
Proof of Learning Applied to Binary Neural Networks

Zoltán-Valentin Gyulai-Nagy a

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Blockchain, Proof of Learning, Binary Neural Networks, Neural Network Quantization.

Abstract: This paper introduces a novel method that leverages binary neural networks (BNNs) for transaction validation
on blockchains. Utilizing the computational capabilities of traditional Proof-of-Work systems, this approach
generates multiple models suitable for real-world applications. BNNs are chosen for their smaller memory
footprint, fitting well into blockchain validations and embedding within blocks. The method aligns with the
Proof of Learning concept, requiring neural network training to create new blocks, while also incorporating
computationally intensive heuristic approaches. Despite the lower precision of BNNs compared to traditional
models, their reduced computational demand during inference is beneficial. The goal is to improve their
precision through multiple training rounds and the use of evolutionary algorithms. This scalable approach
can be customized to meet diverse application needs by allowing users to upload datasets for training specific
models. Additionally, it is cost-effective as BNNs can be trained on low-cost devices, broadening access. This
strategy aims to refine blockchain validation processes and produce usable models as a byproduct.

1 INTRODUCTION

Artificial intelligence’s recent popularity gave birth
to many new ideas and opportunities for us to en-
hance the average user experience around many ap-
plications. Much speculation exists in different do-
mains about whether AI will replace the usual human
workforce (Huang and Rust, 2018). All of these ques-
tions and developments point to the fact that we have
started evolving into a new phase of machine learning
where the general public is aware of its force and will
try to embed it as much as possible in many mundane
scenarios (Jarrahi, 2018). This will aid existing work-
flows to reduce the routine and repetitive tasks carried
out by manual labor.

In this paper, we propose an approach that modi-
fies the traditional principles of Proof of Work (PoW)
(Gervais et al., 2016) blockchains and incorporates
the concepts of Proof of Learning (PoL) (Jia et al.,
2021) while changing and adapting the validation
flow of the blocks to support additional training and
inference algorithms. Our approach, which incorpo-
rates Binary neural networks (BNNs) instead of con-
ventional neural network (NN) models, also benefits
from generating lightweight models that can be seam-
lessly embedded into a blockchain. This approach
also guarantees ownership of the models.

a https://orcid.org/0000-0001-6506-4679

Our contribution builds on previous methods (Liu
et al., 2021) by introducing a new technique that:

• Stores BNN models within blocks and uses these
models for block validation.

• Uses evolutionary algorithms to improve models,
even when they have reached their relative best
shape and performance

We will evaluate the proposed method to deter-
mine its practicality, focusing on three key aspects:
the impact on network bandwidth usage, the through-
put of the chain, and its ability to validate blocks and
adjust the validation difficulty. These assessments
will help us gauge the viability and efficacy of our
approach.

This paper is organized as follows. Section 2
presents the existing knowledge in our research do-
main. Section 3 then formulates the specific research
questions we aim to address. Our methodology, in-
cluding a detailed description of our empirical ap-
proach, is outlined in Section 4. Section 5 showcases
the results of our test scenarios, which were designed
to support our research questions. Finally, Section 6
concludes the paper by summarizing our findings and
provides a few directions for future research.

Gyulai-Nagy, Z.-V.
Proof of Learning Applied to Binary Neural Networks.
DOI: 10.5220/0013145800003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 411-418
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

411



2 LITERATURE REVIEW

Blockchain technology and neural networks have
been focal areas of research in recent years, partic-
ularly in how they can be optimized and integrated
into various applications, including transaction vali-
dations.

BNNs, which use binary values (-1 or 1) for
weights and activations, reduce both memory foot-
print and computational complexity (Courbariaux and
Bengio, 2016) , making them ideal for resource-
limited devices like IoT and mobile phones (Lin et al.,
2017). This efficiency is crucial for blockchain oper-
ations in decentralized environments.

