end

end

return S
Algorithm 1: δ-Probable Majoritary Reason.

Proposition 4. The algorithm 1 runs in time O(n×|F |).
In the case where F(x) = 1, the algorithm 1 starts with
S = tx, where tx represents the initial set of literals cor-
responding to the input instance xxx. The algorithm then
proceeds to iterate over the literals l of S. For each lit-
eral l, it checks whether the set S without this literal
(noted S− {l}) constitutes a δ-probable reason for at
least

⌊m
2

⌋
+ 1 decision trees in the forest F . If the con-

dition is satisfied, it means that the elimination of the
literal l from S does not affect the validity of the reason,
and therefore, l is removed from S. The algorithm then
moves to the next literal, repeating this process until it
has examined all the literals of the initial set S.

At the end of this iteration, the final term S is, by
construction, a δ-probable reason for the majority of
the decision trees in F This ensures that, despite the
removals made, the remaining set of literals continues
to satisfy the specified confidence threshold, thus repre-
senting a robust explanation for the given classification.
This greedy algorithm runs in time O(n× |F |), where
n is the number of literals in the initial set S and |F | is
the total number of trees in the forest. Indeed, check-
ing whether S is an implicant for each tree Ti (for each
i ∈ [m]) requires time O(n× |Ti|), which is justified by
the approach used in verifying the implications of the
literals on the decision trees (Audemard et al., 2022b;
Izza et al., 2020).

4 EXPERIMENTS

We conducted several experiments to evaluate the per-
formance of our approaches, aiming to measure the size
difference between minMAJ reasons and k-minMAJ rea-
sons by randomly drawing k between

[m
2

]
+ 1 and |Fc|,

while also assessing the computation time required to
derive them. This study highlights the utility of k-MAJ
reasons, which serve as an improved version of MAJ rea-
sons. Additionally, we aim to evaluate the improvement
in intelligibility achieved through the reduction in size of
the δ-probable majoritary reasons (calculated with algo-
rithm 1) compared to that of direct reasons and minMAJ

reasons.

4.1 Experimental Protocol

We used B = 20 standard binary classification datasets
from the sites Kaggle1, OpenML2, and UCI3. Categori-
cal attributes were treated as integers, while numerical
attributes were binarized using the learning algorithm
employed for constructing the decision trees of the for-
est. The classification performance for Fb was evalu-
ated by measuring the average accuracy on a test set of
over 150 instances. The learning of the forest Fb was
performed using the CART algorithm, utilizing the im-
plementation from the Scikit-Learn library (Pedregosa
et al., 2011), with default hyperparameters, except for
the parameter (nb_estimator) that controls the number
of trees in the forest, which was chosen to limit this num-
ber to prevent an explosion of our encodings while main-
taining good accuracy.

For each dataset b ∈ [B], each random forest Fb, and
each instance xxx from the corresponding test set, we com-
pared the average size of the MAJ reasons and the k-MAJ
reasons, as well as the corresponding minimum-sizes
(minMAJ and k-minMAJ), in order to highlight the advan-
tage of the k-MAJ reasons compared to the standard MAJ

reasons. We also measured the average time required
to compute the minMAJ and k-minMAJ reasons (see Ta-
ble 1). The derivation of the reasons MAJ and k-MAJ was
performed using the greedy algorithm described in (Au-
demard et al., 2022c), with the direct reason PF

x as in-
put, while the derivation of the minimum-size reasons
minMAJ and k-minMAJ was carried out using the PARTIAL
MAXSAT solver via the RC2 interface (Ignatiev, 2019),
configured with Glucose using its implementation with
the PySAT library4.

In the second phase, in order to evaluate the im-
provement in intelligibility related to the reduction in
the size of explanations, we reported the sizes of the
direct reasons, the MAJ reasons, as well as the minMAJ

1https://www.kaggle.com/datasets
2https://www.openml.org
3https://archive.ics.uci.edu/datasets
4https://pysathq.github.io/
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(a) compas (b) biomed

(c) student-por (d) glass

Figure 2: The boxplots illustrating the sizes of direct reasons, MAJ reasons, minMAJ reasons, as well as the {70%,80%,90%}-
probable majoritary reasons.

reasons calculated from the given instance xxx for the for-
est Fb. The calculation of the direct reasons PF

x was
performed using the PyXAI library (Audemard et al.,
2023), while the computation of the δ-probable majori-
tary reasons was carried out using the algorithm 1 for
values of δ = {0.7,0.8,0.9}. A boxplot visualization
was then produced (see 3). To show the reduction ob-
tained in terms of the size of the δ-probable majori-
tary reasons compared to the minMAJ reasons, we used
a minMAJ reason as input for the algorithm 1 and var-
ied δ from 0.3 to 1 (that is, until reaching the minMAJ

reason).
All experiments were conducted using Python. They

were executed on a computer equipped with an Intel(R)
Core(TM) i9-9900 processor, operating at a base clock
speed of 3.10 GHz. This high-performance processor
has 8 cores and 16 threads, allowing for efficient mul-
titasking and parallel processing, which is particularly
beneficial for compute-intensive tasks commonly found
in machine learning applications. Additionally, the sys-
tem is equipped with 64 GiB of memory (RAM), provid-
ing ample resources to handle large datasets and high-
complexity algorithms without significant slowdowns.

