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Abstract: This research presents a machine learning-based context-driven collaborative filtering approach with three
steps: contextual clustering, weighted similarity assessment, and collaborative filtering. User data is clustered
across 3 aspects, and similarity scores are calculated, dynamically weighted, and aggregated into a normalized
User-User similarity matrix. Collaborative filtering is then applied to generate contextual recommendations.
Experiments on the LDOS-CoMoDa dataset demonstrated good performance, with RMSE and MAE rates of
0.5774 and 0.3333 respectively, outperforming reference approaches.

1 INTRODUCTION

Recommender systems are intelligent systems that
suggest items or services likely to interest users and
facilitate their choices (Latrech et al., 2024). Tra-
ditionally, these systems are based on two key fac-
tors: users and items. Context-Aware Recommender
Systems (CARS) emerged to enrich the traditional
recommendation process with the context in which
the user makes choices (Adomavicius and Tuzhilin,
2010). Unlike traditional approaches, CARS add a
third essential component, context. However, while
this development marks a significant advance, it
presents an essential limitation. Indeed, CARS con-
sider context as an additional information, used to re-
fine recommendations and imply that a user’s pref-
erences are static (Pagano et al., 2016). From this
perspective, the importance of Context-Driven Rec-
ommendation Systems (CDRS) emerges. Context-
driven recommenders drive the recommendation pro-
cess based on the contextual situation in which the
user intends to consume the products. They con-
sider that user preferences are dynamic and constantly
shifting depending on various contexts and provide
more relevant and dynamic responses (Pagano et al.,
2016). In line with this perspective, we propose a
new model that can adapt to fluctuations in users
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preferences. Our approach is a machine learning-
based context-driven collaborative filtering, struc-
tured in three main stages: contextual user clustering,
weighted contextual similarity assessment and con-
textual similarity-based collaborative filtering. The
system segments user data into three contextual as-
pects: emotional, demographic, and temporal, gener-
ating probability distributions for each user’s mem-
bership to clusters within these aspects. It calcu-
lates three similarity scores using Jensen-Shannon
divergence, dynamically weighting them to reflect
the importance of each aspect in user preferences
and aggregating them to compute global similarity
scores. These scores are used to build and normal-
ize a User-User weighted similarity matrix for con-
textual similarity-based collaborative filtering, identi-
fying the K closest neighbors for each user. Finally,
the system predicts ratings for unrated items based on
neighbors’ ratings and provides contextually driven
recommendations. Experiments on LDOS-CoMoDa
dataset showed our model’s robustness to capture con-
textual dynamics, achieving RMSE and MAE rates
of 0.5774 and 0.3333 respectively, and outperforming
benchmark approaches to deliver relevant recommen-
dations.

The remainder of the paper is structured as fol-
lows: Section 2 presents related works. Section 3 de-
scribes our recommendation model in details. Section
4 presents the experimental protocol, while Section 5
concludes and proposes perspectives for future work.
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2 RELATED WORKS

The integration of machine learning in our approach
aligns with advancements in recommender systems,
addressing the complexity of contextual data. In
this section, we examine several recommendation ap-
proaches based on machine learning technologies to
deliver accurate recommendations. For instance, in
this work (Karatzoglou et al., 2010), the authors pro-
posed a collaborative filtering approach based on ten-
sor factorization, which is an extension of traditional
matrix factorization. This method models data as
a multidimensional tensor (user-item-context) rather
than a two-dimensional user-item matrix. The model
introduces various types of context as additional di-
mensions in the data representation.

In this article (Said et al., 2011), the authors pre-
sented the concept of Contextual inferred User Pro-
files (CUP), which enriches the classical definition of
a user profile to include the specifics of a user in a
particular context. Instead of using a global profile
for each user, the system uses two distinct contextual
profiles, only one of which is used to formulate rec-
ommendations.

In this work (Karabila et al., 2023), the authors de-
veloped a new recommendation system that exploits
the strength of ensemble learning, and combines sen-
timent analysis from textual data with collaborative
filtering techniques, to offer more personalized and
accurate recommendations to users.