Traditional PoW mechanisms are secure but con-
sume significant energy (Satoshi, 2008). Research
has explored methods to minimize resource usage,
supported by investigations into alternative consen-
sus mechanisms that lower computational demands
(Micali et al., 1999). The concept of PoL, a deriva-
tive of the PoW concept, involves training a neural
network as part of the validation process. (Jia et al.,
2021). While existing approaches already create neu-
ral network model side products (Liu et al., 2021), our
work enhances these concepts by incorporating BNNs
which are more resource efficient (Mani et al., 2022).

The challenges and potential solutions in
blockchain scalability have been highlighted, empha-
sizing the need for new approaches (Xie et al., 2019).
BNNs can contribute to blockchain scalability and
can be customized for various applications. Their
ability to train on low-cost devices like Raspberry Pi
provides further flexibility (Wang et al., 2023).

Using BNNs, which are trainable on inexpensive
devices and operable on low-cost FPGAs, could re-
duce financial barriers to blockchain adoption (Beck
et al., 2016) . Despite their lower accuracy, iterative
improvements and FPGA devices can enhance valida-
tion efficiency and overall performance.

3 PROBLEM STATEMENT AND
RESEARCH QUESTIONS

Blockchain technology has revolutionized the way
transactions are processed and validated, providing
a decentralized and secure framework for various
applications. However, the traditional consensus
mechanisms used in blockchain networks, such as
PoW (Satoshi, 2008), suffer from several limitations.
These include high computational complexity, en-
ergy consumption, and scalability issues, which might
stale the widespread adoption and sustainability of
blockchain technology (Beck et al., 2016).

The PoW consensus mechanism requires nodes
to solve complex mathematical puzzles to validate
transactions and create new blocks, leading to signifi-
cant computational overhead and energy consumption
(O’Dwyer and Malone, 2014). As the blockchain net-
work grows, the computational requirements for PoW
increase, resulting in longer transaction confirmation
times and limited scalability (Croman et al., 2016).
Moreover, the high energy consumption associated
with PoW has raised concerns about the environmen-
tal impact of blockchain technology (de Vries, 2018).

To tackle existing challenges in blockchain con-
sensus mechanisms, BNNs offer an efficient solu-
tion due to their lower computational complexity and
memory needs compared to traditional neural net-
works (Courbariaux and Bengio, 2016). Integrating
BNNs into a PoL consensus mechanism could address
the shortcomings of PoW, enabling more scalable and
energy-efficient transaction validation.

This paper discusses a framework for repurpos-
ing blockchains’ processing power. We assume the
reader is familiar with basic concepts related to neu-
ral networks and blockchains. We focus only on the
methodology of generating useful artifacts for the real
world and providing the key to linking blocks in the
blockchain as a full solution would require larger doc-
umentation.

However, the application of BNNs in the con-
text of blockchain consensus mechanisms is still in
its early stages, and several research questions need
to be addressed to fully realize the potential of this
approach. The following research questions guided
the investigation into the application of BNNs for
blockchain transaction validation:
RQ1. How can BNNs be effectively integrated into

the blockchain consensus mechanism to enable
efficient and secure transaction validation?

RQ2. What are the optimal architectures and train-
ing strategies for BNNs in the context of
blockchain transaction validation?

RQ3. Can the proposed approach maintain the possi-
bility of increasing the difficulty of generating
new blocks?

RQ4. What is the bandwidth consumption while also
encoding neural networks in the blockchain?

RQ5. What is the throughput of the chain, when
compared to a highly used blockchain?

By addressing these research questions, this study
aims to provide a comprehensive understanding of
BNNs application in blockchain transaction valida-
tion and contribute to the development of efficient,
scalable, and sustainable consensus mechanisms for
blockchain networks.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

412



4 METHODOLOGY

Our proposed modification to the traditional POW
framework involves two main algorithm steps: the
validation step and conflict resolution with other
nodes. They can include BNNs in the workflow to
have models as a side product, but we also need to
change what data a block contains.

A blockchain has the properties of being a contin-
uous flow of blocks that are linked together. In our im-
plementation, this single feature will not be enough;
we must have two main features to trace other blocks.
One is the previous block (previous_hash), and the
second is a block mined in the past that uses the
same BNN model as in the current block. This is
done by including the hash of the previous block
(previous_model_hash) in the current block to in-
dicate the continuity.