4.2 Results

Table 1 presents an excerpt of our results for 20 datasets.
The column #I represents the number of instances, #F
the number of binary attributes, and %A the accuracy of
the forest Fb. The column |Explanation| shows the av-
erage size of the computed explanations: PF

x (direct rea-
son), MAJ (majoritary reason), k-MAJ (k-majoritary rea-
son), minMAJ (minimum-size majoritary reason), and k-
minMAJ (k-minimum-size majoritary reason). The col-
umn |Times| indicates the average computation times for
generating the minMAJ and k-minMAJ reasons using the
PARTIAL MAXSAT solver. K: average size of k.

We observe that the average sizes of the MAJ and k-
MAJ reasons are remarkably similar, with a small differ-
ence of only 4. This indicates that adding the parame-
ter k does not substantially affect the size of the derived
majoritary reasons. However, the gap decreases further
when considering the minMAJ and k-minMAJ reasons, go-
ing from 4 to 1.8. This trend suggests that the parameter
k influences the minMAJ reasons less than the MAJ rea-
sons, leading to more compact representations.

In analyzing computation times, we find that the av-
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erage time required to compute the minMAJ and k-minMAJ
reasons is nearly identical, showing a negligible differ-
ence. For example, in the startup dataset, the average
computation time for a minMAJ reason is about 6.5 sec-
onds, while the k-minMAJ reasons take about 7 seconds.
This small difference indicates that incorporating the pa-
rameter k does not have a significant impact on com-
putational efficiency. Overall, these results imply that
using k-minMAJ reasons, which include the minMAJ rea-
sons, does not lead to a notable increase in the size of
the reasons or computation time. This observation high-
lights the potential benefits of k-minMAJ reasons in terms
of enhancing explainability and robustness without sig-
nificantly compromising computation time and reason
size.

To illustrate the improvement in intelligibility
achieved by moving from abductive explanations (such
as direct reasons, MAJ reasons, and minMAJ reasons) to
δ-probable majoritary reasons, we created several box-
plots based on 150 instances from four datasets: compas
and student-por (shown on the right), and biomed and
glass (shown on the left) (see 4.1). These diagrams vi-
sualize the transition from minMAJ and MAJ reasons to
probabilistic majoritary reasons for thresholds of 70%,
80%, and 90%. Examining these boxplots reveals a clear
trend towards a significant reduction in the number of at-
tributes used in both direct and majoritary reasons when
adopting a 0.7-probable majoritary reason. This demon-
strates the effectiveness of δ-probable majoritary reasons
in simplifying explanations while maintaining an ade-
quate level of confidence in the model’s decision-making
process. In other words, while traditional explanations
may involve a broader set of attributes, shifting to δ-
probable majoritary reasons allows for a focus on the
most relevant features, thereby facilitating user under-
standing. This simplification of explanations not only
enhances interpretability but also promotes better com-
prehension of the predictions provided by the model,
making the results more accessible and actionable for the
humain user.

In our study, we observed a significant reduction in
the size of explanations achieved with 70% δ-probable
majoritary reasons compared to traditional explanations
based on direct reasons and MAJ reasons. To further in-
vestigate this phenomenon, we conducted additional ex-
periments assessing the impact of varying δ values from
0.3 to 1 across three datasets: employee, which includes
attributes related to employee performance and demo-
graphics, compas, focusing on characteristics associated
with criminal recidivism; and backache, encompassing
health information on patients with back issues. By cal-
culating the sizes of the δ-probable majoritary reasons
for various instances at each δ value, we found that the
average size of these explanations gradually increased
with higher δ values, indicating that greater confidence
leads to more detailed explanations. However, this size
eventually stabilized when the algorithm effectively cap-
tured the minMAJ reason, highlighting a threshold where

increasing δ no longer significantly enhances the expla-
nations. These results demonstrate the balance between
explanation size and intelligibility, as adjusting δ allows
for tailoring the level of detail in explanations, thereby
enhancing their interpretability without adding unneces-
sary complexity.
Remark 2. Although we have not conducted specific
experiments to directly compare the k-minMAJ explana-
tions with the δ-probabilistic majoritary explanations,
we can draw relevant conclusions from the results ob-
tained for each of these approaches. The k-minMAJ ex-
planations, while offering additional robustness by in-
volving a greater number of trees in the forest, tend to
generate larger explanations than the minMAJ explana-
tions. However, the minMAJ explanations are generally
larger than the δ-probabilistic majoritary explanations,
as confirmed by our experimental results. Therefore, we
can deduce, without the need for further experiments,
that a further size reduction will occur if the algorithm’s
input is a k-minMAJ explanation.

