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Abstract: Advances in robotic control have revolutionized assistive technologies for individuals with upper limb 
amputations. Daily tasks, which are often complex or time-consuming, can be challenging without assistance. 
Traditional assistive devices often demand significant physical effort and lack versatility, limiting user 
independence. In response, the Brain-Driven Robotic Arm project aims to develop an advanced assistive 
device that allows individuals with disabilities to control a robotic arm using their brain signals.  Utilizing 
brain-computer interface (BCI) technology with electroencephalogram (EEG) signals, the system processes 
brain activity to generate commands for the robotic arm, offering a more intuitive and efficient assistive 
solution. The experimental setup integrates the 6-DOF Yahboom DOFBOT Robotic Arm Kit with the 14-
Channel EPOC X EEG Headset, where the system control is managed via Python software, using the Latent 
Dirichlet Allocation (LDA) algorithm for AI-driven tasks. 

1 INTRODUCTION 

In recent years, significant progress has been made in 
developing methods to control robotic systems for 
individuals with paralysis or limb amputations. 
According to the World Health Organization (WHO) 
and the World Bank, an estimated 35-40 million 
people worldwide require prosthetic or orthotic 
services, yet only one in ten has access to them 
(Lemaire, 2018). By 2050, this figure is expected to 
rise to over two billion. Additionally, diabetes leads 
to a major limb amputation every 30 seconds 
globally, resulting in over 2,500 limbs lost daily 
(Bharara, M.). To address these challenges, 
researchers have focused on non-invasive approaches 
like brain-computer interface (BCI) technology, 
which uses EEG signals to create a communication 
and control link between the brain and external 
devices (Shedeed, 2013). The Brain-Driven Robotic 
Arm is a BCI-based solution designed to assist 
individuals with disabilities by interpreting their brain 
signals to control robotic systems.  

Advances in BCI and robotics have significantly 
enhanced the precision and control of robotic arms. 
However, many existing assistive devices remain 
limited, often demanding considerable physical effort 
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and providing only basic functionality, which 
compromises user independence and versatility. 
There is a growing need for a more advanced and 
cost-effective solution that improves control and 
usability. A brain-driven robotic arm offers a 
promising alternative, empowering individuals with 
severe motor disabilities, such as limb loss, to regain 
mobility and independence. By integrating principles 
from neuroscience, computer science, and robotics, 
this system establishes a direct interface between the 
brain and the robotic arm, allowing users to control 
the arm’s movements through their brain signals 
(Mu, 2024), (Yurova, 2022). 

1.1 Robotic Arm 

Robotic systems have evolved from their early 
industrial automation to becoming versatile tools 
across a multitude of industries. In particular, robotic 
arms have undergone significant advancements, 
becoming increasingly flexible and adept at executing 
complex tasks with precision. The general 
representation of a dynamic model of a robotic arm is 
presented as follows:  M(q) qሷ + C (q, qሶ) qሶ + G(q) = τ 
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where vectors q, q̇, q̈ ∈ ℝⁿ denote the measured 
position, velocity, and the articulatory acceleration 
vectors, respectively. Besides: 

- M(q) ∈ ℝⁿˣⁿ is a uniformly bounded-symmetric-
positive-definite inertia matrix, 

- C(q, q̇) ∈ ℝⁿ is the centrifugal and Coriolis 
forces' vector, 

- G(q) ∈ ℝⁿ presents the vector of gravitational 
forces, 

- u = τ ∈ ℝⁿ presents the vector of external control 
torques and forces applied to the robot's joints,   

For the considered robot we have $n=3$, where 
the open-loop manipulator comprises three revolute 
joints as demonstrated in Figure 1. 

Equipped with sensors, robotic arms can perceive 
and react to its surroundings, enhancing its 
adaptability across diverse environments (Aljedaani, 
2024). The integration of various types of end 
effectors, such as grippers or specialized tools, 
enables these arms to interact effectively with their 
surroundings, extending applications across 
manufacturing, healthcare, and various other sectors. 
Ongoing progress in robotics, sensing technologies, 
Artificial intelligence (AI), including collaborative 
robotics, is propelling the robot’s evolution to learn 
and adapt their actions, further amplifying their 
capabilities and expanding their potential 
applications . 