These fields are essential for the blockchain’s
operation, maintaining integrity, and facilitating ad-
vanced features like machine learning integration.
Further details on the computation and utilization of
these fields will be discussed in subsequent sections.
Additionally, constants defining each miner node’s
parameters are updated throughout the blockchain’s
lifecycle to ensure fair model distribution and mining
difficulty.

In the following sections we are going to pro-
vide further information about the purpose and role
of these constants.

4.1 Tracking Model Differences

Model shape-related differences are crucial in deter-
mining when to generate new model shapes, assessing
the number of weights per layer, connection types,
and total layers. While adding a single neuron to a
new model and reusing weights from a previous gen-
eration might seem efficient to avoid recomputation, it
could risk the blockchain’s integrity. Ensuring signif-
icant model differences is essential to prevent reusing
neuron weights across model families.

Another metric, the values associated with the
model’s weights and biases, also plays a critical role.
Modifying a single layer by reusing values from a pre-
vious model might improve accuracy, but to prevent
cyclical changes and ensure model integrity, it’s nec-
essary to track modifications. Assigning additional
values to each binary weight to indicate if both pos-
sible values (-1 and 1) have been used can help com-
pare model generations and enforce a minimum dif-
ference threshold. This ensures that any new model
with improved accuracy results from genuine compu-
tation rather than superficial changes.

These metrics also regulate blockchain difficulty,
adapting to hardware advancements or increased net-
work participation. By enforcing dataset and model
size constraints, and ensuring significant differences
between models, the blockchain maintains its stabil-
ity and security.

4.2 Training with Evolutive Algorithms

BNNs, with their two-value quantized neuron
weights, are designed for simplicity and reduced com-
putational demands, making them ideal for resource-
limited settings. However, this quantization can lead
to overfitting and reduced accuracy. To counteract
this, we employ evolutionary algorithms to optimize
BNNs by evolving multiple generations of models,
enhancing their accuracy and generalizability.

BNNs can be trained initially using conventional
backpropagation methods. This process forms the ini-
tial population of models. However, to enhance the
accuracy and generalizability of the models, we use
evolutive algorithms that iteratively refine the popu-
lation. Evolutive algorithms are particularly useful in
mitigating overfitting, as they can explore a broader
range of model configurations and select the best-
performing ones. The core principles of evolutive al-
gorithms include crossover and mutation. These con-
cepts are implemented to generate new models from
the existing population. Crossover involves select-
ing a percentage of weights from each layer of two
parent models and interchanging them to create new
offspring models. This process allows the combi-
nation of features from different models, potentially
leading to better performance. The percentage of
weights selected for crossover is defined by the vari-
able population_cross_percent. Nodes across the
network use this variable to determine the proportion
of weights to be exchanged between models.

Mutation introduces variability by randomly al-
tering a percentage of weights within a model.
This helps maintain diversity in the population
and prevents premature convergence to subopti-
mal solutions. The percentage of weights sub-
ject to mutation is controlled by the variable
population_mutate_percent. This ensures that
each model undergoes a predefined level of mutation,
fostering exploration of the solution space.

We also apply evolutive algorithms over gener-
ating the shape of models. It is similar in imple-
mentation to the previous algorithm, but besides the
crossover and mutation percentages, we use an ad-
ditional variables to manage the generation of new
models. It defines the maximum number of neu-
ron connections a model can have. This constraint

Proof of Learning Applied to Binary Neural Networks

413



Figure 1: Proposed block creation flow.

is vital for maintaining a manageable model size
and computational feasibility. A predefined variable,
max_connection_count, sets the upper limit on the
number of connections in a model, ensuring that mod-
els remain within reasonable complexity limits.

When a model becomes overfitted, it may per-
form well on the training data but poorly on unseen
data, leading to a loss of accuracy. Evolutive algo-
rithms address this issue by generating and evaluating
multiple iterations of models. Through crossover and
mutation, the algorithm explores various configura-
tions, identifying models with better generalizability
and improved accuracy.