Although the various machine learning-based rec-
ommendation approaches reviewed in this state-of-
the-art section have produced innovations and ad-
vanced results, none of them addresses our specific
approach. Our system differs from others in that
it combines machine learning technologies with a
method to calculate divergence between probability
distributions, and enables multi-aspect analysis of
contextual data. This integration offers a unique way
to capture complex variations linked to context, op-
timizing the accuracy and relevance of recommenda-
tions.

3 APPROACH OVERVIEW

The proposed model is articulated around 3 stages,
namely: (1) Users contextual clustering stage, (2)
Weighted contextual similarity assessment stage and
(3) Contextual similarity-based collaborative filtering
stage. Figure 1 presents an overview of the proposed
model.

3.1 Users Contextual Clustering Stage

In this phase our model groups users into 3 distinct
contextual aspects: demographic, emotional and tem-
poral. These aspects enable to segment users more
finely, where each user is associated with groups
reflecting the contextual influences that can mod-
ify his choices. This stage uses clustering algo-
rithms specific to each aspect. For each user, the
system calculates a probability distribution for in-
clusion in each cluster for each aspects. This dis-
tribution is determined via the results of the clus-
tering algorithms. For each contextual aspect i ∈
{demographic,emotional, temporal} the system as-
signs to the user u a vector of probability of member-
ship Pu,i = [p1

u,i, p2
u,i, . . . , pK

u,i], where K is the number
of clusters relative to aspect i and pK

u,i is the probabil-
ity that user u belongs to cluster K of aspect i. Al-
gorithm 1 details the users contextual clustering stage
steps.

Data: Users’ data, contextual aspects
Result: Users’ probabilities distribution
Initialize i = 0;
Initialize contextual aspects =
[demographic,emotional, temporal];

while i < size(contextual aspects) do
Train correspondent clustering algorithm;
Identify the number of clusters K;
Initialize u = 0;
while u < number o f users do

Predict Pu,contextual aspects[i] =

[p1
u,contextual aspects[i],

p2
u,contextual aspects[i], . . . ,

pK
u,contextual aspects[i]] for user u;

Increment u by 1;
end
Increment i by 1;

end
Return users’ probabilities distribution.

Algorithm 1: Users contextual clustering stage.

3.2 Weighted Contextual Similarity
Assessment Stage

In this stage of the model, for each contextual as-
pect and for each pair of users, the system cal-
culates a measure of similarity between probabil-
ity distributions using the Jensen-Shannon divergence
method (Lin, 1991). The latter measures the simi-
larity between two probability distributions based on
the Kullback-Leibler distance (Kullback and Leibler,
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Figure 1: An overview of the proposed model architecture.

1951), but symmetrical and more stable. The Jensen-
Shannon divergence between two probability distri-
butions P and Q is defined as shown by Formula 1.

JS(P,Q) =
1
2

KL(P ∥ M)+
1
2

KL(Q ∥ M) (1)

Where JS(P,Q) denotes the distance between two
probability distributions P and Q. The M = 1

2 (P+
Q) is the mean distribution, and KL(P ∥ Q) is the
Kullback-Leibler divergence (Kullback and Leibler,
1951). The similarity for a contextual aspect i be-
tween two users u and v is defined as denoted by For-
mula 2:

Simi(u,v) = 1− JS(Pu,i,Pv,i) (2)

Where Simi(u,v) designates the similarity score be-
tween user u and user v for the aspect i. JS(Pu,i,Pv,i)
is the Jensen-Shannon distance between the cluster
membership probability distributions of u and v for
aspect i.

We applied dynamic weighting to the similarity
scores for each contextual aspect (demographic, emo-
tional, temporal), based on their relative importance
for each user. This approach assigns higher weights
to the most influential aspects for user preferences, as
defined by Formula 3.

wi(u,v) =
1

|simi(u,v)−µ|+ε

∑ j∈{demo,emo,tempo}
1

|sim j(u,v)−µ|+ε

(3)

Where wi(u,v) is the weight relative to aspect i for the
pair of users u and v, sim j(u,v) is the similarity corre-
sponding to the aspect j for the same pair of users, µ

denotes the average of the three similarity scores and
ε is a small constant to avoid division by zero.