1.2 Brain-Computer Interface (BCI) 

Brain-Computer Interface (BCI) enables interaction 
between the human brain and machines, employing 
advanced algorithms to analyze brain signals and 
recognize user commands. BCI is classified into three 
types based on signal acquisition: invasive (inserting 
an electrode into the brain), semi-invasive 
(positioning electrodes on the brain's surface), and 
non-invasive (using scalp sensors) (Ramadan, 2017). 
This study focuses on EEG technology, a non-
invasive method, to record brain activity. The 
combination of EEG, signal processing, and machine 
learning enables direct and intuitive interaction with 
a robotic arm, enhancing the independence of 
individuals with disabilities in their environment. 

1.3 Electroencephalogram (EEG) 

The human brain is composed of billions of cells that 
control various bodily functions. It consists of 
different regions responsible for functions like 
movement, vision, hearing, and intelligence. 
Brainwaves, which are small electrical signals, are 
generated by these brain cells. To record these 

brainwaves, electrodes are connected to the scalp, and 
this technique is called an electroencephalogram 
(EEG) (Zhou, 2023). EEG has been extensively used 
in clinical applications and research, including Brain-
Computer Interfaces (BCI) (Biasiucci, 2019). One 
significant application of EEG is the brain-driven 
robotic arm, which enables direct communication 
between the brain and a machine, benefiting 
paralyzed or amputated individuals. EEG sensors 
capture numerous snapshots of brain activity, which 
are then transmitted for analysis and storage in 
various formats like computer files, mobile devices, 
or cloud databases. 

2 PRELIMINARIES AND 
PREVIOUS WORKS 

Significant progress has been achieved in BCI in 
recent years, allowing a direct connection between 
the human brain and external technology. This 
literature review aims to offer a thorough overview of 
the present status of research on brain-driven robotic 
arms.  

2.1 The Generation and Detection of 
EEG Signals 

Electroencephalography (EEG) is a method that 
involves placing metal electrodes on the scalp to 
measure and record the brain's electrical activity. This 
activity is generated by the communication between 
neurons and produces continuous and persistent 
electrical currents. Hans Berger, the scientist credited 
with introducing the term "electroencephalogram" 
(EEG), observed that these brain signals exhibit 
regular patterns rather than random activity. This 
discovery paved the way for various applications that 
rely on EEG signals to infer different brain functions. 
The detection of electric fields in the brain is made 
possible by the coordinated activity of pyramidal 
neurons located in the cortical regions (Khosla, 
2020). These specialized neurons are critical in 
generating and synchronizing the electrical signals 
captured by EEG. The EEG technique records 
changes in electrical potentials that result from 
synaptic transmissions. When an action potential 
reaches the axon terminal, neurotransmitters are 
released, leading to the formation of excitatory 
potentials and the flow of ionic currents in the 
extracellular space. The cumulative effect of these 
potentials from groups of neurons amplifies the 
overall electric field, making EEG signals valuable 
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for measurement and analysis. Different regions of 
the cerebral cortex are responsible for processing 
distinct types of information (Yip, 2023). For 
instance, the motor cortex, located in the frontal lobe, 
is central to controlling body movement and consists 
of three main areas: the primary motor cortex 
(Brodmann Area 4), the premotor cortex, and the 
supplementary motor area (Brodmann Area 6).The 
primary motor cortex is responsible for transmitting 
the majority of electrical impulses from the motor 
cortex, while the premotor cortex is essential for 
movement preparation, particularly for proximal 
muscle groups. The supplementary motor area aids in 
stabilizing body posture and coordinating 
movements. Notably, research indicates that sensory 
input to one hemisphere of the brain can evoke 
electrical signals that result in movement on the 
opposite side of the body, highlighting the cross-
wiring of motor functions between the two 
hemispheres (Rolander, 2023). 

2.2 EEG Rhythms 

To provide a complete understanding of 
Electroencephalography (EEG) and the different 
mental states of the brain, previous literature reviews 
were consulted. According to (Huang, 2021) (Orban, 
2022), EEG signals exhibit distinct frequency ranges 
corresponding to different types of brain waves. Delta 
(δ) waves, with a frequency range of 0.5-4 Hz, are 
observed during deep sleep. Theta (𝜃) waves, ranging 
from 4-8 Hz, are associated with emotions and mental 
states. Alpha (𝛼) waves, in the frequency range of 8-
14 Hz, are typically detected in the frontal and 
parietal regions of the scalp during awake or resting 
states. Beta (𝛽) waves, ranging from 14-30 Hz, are 
prominent during movements and can be observed in 
the central and frontal scalp areas. Finally, gamma (𝛿) 
waves have a frequency higher than 30 Hz and are 
linked to processes such as idea formation, language 
processing, and learning. 