This optimization helps prevent overfitting by
producing models that perform well on unseen
data, though it requires substantial computational re-
sources. The distributed nature of blockchain al-
lows these resources to be shared across miner nodes,
spreading the computational load.

4.3 Electing a Model to Train

In blockchain contexts involving BNNs, it’s crucial to
establish rules for training and integrating these net-
works into blocks incrementally, ensuring continuous
availability of diverse models for efficient computa-
tion across globally linked miner nodes (Fiszelew A.
and R, 2003). The process begins when an end user
uploads a dataset, which is then distributed among
nodes, allowing miners to train and validate new mod-
els based on these datasets.

As fresh datasets are introduced, new neural net-
work models are generated using evolutionary algo-
rithms, which select and train novel model shapes not
yet present in the blockchain. This process is regu-
lated by a min_families constant, determining the
number of model variations allowed in the network.
Following this, models may also be trained using con-
ventional backpropagation, with network-wide con-
stants min_population and min_family_acc set-
ting thresholds for the number and minimum accuracy
of these models. All models must exhibit sufficient
differences, tracked by min_family_diff.

Further optimization of these models is achieved
through evolutionary algorithms, using the best mod-

els from each family as a base for generating new it-
erations. Acceptance of new models into the network
is contingent on meeting min_population_acc and
min_population_diff criteria, ensuring that only
the most effective models are retained and built upon.

Figure 1 illustrates how generations are con-
structed on the blockchain.

4.4 Block Placement

In the previous subsection, we defined how models
can be generated to satisfy the requirement of contin-
uous mining operations. Every block will be placed
in a predefined order. With many data sources, some
models might be easier to compute than others. There
is a need to ensure fairness in the distribution of the
models to ensure that no dataset has an unfair advan-
tage and ends up with many trained models while an-
other one won’t have none.

We could state that with the structure of a block
pointing to a previous family member of a model
while also pointing to the previous block, we could si-
multaneously generate multiple blockchains, but that
is not desired as there could be too many chains
to keep track of. There is a need for a scheduling
mechanism that will prioritize the model generations
based on how many models they already have in the
blockchain.

The counter inside the Model type named
model_count will provide information about the
number of models inside of families. It will be incre-
mented when a new model is added. The arrangement
of the blocks will depend on this counter to be equal
relative to the date when a dataset was added. In case
there is a dataset with two families at the 5th genera-
tion on the blockchain and a new dataset is added, this
would mean that the first two families will have in the
counter 5, and the newly generated family from the
new dataset will have 1 on the counter. For the next
generation, all of the families will need to be present,
with the increased counters being 6, 6, and 2.

The variable max_family_generations will
track the number of models inside a family and limit
the number of models available. When the maximum
is reached, a new model schema will be generated

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

414



with a new family, prioritizing datasets with fewer
families.

4.5 Block Validation

Block validation is crucial in blockchain consensus
mechanisms, ensuring network integrity and secu-
rity, especially when integrating BNNs. This process
tracks and reviews all previous models and changes,
bolstering the network against attacks and manipula-
tions.

Validation begins by checking a proposed block
and its model against predefined criteria, such as suf-
ficient computational changes from previous models
to deter superficial or reused modifications. This
includes verifying the integrity of model weights
and biases, ensuring all changes are legitimate,
and preventing cyclical value changes by track-
ing historical modifications to each weight. The
min_population_diff variable is utilized to con-
firm these necessary differences.

Accuracy validation is also critical, guided by the
min_population_acc variable, which sets the min-
imum accuracy threshold for model acceptance. If
a model’s evaluated accuracy meets or exceeds this
threshold, the block is validated, ensuring only gen-
uinely improved models are added to the blockchain.

The distribution of min_population_acc and
min_population_diff among miners standardizes
validation criteria across the network, enhancing de-
centralized security. Additional checks validate the
block against established constraints for model fam-
ilies, populations, and generations, ensuring consis-
tency with previous blocks.