The global similarity score between u and v is sub-
sequently computed based on dynamic weights and as
expressed by Formula 4.

Simglobal(u,v) = ∑
j∈{demo,emo,tempo}

w j(u,v) · sim j(u,v)

(4)
Where Simglobal(u,v) represents the global similarity
between user u and user v.w j(u,v) denotes the weight
assigned to the aspect j for the user pair u and v, and
sim j(u,v) corresponds to the similarity related to the
same aspect j for the same pair of users.

The User-User weighted similarity matrix is gen-
erated from these global similarity scores between
each pair of users. The system at the end applies a
normalization to the User-User weighted similarity
matrix to build the normalized User-User weighted
similarity matrix which ensures that similarities are
on a uniform scale and consistent across users. Al-
gorithm 2 describes the successive steps required to
build the normalized User-User weighted similarity
matrix.

3.3 Similarity Based Collaborative
Filtering

To recommend items to user u, the system first uses
the K-Nearest Neighbors (KNN) to identify his K
most similar users based on the normalized User-
User similarity. Then, it uses the ratings of the
K-Neighbors to estimate the relevance of items to the
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Data: Users probabilities distribution
Result: Normalized User-User weighted

similarity matrix
Initialize User-User weighted similarity

matrix;
Initialize i = 0;
Initialize

contextual aspects = [demo, tempo,emo];
Initialize number o f users;
while i < size(contextual aspects) do

Initialize u = 0;
while u < number o f users do

Initialize v = u+1;
while v < number o f users do

Calculate simi(u,v);
Add simcontextual aspects[i](u,v) to

contextual aspects[i] user-user
similarity matrix;

Increment v by 1;
end
Increment u by 1 ;

end
Increment i by 1;

end
Initialize u = 0;
while u < number o f users do

Initialize v = u+1;
while v < number o f users do

Initialize i = 0;
while i < size(contextual aspects) do

Calculate weight
wcontextual aspects[i](u,v);

Add Simglobal(u,v) to
contextual aspects[i] user-user
weighted similarity matrix;

Increment i by 1;
end
Compute Simglobal(u,v);
Increment v by 1;

end
Increment u by 1;

end
Normalize User-User weighted similarity

matrix;
Return normalized User-User weighted

similarity matrix.
Algorithm 2: Weighted contextual similarity assessment
stage.

target user u. It collects the ratings of u’s K Neigh-
bors for each item j that user u has not yet evaluated
and computes an estimation score r̂u, j based on these
ratings as expressed by Formula 5.

r̂u, j =
∑v∈Neighbors(u)

(
Simglobal(u,v) · rv, j

)
∑v∈Neighbors(u)

(
Simglobal(u,v)

) (5)

Where ru, j denotes the predicted rating of the item j
for the user u, rv, j is the rating of item j by neigh-
boring user v, Neighbors(u) is the identified set of
K most similar users and Sim(u,v) is the similarity
between u and v extracted from the similarity ma-
trix. This estimate gives greater weight to user ratings
more similar to user u and reflects contextual influ-
ence.

Once the predicted scores are calculated for the
items that user u has not yet rated, the system sorts
these unseen items by their scores r̂u, j in descending
order, then recommends the N highest-rated items to
user u. Algorithm 3 details various steps of the simi-
larity based collaborative filtering task.

Data: Users’ data, items’ data, ratings’ data,
normalized User-User similarity matrix,
K: the number of similar users

Result: Recommendations
Initialize j = 0;
Use KNN algorithm to identify the K nearest

neighbors of user u;
Identify unrated items;
while j < size(unrated items) do

Predict r̂u, j;
Increment j by 1;

end
Sort predicted ratings in descending order;
Recommend N first items.

Algorithm 3: Similarity based collaborative filtering stage

4 EXPERIMENTAL STUDY

To evaluate our recommendation system, we carried
out experiments on the LDOS-CoMoDa, LDOS Con-
text Movie Dataset (Košir et al., 2011). This dataset
includes 121 users who provided 2296 ratings for
1232 movies. It includes 13 contextual attributes:
mood, dominantEmo, endEmo, age, sex, country, lo-
cation, time, daytype, season, weather, and city.