2.3 Electrode Placement and EEG 
Recording  

As The placement of metal electrodes over the scalp 
is crucial for measuring and recording EEG signals. 
To capture arm movement, the electrodes need to be 
positioned strategically. Research indicates that the 
primary region responsible for controlling body 
movement is the motor cortex in the brain's frontal 
lobe. Several electrode placement systems exist, but 
one of the most promising is the (10-20) system, as 
mentioned in reference (Orban, 2022). As seen in 

Figure 2, this system uses a combination of letters and 
numbers to denote specific brain regions and 
electrode locations. The letters "F," "T," "P," and "O" 
represent Frontal, Temporal, Parietal, and Occipital 
regions, respectively. Odd numbers (1, 3, 5, 7) are 
assigned to electrodes on the left hemisphere, while 
even numbers (2, 4, 6, 8) represent the right 
hemisphere. The letter "z" indicates an electrode 
along the midline (CAO, 2021). This standardized 
system ensures consistent and precise electrode 
placement for EEG recordings. 

 
Figure 1: The 10-20 System of Electrode Placement. 

In reference (Bousseta, 2018), a study used a 14-
channel EEG sensor and identified that electrodes 
AF3, AF4, F3, and F4 were associated with moving a 
robot’s arm right, left, up, down. 

The frequency band utilized is 8 Hz to 22 Hz.  
A study referenced in (HAYTA, 2022) utilized a 

64-channel EEG sensor to control a robot's arm 
movement along multiple axes (x, y, and z). For this 
purpose, twenty EEG were selected within the 
frequency range of 8 Hz to 30 Hz. In another study 
(Arshad, 2022), researchers developed an intelligent 
robotic arm controller including a BCI integrated with 
AI to aid individuals with physical disabilities. This 
study employed EEG to capture brain activity and 
proposed a method for controlling the robotic arm 
using various AI-based classification algorithms. 
Algorithms such as Random Forest, K-Nearest 
Neighbors (KNN), Gradient Boosting, Logistic 
Regression, Support Vector Machine (SVM), and 
Decision Tree were tested, with Random Forest 
achieving the highest accuracy of 76%. The paper also 
highlighted the influence of individual variations in 
dominant frequencies and activation bandwidths, 
which can affect the EEG dataset. The research 
provides insights into effective electrode placement for 
detecting different arm movements and demonstrates 
the feasibility of intelligently controlling a robotic arm 
through BCI and AI methods. The proposed technique 
offers a reliable and non-invasive approach to assist 
individuals with physical disabilities, and the results 
highlight the effectiveness of Random Forest 
compared to other classification algorithms. 
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Figure 2: Brain Driven Robotic Arm Circuit Diagram. 

3 PROPOSED BRAIN DRIVEN 
ROBOTIC SYSTEM 

This paper introduces the design of a robotic system 
aimed at empowering individuals with severe motor 
disabilities by providing functional robotic limb 
movements and enhancing their independence. The 
brain-driven robotic arm achieves this by precisely 
interpreting the user’s brain signals and converting 
them into commands that control and manipulate a 
robotic arm’s movement.  

3.1 Proposed Design Solution 

The proposed system integrates cutting-edge 
hardware components, a versatile programming 
platform, and advanced machine learning techniques. 
This combination creates a highly interactive and 
sophisticated system that can efficiently interpret 
brain signals to effectively control the robotic arm. 

The proposed robotic system design involves the 
following important steps: 

1- EEG wave reading. 
2- Transmission of the EEG waves to a 

processing unit. 
3- Analysis of the waves/signals. 
4- Activation of the Robotic Arm for 

movement. 
Using the LucidChart website, we demonstrate 

the circuit diagram of the Brain Control Robotic Arm, 
illustrating the visual representation of the circuit 

diagram as presented in Figure 3. A 12V DC voltage 
supply is used to power the system, which includes a 
Jetson Nano microcontroller and a Yahboom Dofbot 
expansion board for controlling a robotic arm. The 
EEG sensor is connected to the CPU (Laptop) via a 
Bluetooth module, enabling wireless communication. 
The CPU undergoes a machine learning phase, and 
the data is then sent to Arduino UNO through an 
Ethernet cable. A serial communication between 
Arduino and Jetson Nano transmits real-time data. In 
expansion board, each port can accommodate up to 6 
cascade  motors,  and in  this  configuration,  6  motors  

 
Figure 3: Flow Chart of Process Flow of the Design. 
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are connected in series into one port. These 
connections ensure efficient power 
distribution, machine learning capabilities, robotic 
arm control, EEG data acquisition, and temperature 
regulation within the system. 