Block validation also includes transaction verifi-
cation, ensuring all transactions within a block are
authentic, not duplicated, and comply with network
rules. This encompasses checking transaction sig-
natures, sender balances, and adherence to network
constraints. Overall, block validation is central to
maintaining the decentralization and trustlessness of
the blockchain network, allowing each node to inde-
pendently validate blocks and models without a cen-
tral authority, preserving network integrity and im-
mutability.

4.6 Conflict Resolution

In blockchain networks, conflicts can occur when
multiple nodes simultaneously accept different
blocks. To maintain network integrity and consis-
tency, and to avoid forks, effective conflict resolution
mechanisms are essential.

Blockchain protocols typically employ the

“longest chain rule” to resolve conflicts, where
nodes preferentially extend the chain with the most
accumulated blocks, assuming it represents the most
work done (PoW). However, in complex systems, es-
pecially those using BNNs for transaction validation,
additional strategies may be necessary:

• Block Propagation and Delay Mechanisms:
Nodes aim to rapidly propagate new blocks across
the network. Implementing slight delays before a
block is added can allow time for resolving any
emerging conflicts.

• Block Propagation and Delay Mechanisms:
Nodes aim to rapidly propagate new blocks across
the network. Implementing slight delays before a
block is added can allow time for resolving any
emerging conflicts.

• Penalization and Incentives: To encourage nodes
to contribute positively to network stability, those
causing conflicts may face penalties, whereas
those aiding in conflict resolution could receive
incentives.

• Local Block Consensus (LBC): Nodes achieve a
localized consensus on the blockchain’s state be-
fore broad propagation, reducing the likelihood of
conflicts by aligning nodes’ perspectives.

These strategies help blockchain networks effi-
ciently manage conflicts, ensuring a unified, consis-
tent blockchain version and maintaining the trust, se-
curity, and reliability of the system, particularly in ad-
vanced setups like those incorporating BNNs.

4.7 General Users

To better understand the operation of the proposed
blockchain system, we identify three primary actors:
end users, model trainers, and miners. End users per-
form peer-to-peer currency transactions, model train-
ers use the network’s processing power to train BNN
models in exchange for blockchain coins, and miners
maintain network functionality by hosting nodes and
validating blocks, earning rewards for their contribu-
tions.

The process begins when a user uploads a dataset
or initiates a transaction. This dataset is used to gen-
erate models that help create blockchain blocks. Al-
though blocks are secured via hashing to prevent data
alteration, the byproducts that are pre-trained BNN
models, are publicly available and useful.

We retain many concepts from traditional PoW
blockchains but modify the validation and block gen-
eration steps to repurpose the blockchain’s processing
power for producing meaningful, real-world applica-
ble products. This includes enhancements to the con-

Proof of Learning Applied to Binary Neural Networks

415



sensus mechanism, although a detailed exploration of
these improvements is beyond the scope of this sum-
mary.

5 RESULTS AND DISCUSSION

In this section, we present the results from several test
scenarios designed to evaluate the performance of our
proposed blockchain system integrating BNNs. The
tests focus on network communication speed, min-
ing efficiency across different difficulty levels, con-
flict resolution speed, and the relationship between
difficulty and transaction handling capacity.

To facilitate the testing of the proposed approach,
we developed a small application written in Python
that serves as a base. It implements the base API
requests required for a miner node and can train
and evaluate models using the previously mentioned
methodology. To facilitate the communication be-
tween nodes, the simplist Flusk framework was used
implementing a few endpoints.

When enough transactions are received by the
nodes, the mining is automatically triggered, gener-
ating a new model family. In our implementation, we
used Larq to simulate the training and usage of BNNs.
It provides a wrapper over Tensorflow and can visual-
ize and store models in their binary format.

We also implemented the evolutive algorithms to
generate model schemas and new generations for the
same family using the tflite file format provided by
the Larq framework.

The following tests and results are carried out
on a simple dockerized framework where multiple
nodes were spanned to simulate how a real-world
blockchain would work using the MNIST dataset (Le-
cun, 1998). The purpose is to validate the feasibility
of the approach; real world tests might need to take
into consideration a higher latency due to having dif-
ferent types of network providers with different net-
work speed and specs in play.