We carried out several pre-processing steps to pre-
pare the data for integration into the clustering mod-
els. The contextual user data was divided into three
aspects: emotional, demographic and temporal. For
each aspect, categorical variables are encoded using a
LabelEncoder, which converts textual values into nu-
merical values. Next, all features are standardized us-
ing StandardScaler, which normalizes the data, giving
it a mean of 0 and a standard deviation of 1.
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4.1 Users Contextual Clustering Stage
Implementation

After several experiments, we found that the inte-
gration of features age, sex, country, and location
in the demographic aspect, combined with the use
of the MeanShift algorithm (Fukunaga and Hostetler,
1975), gave better results in terms of user segmenta-
tion. Similarly, for the emotional aspect, using the K-
Means algorithm (Lloyd, 1982) with dominantEmo,
endEmo features enabled us to capture variations in
users’ emotional states more accurately. Finally, for
the temporal aspect, the MeanShift algorithm (Fuku-
naga and Hostetler, 1975) also proved effective to
identify evolutive behaviors according to temporal
variations based on time and daytype attributes. Ta-
ble 1 presents the optimal number of clusters iden-
tified for each aspect, along with the used eval-
uation metrics Silhouette Score (Palacio-Niño and
Berzal, 2019), Calinski-Harabasz Index (Caliński and
Harabasz, 1974), and Davies-Bouldin Index (Wijaya
et al., 2021), that we used to assess the quality of the
clustering task of our model.

As detailed in Table 1 and visualized in Fig-
ures 2, 3 and 4, clustering of the demographic as-
pect, using MeanShift and 12 clusters, shows good
cohesion, with a silhouette score of 0.7119. The
low Davies-Bouldin index (0.5563) indicates well-
separated clusters, while the high Calinski-Harabasz
index (2132.8108) confirms a marked separation be-
tween clusters. This suggests that the demographic
data fall into clear clusters.

With K-Means and 7 clusters, emotional aspect
achieves the best results compared to demographic
and temporal aspects. The silhouette score of 0.7199
and the lowest Davies-Bouldin index (0.5187) indi-
cate very compact, well-separated clusters. The high
Calinski-Harabasz score (5696.8659) reinforces this
distinction. Emotional data thus lend themselves well
to clustering, offering distinct groups.

Temporal clustering, performed with MeanShift
and 8 clusters, shows moderate results compared to
emotional and demographic aspects. The silhouette
score of 0.5256 and the Calinski-Harabasz index of
1521.1331 signal weaker cohesion and separation.
However, the Davies-Bouldin index of 0.5344 indi-
cates clusters that are still distinct, albeit less marked.

These results emphasize that temporal behaviors
are more complex to segment into homogeneous
groups and that the emotional data show the most dis-
tinct and cohesive clusters, with demographic data a
close second. The temporal aspect is more difficult
to separate into well-defined clusters, which reveals a
complexity in temporal patterns.

Figure 2: Silhouette Score.

Figure 3: Davies-Bouldin Index.

Figure 4: Calinski-Harabasz Index.

4.2 Contextual Based Collaborative
Filtering Stage Implementation

To highlight the robustness and performance of
our recommendation model, we implemented cross-
validation with various values of K-Folds and K-
Neighbors. This procedure enabled us to assess the
model’s stability and accuracy by dividing the data
into several subsets for alternate training and testing
phases.

We used RMSE (Root Mean Squared Error) and
MAE (Mean Absolute Error) as metrics to measure
the accuracy of the recommendations, RMSE being
more sensitive to large errors, while MAE provides a
measure of absolute deviations (Latrech et al., 2024).

As shown in Table 2 and Figure 5, the best per-
formance for K-Folds = 5 is achieved with 5 neigh-
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Table 1: Silhouette, Calinski-Harabasz and Davies-Bouldin metrics values for demographic, emotional and temporal contex-
tual aspects.