3.2 Flowchart 

The flowchart in Figure 4 outlines the sequence of 
actions and conditions necessary to achieve a specific 
task or outcome in the robotic system. The process 
starts with the acquisition of neurological signals 
from the user’s brain using EEG. The system then 
verifies whether these signals contain specific 
frequency patterns, such as alpha and beta waves. If 
these frequencies are detected, the signals proceed to 
the signal processing block. Next, the system checks 
if the robotic arm is successfully receiving the 
categorized control signals generated from the 
previous step. If the signals are received, they are 
processed to control the movement of the robotic arm. 

The system subsequently verifies whether the 
robotic arm has reached its target position and 
executed the intended movement as per the user’s 
commands. Once the movement aligns with the 
intended commands, the flowchart indicates the 
successful completion of the process. 

In this work, machine learning plays a significant 
role in the project by enabling users to control the arm 
using their brain signals. The machine learning model 
has several stages. The first stage is preprocessing the 
data, then feature extraction, and lastly choosing an 
appropriate classification model. In this project, a 
large data set is used to reduce the dimensionality of 
the dataset, a feature selection technique was 
employed, also a filter between 8 and 30 Hz is used 
to keep the required frequencies. The Fast Fourier 
Transform (FFT) is used as a feature extraction 
method. Lastly, the Latent Dirichlet Allocation 
(LDA) method is used as a classification method. 

4 EXPERIMENTAL RESULTS 

4.1 Test Bench Description 

The proposed design involves utilizing Yahboom 
DOFBOT  Robotic Arm Kit, in combination with the 
14-Channel EPOC X  EEG Headset shown in Figures 
5 and 6, respectively. 

 
Figure 4: 6-DOF Yahboom DOFBOT Robotic Arm. 

The system is controlled by Jetson Nano and 
programmed using Python. Regarding machine 
learning, the project employs a Latent Dirichlet 
Allocation (LDA) method. Yahboom DOFBOT 
Robotic Arm Kit provides a versatile and precise 
robotic arm mechanism capable of performing 
complex tasks. 

 

 
Figure 5: The 14-Channel EEG Headset ‘EPOC X’. 

In addition, EPOC X enables the system to 
capture brain signals and interpret them as commands 
or inputs for controlling the robotic arm. The Jetson 
Nano and Arduino Uno act as the controller, 
coordinating the communication and interaction 
between the two main parts of our system: EEG brain 
signal extraction and robotic arm movement control. 

4.2 EEG Data Extraction Testing and 
Results  

The EmotivBCI application is designed to capture 
and interpret brain signals. Detecting facial 
expressions presents the first testing task using EEG 
Headset ‘EPOC X’, that has many practical 
applications serving accessibility technology, 
neuromarketing, psychological research...etc. By 
training the system to recognize specific facial 
expressions, it becomes possible to map those 
expressions to corresponding neural patterns. This 
enables the creation of a responsive system that could, 
for instance, help individuals with mobility 
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impairments communicate more effectively or 
provide insights into a user's emotional response to 
stimuli for biomedical research. 

In this context, advanced brain-computer 
interface (BCI) technology requires a high-quality 
connection with the EEG sensor headset worn by the 
user. The first brain signal extraction yields real-time 
feedback on signal strength across multiple EEG 
channels, ensuring the device is properly connected 
and signals are accurately captured.  

The EEG quality for each position is measured 
and visually represented in the sensor map, as 
illustrated in Figure 7. However, in order to enhance 
the EEG quality, it is necessary to allow for a period 
of relaxation. Table 1 provides a comprehensive 
representation of various signals’ colors. 

Table 1: Colors and their Corresponding Status. 

Color Status 
Black No contact detected
Red Poor contact quality

Light Green Average contact quality 
Green Good contact quality

 

 
Figure 6: Contact quality 25%. 

 
Figure 7: Contact quality 100%. 

This calibration ensures that the BCI system can 
distinguish between various states and respond 
appropriately. The collected data underwent 
processing, as depicted in Figure 9.  

In this figure, a multichannel EEG signal readout 
with varying amplitudes and frequencies across 
different electrodes placed on the scalp. These 
electrodes are labeled according to standard EEG 
placement nomenclature such as AF3, F7, F3, etc. 
The signals exhibit the brain's electrical activity, with 
each line representing a different sensor position on 
the EEG headset.  

The application's interface allows the user to 
adjust settings such as channel spacing and amplitude 
to optimize the visualization of these brain waves. 