5.1 Network Communication Speed

The first test case assesses the speed of network com-
munications from node to node when transmitting
new blocks. In these tests, no transaction content
was used to provide insight into the requirements
of the blockchain network. We measured the aver-
age latency and bandwidth usage across local net-
work configurations using convolutional neural net-
work (CNN) models with three convolutional layers
and multiple parameter configurations. The models
were encoded to use the optimized binary tflite

(optimized TensorFlow file format) version. The re-
sults are summarized in Table 1.

Table 1: Network Communication Speeds.

Configuration Bandwidth Usage
(KB/block)

BNN 4,4K params 1.41
BNN 93.6K params 26.38
BNN 1.17M params 304.26

It can be seen that as the number of BNN param-
eters increases, the network bandwidth usage also in-
creases. Our approach simply involves storing the
resulting model directly on the block therefore the
bandwidth is directly correlated to the size of the
model. Compared to the memory footprint of other
neural network models, ours is measured in kilobytes,
while other models with a similar number of parame-
ters typically start at a few megabytes (Pisarchyk and
Lee, 2020). This means that when blocks are trans-
mitted between nodes, the required bandwidth is re-
duced by using BNNs, allowing more space for trans-
actions. Based on the research of (Singh and Vard-
han, 2020), the optimal block size is 255 kilobytes, so
models with only 100k parameters can easily fit onto
blocks without taking up even one fifth of the space
allocated for transactions resulting in more than 150
transactions to be stored along it.

5.2 Mining Efficiency at Different
Difficulty Levels

The second test case examines the speed of mining
a new block at varying difficulty levels. The diffi-
culty level affects the computational effort required
to mine a block, impacting the overall efficiency of
the blockchain. We tested three difficulty levels: low,
medium, and high, recording the average time taken
to mine a block at each level.

Our test implementation keeps track of the men-
tioned minimum difference and accuracy variables
when comparing previous models. For this test, we
used a laptop with an M1 Pro processor. We trained
five models with normal backpropagation, and after-
ward, the other models were optimized only with the
evolutive algorithm. We used a multithreading of 8
threads, 10 models as population, mutation probabil-
ity of 0.05 for 10 percent of the model schema, and
cross probability of 10 percent. The MINST Hand-
written digits dataset was used, and the model family
we used had 4,440 parameters. For the accuracy eval-
uation of the new models, we used the non-quantified
model instead of the binary file version, as the test
script was written in Python. Our aim for this test is
to showcase that the difficulty can be increased.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

416



The difficulty was given by the difference and ac-
curacy factors compared to previous generations. The
results are shown in Table 3.

Table 2: Mining Efficiency at Different Difficulty Levels.

Difficulty Average Time
Level to Mine (seconds)

Low (diff +0.5%, acc +1%) 106.39
Medium (diff +1%, acc +2%) 433.08
High (diff +1.3%, acc +5%) 1737.16

As expected, higher difficulty levels significantly
increase the time required to mine a block. These re-
sults highlight the need for a balanced difficulty ad-
justment mechanism to maintain a steady block gen-
eration rate, which is crucial for network stability.

These test scenarios provide an understanding
of the performance characteristics of our proposed
blockchain system. Future work will involve fur-
ther optimization and empirical testing to refine these
mechanisms and ensure their robustness in real-world
applications.

Our approach offers more flexibility in setting
block mining difficulty and, consequently, the time re-
quired to mine a block. This becomes evident when
compared to Bitcoin’s average block mining time of
10 minutes (Mariem et al., 2020) and Ethereum’s
12.05 seconds (Rouhani and Deters, 2017). It’s
worth noting that Ethereum, being a Proof of Stake
blockchain, naturally operates faster than traditional
blockchains, which rely on computational power to
create blocks. Our method allows for customizable
difficulty settings, potentially bridging the gap be-
tween these different blockchain types.

5.3 Comparative Analysis

One key metric to consider is throughput, which al-
lows for comparison with other blockchains and their
performance. It provides information about the num-
ber of requests that can be processed within a specific
time-frame. Previous research (Schäffer et al., 2019)
has dived deeper into a few methodologies that pro-
vide meaningful comparison values for blockchains.