Aspect Algorithm
Optimal

Number of
Clusters

Silhouette Score Davies-Bouldin
Index

Calinski-
Harabasz Index

Demographic MeanShift 12 0.7119 0.5563 2132.8108
Emotional K-Means 7 0.7199 0.5187 5696.8659
Temporal MeanShift 8 0.5256 0.5344 1521.1331

bors (RMSE: 0.9354, MAE: 0.6250), indicating good
accuracy. Beyond 5 neighbors, errors progressively
increase, with performance stabilizing at acceptable
rates, RMSE of 1.1438 and MAE of 0.6833, between
20 and 30 neighbors. Thus, a low number of neigh-
bors (5) offers the best accuracy for this configuration.

With K-Folds set to 10, as indicated in Table 2
and visualized in Figure 6, optimal performance is
achieved with only 3 neighbors, where the RMSE
is particularly low (0.7071) and the MAE also low
(0.5000). However, as we move to 5 neighbors, the
RMSE increases slightly to 0.8165 and the MAE to
0.6667, which remains acceptable. A further increase
in the number of neighbors (to 10) results in a mod-
erate increase in RMSE (0.8975), while MAE de-
creases slightly. At 15 neighbors, the model shows
slightly larger errors, but as it increases to 20 and then
30 neighbors, performance improves slightly, even
reaching an RMSE of 0.8137 with 30 neighbors. For
K-Folds = 10, although the best results are obtained
with a low number of neighbors (3), configurations
with 20 and 30 neighbors also produce good perfor-
mance.

As described in Table 2 and depicted in Figure 7,
when the K-Folds = 15, the algorithm’s best perfor-
mance is obtained with 15 neighbors, for which the
RMSE reaches 0.8607 and the MAE is 0.5185. With
3 and 5 neighbors, RMSE and MAE remain constant
at high values (1.0000), which reflects less favorable
performance. With 10 neighbors, the MAE decreases
to 0.6667, but the RMSE remains high, while for 20
and 30 neighbors, the RMSE and MAE increase, even
to reach a performance degradation at 30 neighbors
with an RMSE of 1.0871. In this context of K-Folds
= 15, the optimum configuration is around 15 neigh-
bors.

At K-Folds = 20, as highlighted in Table 2 and
illustrated by Figure 8, the algorithm performs opti-
mally with 10 neighbors, achieving a particularly low
RMSE of 0.5774 and a MAE of 0.3333, which makes
it the most accurate configuration. At 3 and 5 neigh-
bors, the model maintains an RMSE of 0.7071 and
a MAE of 0.5000, but the 10-neighbor configuration
performs better. Beyond 10 neighbors, RMSE and
MAE increase progressively, with values of 0.8034
for RMSE and 0.4636 for MAE at 15 neighbors. At

20 and 30 neighbors, the errors continue to increase,
with RMSE even reaching 1.0853 for 30 neighbors.
For K-Folds = 20, optimal performance is therefore
obtained with 10 neighbors, a configuration that min-
imizes prediction errors.

Figure 5: RMSE and MAE by K-Neighbors for K-Folds=5.

Figure 6: RMSE and MAE by K-Neighbors for K-
Folds=10.

Figure 7: RMSE and MAE by K-Neighbors for K-
Folds=15.

Overall, the algorithm’s performance varies sig-
nificantly as a function of K-Folds values and the
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Table 2: RMSE and MAE comparison for different values of K-Folds and K-Neighbors.

K-Folds=5 K-Folds=10 K-Folds=15 K-Folds=20
K-

Neighbors RMSE MAE RMSE MAE RMSE MAE RMSE MAE

3 1.2910 1.0000 0.7071 0.5000 1.0000 1.0000 0.7071 0.5000
5 0.9354 0.6250 0.8165 0.6667 1.0000 1.0000 0.7071 0.5000

10 1.3229 0.8333 0.8975 0.6389 1.0000 0.6667 0.5774 0.3333
15 1.3385 0.8750 1.0697 0.7693 0.8607 0.5185 0.8034 0.4636
20 1.1726 0.7083 0.8660 0.6071 1.0256 0.6074 0.8975 0.4722
30 1.1438 0.6833 0.8137 0.5509 1.0871 0.7273 1.0853 0.6778

Figure 8: RMSE and MAE by K-Neighbors for K-
Folds=20.