5 CONCLUSION AND FUTURE
WORK

Conclusion. In this paper, we introduced k-majoritary
reasons and δ-probable majoritary reasons as innovative
extensions of traditional majoritary reasons for random
forests, aiming to enhance the robustness and concise-
ness of explanations provided by these models. The
k-MAJ reasons differ from standard majoritary reasons
by leveraging a larger subset of trees in the forest for
decision-making. This approach not only strengthens
the forest’s overall decision-making capability but also
yields more compact and robust explanations. Impor-
tantly, our findings suggest that employing k-MAJ rea-
sons does not incur a significant increase in computation
time, making them a practical choice for real-world ap-
plications. However, we also observed that minMAJ and
k-minMAJ explanations can become excessively large,
which may hinder their interpretability due to cognitive
limitations faced by users. To address this issue, we pro-
posed the concept of δ-probable majoritary reasons. By
establishing a probabilistic threshold, δ, this method al-
lows for the generation of more concise and interpretable
explanations, ultimately improving user experience. Our
experiments demonstrated that these novel approaches
are not only effective but also flexible, striking a balance
between intelligibility and the robustness of explanations
for random forests.

Future Work. Looking ahead, we plan to extend the
concepts of k-majoritary reasons and δ-probable majori-
tary reasons to other tree-based models, such as boosted
trees, to further explore their applicability across various
machine learning paradigms. This will involve defin-
ing and formalizing the complexity of these new expla-
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Table 1: Evaluation of k-Majority Explanations: Dataset Statistics and Computation Times.

dataset / random forest |Explanation| |Times|

name #I #F %A PF
x MAJ k-MAJ minMAJ k-minMAJ K minMAJ k-minMAJ

australian 690 641 89.89 73.35 68.7 70.9 33.49 34.73 14.41 0.658 0.8003
horse 299 361 86.56 77.04 69.63 74.13 35.82 36.97 19.41 10.877 11.9031

titanic 623 553 79.07 64.12 58.95 61.05 28.05 29.92 17.09 2.6108 2.8402
gina 3153 3802 91.65 183.07 165.31 174.59 97.03 100.73 15.18 3.0707 3.2105

student-por 649 149 90.26 58.38 54.85 56.43 20.61 21.32 26.14 21.8167 23.7152
anneal 898 202 99.26 63.31 57.39 60.91 21.45 22.12 23.55 4.9525 5.02314

startup 923 1704 79.26 129.09 122.3 125.62 74.23 75.34 15.81 6.5699 7.0585
heart 303 386 84.62 61.23 58.35 59.41 25.45 25.83 23.05 2.1122 2.2051

cars 406 484 94.62 80.97 71.43 76.67 32.14 33.74 23.75 5.3147 5.9147
hungarian 294 297 78.65 62.65 57.3 59.73 26.94 28.14 21.73 6.9276 6.9708

vote 434 16 95.42 15.83 11.6 12.86 5.58 5.72 35.85 0.0227 0.0241
soybean 683 81 96.1 43.69 30.62 35.13 11.42 12.97 29.18 0.3899 0.4177
hepatitis 142 188 88.37 59.16 50.19 55.42 23.05 24.87 27.33 16.7504 18.1012

haberman 306 153 65.22 56.77 52.6 54.55 26.39 27.54 22.47 3.501 3.7391
divorce 170 49 96.08 26.78 14.2 19.53 9.06 11.02 20.0 0.0702 0.0712

appendicitis 106 210 93.75 64.38 50.31 56.97 25.12 28.22 24.16 1.8912 1.9521
balance 625 28 84.57 17.19 14.53 15.13 7.86 8.15 34.69 0.0522 0.05432

ecoli 336 175 96.04 43.66 33.68 38.88 16.45 17.64 14.29 0.1095 0.1104
yeast 2417 301 97.93 90.54 80.51 83.13 33.07 35.86 11.29 0.0366 0.0382

student-mat 395 155 87.39 58.02 53.73 55.15 22.13 22.91 20.92 3.0831 3.2341

Figure 3: Size of δ-probable majoritary reasons when δ varies from 0.3 to 1 (minMAJ reason) for the datasets employee,
compas, and backache.

nations to better understand their implications in differ-
ent contexts. Furthermore, another promising direction
for future research is to optimize the underlying algo-
rithms used to generate these explanations. We aim to
enhance their reliability and conciseness while preserv-
ing the quality of insights provided to users. This en-

tails exploring novel computational strategies that im-
prove efficiency without sacrificing the clarity and util-
ity of the explanations. Ultimately, our goal is to ensure
that these explanations remain not only comprehensible
but also actionable for users, thereby facilitating better
decision-making processes in machine learning applica-
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tions.
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