Obviously, quite a few values need to be taken into
consideration when trying to benchmark blockchains.
One of them is the difficulty, which aims to increase
the processing time required to mine a new block.
Its value is increased or decreased based on the total
available processing power of the network to ensure
the security of the chain.

To provide a meaningful comparison, we illustrate
in Table 3 the throughput of the Ethereum blockchain
and ours. In the tests, we used docker containers con-
taining one worker node. Afterward, we sent 300

transactions to them, and we waited to see what time
was required to compute each block. The test was run
on a MacBook Pro with an M1 Pro CPU. Benchmark-
ing for the Ethereum chain was done via go-ethereum
and Caliper (cal, 2021). For both chains, the number
of transactions configured to be stored in each block
is set to 146, which is the default value for Geth.

Table 3: Local Blockchain Throughput at Different Diffi-
culty Levels.

Local Blockchain Type Difficulty Avg. Throughput (TPS)
BNN Chain PoL Low 1.47
BNN Chain PoL Medium 0.43

Ethereum (GEth) PoA Auto 26.30
Ethereum (GEth) PoW Auto 12.70

It can be seen from the table that our blockchain
has a lower throughput for the previously mentioned
difficulty configurations. It can support less transac-
tions in a single node configuration when compared to
Ethereum. The difficulty can be set to be even smaller
than in our “Low” configuration, although it would
not make sense as checking the accuracy increase can
occur too randomly.

According to (Fan et al., 2020), the throughput of
a blockchain improves with the utilization of multiple
nodes, a principle that holds true for our chain as well,
since blocks can be mined concurrently. In summary,
this implementation is intended to leverage significant
computational power, making its advantage of having
usable BNNs after mining each block more apparent
when deployed on a large scale rather than for indi-
vidual use, as demonstrated in the tests.

6 CONCLUSIONS AND FUTURE
WORK

In conclusion, our approach presents a viable method
for generating neural network models as a byproduct
of encoding blocks within a blockchain. The inte-
gration of BNNs into the blockchain framework not
only enhances transaction validation but also offers a
novel way to utilize computational resources more ef-
ficiently.

Our experimental results demonstrate that the
proposed system can handle various aspects of
blockchain operations, such as network communica-
tion, block mining, and transaction throughput, effec-
tively. These findings indicate the potential of our
approach to improve the scalability and efficiency of
blockchain networks while simultaneously generating
valuable machine learning models.

Our approach addressed RQ1 by integrating BNN
training into block generation, storing lightweight

Proof of Learning Applied to Binary Neural Networks

417



models on the block, and linking to previous models
and blocks for consistency. Validation steps ensure
miners meet required accuracy and model differences,
confirming computational effort.

For RQ2, evolutionary algorithms emerged as op-
timal for training BNNs, preventing overfitting and
avoiding local minima. These algorithms also aid in
shaping models, increasing diversity and suitability
for specific datasets.

Regarding RQ3, our tests indicate that altering
miner constants to define minimum model differences
and accuracy can increase the computational diffi-
culty of generating new blocks. While BNNs store
binary weight values to save bandwidth, our findings
for RQ4 show that blocks with empty transactions use
less than 1MB of bandwidth.

Lastly, for RQ5, although our system demon-
strates lower throughput compared to Ethereum, it
still efficiently handles a significant number of trans-
actions. This makes it suitable for large-scale appli-
cations, despite longer block creation times.

Future research should explore several avenues
to deepen understanding. While our experiments
used controlled, dockerized environments, assess-
ing model performance in real-world blockchain net-
works is crucial for a realistic evaluation of resilience
and applicability. Additionally, the concept of dis-
tributed model training, where mining pools collab-
oratively train different model segments, could en-
hance creation efficiency and leverage blockchain’s
decentralized nature.

Extending our approach to larger-scale blockchain
networks would also be an important step. This in-
volves ensuring that the system can handle increased
transaction volumes and more extensive network par-
ticipation without compromising performance. By
addressing these future directions, we plan to enhance
the practical utility and scalability of our approach,
making it a valuable contribution to the intersection
of blockchain technology and machine learning.