4.2.1 Extract Brain Signals (Alpha, Beta, 
Theta) 

To analyze the signals, the EMOTV PRO software 
was utilized. This software offers the capability to 
visualize real-time signals while utilizing the EEG 
headset sensor. Initially, an attempt was made to 
detect the signal in a normal state using two 
electrodes, which are AF3 and AF4. However, the 
signals exhibited variability and did not demonstrate 
a specific pattern, as illustrated in Figure 10.  

To analyze the signals extracted from the "Right" 
command, four electrodes were utilized: AF3, AF4, 
FC5, and FC6. The signals displayed almost similar 
patterns for alpha and beta waves, which are 
associated with the mental state. However, the theta 
waves vary since they are influenced by the emotional 
state, as depicted in Figures 11 and 12. 

 

 
Figure 8: Collected data. 

To gather the data, each movement was tested ten 
times, and the response time was recorded. The 
response time varied across trials, due to various 
factors, including user relaxation and other parameters. 
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Figure 9: Obtained AF3 and AF4 signals in Normal States. 

4.2.2 Translate the Brain Signals to 
Commands: 

The objective is to verify the accuracy of converting 
the collected signal into commands using an Arduino. 
The process involves a five-second duration to gather 
the signal. The testing focuses on three movements: 
Right, Drop, and Left. The signal is collected during 
these movements, and the most common signal 
pattern is identified. By repeating this process ten 
times for each movement, an average signal pattern 
for movement is derived. The aim is to achieve an 
accuracy level of 70% in accurately translating the 
signals into corresponding commands. Using the 
following equation:  

 
the accuracy for the overall device has been 

calculated when testing all movements, to obtain the 
accuracy percentage of 76.67%. 

It is important to note that the processing stage 
involves filtering out noise, identifying characteristic 
features of the EEG signals associated with each 
expression, and using machine learning algorithms to 
improve the recognition of these patterns over time. 
Analysing these waves requires filtering the raw EEG 
data to focus on the frequencies of interest. The 
software might apply band-pass filters to isolate the 
frequency range associated with each type of brain 
wave. For example, to analyze alpha waves, the 
software would use a band-pass filter to isolate 
frequencies between 8-12 Hz. 
 

 
Figure 10: Obtained AF3 and AF4 signals for Right 
movements. 

 
Figure 11: Obtained FC5 and FC6 signals for Right 
direction move. 

4.2.3 Movement of the Robotic Arm 

To ensure the reliability of the results, after the 
training phase and obtaining brain commands, the 
participant was instructed to continuously generate 
the mental command of moving the arm to the right. 
The data was collected every 5 seconds, and the 
command with the highest occurrence was considered 
the chosen command. 

 
Figure 12: Output of Serial Communication After Detecting 
Right Movement. 
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As illustrated in Figure 13, a specific code such as 
"111" is transmitted during serial communication, 
which corresponds to the "right" mental command. 
As a result, the arm will move to the right at a 35-
degree angle. The same procedure was applied for 
“drop” mental command.  

5 CONCLUSION 

This paper highlights the development of a new design 
for a Brain-driven Robotic Arm as an advanced 
assistive device for individuals with upper limb 
amputations. In fact, the convergence of advancements 
in brain-computer interfaces (BCI) and robotics has 
created a new era of enhanced precision and control for 
robotic arms, addressing the pressing need for assistive 
devices that offer greater independence and 
functionality for individuals with disabilities. The 
project aims to provide greater control and 
functionality to enhance amputees' independence, by 
utilizing brain-computer interface (BCI) technology 
and electroencephalogram (EEG) signals. The 
proposed experimental design involves utilizing the 6 
DOF-Yahboom DOFBOT  Robotic Arm Kit, in 
combination with the 14-Channel EPOC X  EEG 
Headset. The system is controlled by Jetson Nano and 
programmed using Python,  employing a Latent 
Dirichlet Allocation (LDA) method for Artificial 
intelligence task. Finally, as traditional devices, often 
limited by their demand for substantial physical effort 
and lack of versatility, fall short of meeting the daily 
needs of these individuals, the development of the 
proposed robotic arm emerges as a vital solution, 
promising to revolutionize the support available to 
individuals with severe motor disabilities, including 
limb loss. Future work will focus on advancements in 
feature extraction techniques for EEG signals to 
enhance control accuracy. Specifically, exploring 
advanced methods such as time-frequency analysis and 
deep learning-based feature extraction holds 
significant potential for improving the discrimination 
of relevant brain activity patterns. 
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