K-Neighbors selected for collaborative filtering task.
For lower K-Folds values (5 and 10), the algorithm
achieves optimal performance with a reduced num-
ber of neighbors (3 to 5), which minimizes both
RMSE and MAE. This indicates that a small neigh-
borhood size is sufficient for accurate predictions in
these configurations, because the model focuses more
efficiently on the closest relationships without overfit-
ting. On the other hand, for higher values of K-Folds
(15 and 20), the model performs better with an inter-
mediate number of neighbors, around 10 to 15 neigh-
bors, before the errors (RMSE and MAE) increase for
higher values of K-Neighbors. This behavior suggests
that with more detailed tests (i.e. more K-Folds), a
slightly larger set of neighbors can capture subtle vari-
ations in user preferences, while retaining good gen-
eralization.

• Baseline Methods
To highlight the performance of our model, we com-
pared it to other recommendation approaches imple-
mented on LDOS-CoMoDa dataset. Table 3 sum-
marizes the results achieved by the presented ap-
proaches.

■ KCAMF (Patil et al., 2022): In this research, the
authors proposed an innovative kernel-based loss
function to enhance matrix factorization optimiza-
tion in a non-linear projection rating space, with
optimal handling of context multiplicity.

■ CBMF (Casillo et al., 2022): In this paper, the
authors developed a contextual recommendation

system based on the concept of integrated context.
This system optimizes recommendation personal-
ization by directly incorporating relevant contex-
tual data into the recommendation generation pro-
cess.

■ Hybrid-IHSR (Unger and Tuzhilin, 2020): The
authors introduced an innovative hierarchical rep-
resentation method to capture latent contextual in-
formation, and understand users’ specific situa-
tions as they personalize recommendations. They
proposed a transformation process to structure un-
structured contextual information into hierarchi-
cal representations.

■ SVD++ (Kumar et al., 2014): This approach en-
riches the SVD++ factorization model with a so-
cial popularity factor based on implicit user feed-
back. This mechanism permits the capture of
users’ direct preferences and also the effect of an
item’s popularity within the community.

Table 3: RMSE and MAE comparison between models im-
plemented on LDOS-CoMoDa dataset.

Method RMSE MAE
KCAMF (Patil

et al., 2022) 0.9136 0.7177

CBMF (Casillo
et al., 2022) 1.0680 0.8386

Hybrid-IHSR
(Unger and

Tuzhilin, 2020)
1.2300 0.9700

SVD++ (Kumar
et al., 2014) 1.0571 0.8468

Our model 0.5774 0.3333

As shown in Table 3, our model achieved the low-
est RMSE and MAE values, confirming its effective-
ness to integrate emotional, demographic, and tem-
poral contexts to deliver more context-driven recom-
mendations and accurately capture user preferences.

5 CONCLUSION

We introduced a machine learning-based context-
driven collaborative filtering approach structured in
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three steps. First, a multi-aspect clustering analysis
is performed on the dataset, focusing on emotional,
demographic, and temporal aspects. Specific clus-
tering algorithms are applied to identify clusters and
generate probability distributions of users’ member-
ship, enabling a nuanced analysis of user profiles.
Second, the system constructs a normalized User-
User contextual weighted similarity matrix by cal-
culating similarity scores using the Jensen-Shannon
divergence method. These scores are dynamically
weighted to reflect the importance of each contex-
tual aspect, aggregated to compute global similar-
ity scores, and used to build the normalized matrix.
The final step applies collaborative filtering based on
the normalized matrix, identifying the N contextually
closest users to predict ratings for unrated items and
generate recommendations. Experiments conducted
on the LDOS-CoMoDa dataset demonstrated good
performance, with RMSE and MAE rates of 0.5774
and 0.3333, respectively. These results highlight the
model’s ability to deliver contextually personalized
suggestions tailored to variations in user preferences.

To enhance this approach, we aim to explore alter-
native divergence metrics beyond the Jensen-Shannon
divergence and apply the method to various datasets.
This comparative analysis will provide insights into
optimizing contextual recommendations and adapting
them to the specific characteristics of user profiles.
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