REFERENCES

(2021). Hyperledger caliper [online]. Available:
https://hyperledger.github.io/caliper/.

Beck, R., Czepluch, J. S., et al. (2016). Blockchain - the
Gateway to Trust-Free Cryptographic Transactions. In
ECIS, page Research Paper 153.

Courbariaux, M. and Bengio, Y. (2016). Binarynet: Train-
ing deep neural networks with weights and activations
constrained to +1 or -1. CoRR, abs/1602.02830.

Croman, K. et al. (2016). On Scaling Decentralized
Blockchains - (A Position Paper). In FC 2016, vol-
ume 9604 of LNCS, pages 106–125. Springer.

de Vries, A. (2018). Bitcoin’s Growing Energy Problem.
Joule, 2:801–805.

Fan, C., Ghaemi, S., Khazaei, H., and Musilek, P. (2020).
Performance evaluation of blockchain systems: A sys-
tematic survey. IEEE Access, 8:126927–126950.

Fiszelew A., Britos P. V., P. G. and R, G.-M. (2003).
Automatic generation of neural networks. Revista
Eletrônica de Sistemas de Informação, 2:1–6.

Gervais, A. et al. (2016). On the Security and Performance
of Proof of Work Blockchains. In CCS 2016, page
3–16.

Huang, M.-H. and Rust, R. T. (2018). Artificial intelligence
in service. Journal of Service Research, 21(2):155–
172.

Jarrahi, M. H. (2018). Artificial intelligence and the future
of work: Human-ai symbiosis in organizational deci-
sion making. Business Horizons, 61(4):577–586.

Jia, H., Yaghini, M., et al. (2021). Proof-of-Learning: Def-
initions and Practice. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1039–1056.

Lecun, Y. (1998). The MNIST database of handwritten dig-
its. http://yann.lecun.com/exdb/mnist/.

Lin, X., Zhao, C., and Pan, W. (2017). Towards ac-
curate binary convolutional neural network. CoRR,
abs/1711.11294.

Liu, Y. et al. (2021). Proof of Learning (PoLe): Empow-
ering neural network training with consensus building
on blockchains. Computer Networks, 201:108594.

Mani, V. et al. (2022). Performance comparison of CNN,
QNN and BNN deep neural networks for real-time
object detection using ZYNQ FPGA node. Microelec-
tronics Journal, 119:105319.

Mariem, S. B., Casas, P., et al. (2020). All that Glitters is
not Bitcoin – Unveiling the Centralized Nature of the
BTC (IP) Network. In NOMS 2020, pages 1–9.

Micali, S., Rabin, M., and Vadhan, S. (1999). Verifiable
random functions. In FOCS’99, pages 120–130.

O’Dwyer, K. J. and Malone, D. (2014). Bitcoin mining and
its energy footprint. In ISSC 2014/CIICT 2014), pages
280–285.

Pisarchyk, Y. and Lee, J. (2020). Efficient memory man-
agement for deep neural net inference.

Rouhani, S. and Deters, R. (2017). Performance analysis
of ethereum transactions in private blockchain. In IC-
SESS 2017, pages 70–74.

Satoshi, N. (2008). Bitcoin: A peer-to-peer electronic cash
system.

Schäffer, M. et al. (2019). Performance and scalability of
private ethereum blockchains. In BPM 2019, pages
103–118. Springer.

Singh, N. and Vardhan, M. (2020). Computing opti-
mal block size for blockchain based applications with
contradictory objectives. Procedia Computer Sci-
ence, 171:1389–1398. Third International Conference
on Computing and Network Communications (Co-
CoNet’19).

Wang, E., Davis, J. J., et al. (2023). Enabling Binary Neural
Network Training on the Edge. ACM Trans. Embed.
Comput. Syst., 22(6).

Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., and Liu, Y.
(2019). A survey on the scalability of blockchain sys-
tems. IEEE Network, 33(5):166–173.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

418


