
Kernel-Level Malware Analysis and Behavioral Explanation Using LLMs

Narumi Yoneda, Ryo Hatano and Hiroyuki Nishiyama
Department of Industrial and Systems Engineering, Graduate School of Science and Technology,

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
7423530@ed.tus.ac.jp, {r-hatano, hiroyuki}@rs.tus.ac.jp

Keywords: Dynamic Analysis, System Call, LLM, Cybersecurity.

Abstract: In this study, we collected data on malware behavior and generated explanatory descriptions using a large lan-
guage model (LLM). The objective of this study is to determine whether a given malware sample truly exhibits
malicious behavior. To collect detailed information, we modified the Linux kernel to build a system capable
of capturing information about the arguments and return values of invoked system calls. We subsequently an-
alyzed the data obtained from our system for indications that the malware exhibited malicious or anti-analysis
behavior. Additionally, we assessed whether the LLM could interpret this data and provide an explanation of
the malware behavior. This approach constitutes a shift in focus from the method of attack, which is examined
in the detection of the malware family, to an evaluation of the malicious nature of the actions performed by
the malware. Our inferences demonstrated that our data could represent both what the malware “attempted to
do” and what it “actually did,” and the LLM was able to accurately interpret this data and explain the malware
behavior.

1 INTRODUCTION

1.1 Linux and Malware

The implementation of security mechanisms for
Linux-based systems is critical to the effective im-
plementation and maintenance of operating systems
(OS). As an open-source operating system, Linux is
widely adopted across various domains such as appli-
cation in web servers, cloud infrastructures, mobile
devices (Android), and embedded systems. Accord-
ing to (W3Techs, 2024), Linux is the dominant OS for
web servers with a market share exceeding 85%. In
addition, major cloud-computing platforms, such as
Amazon Web Services, Google Cloud, and Microsoft
Azure, offer virtual machines based on the Linux OS.
However, its widespread adoption makes Linux an at-
tractive target for attackers, and the total number of
Linux malware instances is increasing (TrendMicro,
2024).

A malware is equipped with mechanisms that en-
able it to detect and circumvent attempts at anal-
ysis. These mechanisms can be broadly catego-
rized into two types. Anti-virtual machine (anti-
VM) techniques detect whether malware is being ex-
ecuted in a virtual environment. The second type is
anti-debugging functionality, which detects the pres-
ence of a debugger or identifies whether the system

is in an environment set up for analysis. We refer
to these functionalities collectively as “anti-analysis
techniques” and elucidate the subject in detail in Sec-
tion 2.

1.2 System Call and Dynamic Analysis

Figure 1: Overview of system call.

A system call represents the sole application program-
ming interface (API) that allows ordinary user space
programs to access the functionalities provided by the
OS (see Figure 1). As of February 2024, 398 system
calls have been implemented in kernel source code1.
The kernel space refers to the memory region man-

1Listed in arch/x86/entry/syscalls/syscall 64.tbl in the
kernel source code, ver. 6.1.0-22-amd64.

Yoneda, N., Hatano, R. and Nishiyama, H.
Kernel-Level Malware Analysis and Behavioral Explanation Using LLMs.
DOI: 10.5220/0013149500003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 443-450
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

443



aged by the kernel. This region is granted a high priv-
ilege level and ordinary user programs are not per-
mitted to access it directly. By contrast, the user
space refers to the memory area outside the kernel
space. The user space contains nearly all software
used when a user is operating a machine, such as of-
fice applications, web servers, multimedia software,
and command-line tools. These programs access the
kernel functions through system calls. Therefore,
most ordinary programs cannot directly access kernel
functions or hardware devices without system calls2.
Therefore, system-call sequences reveal the OS func-
tionalities used by a program during its execution.

The evaluation of a program through its execu-
tion and the analysis of its behavior is known as dy-
namic analysis (DA). DA is primarily used for cy-
bersecurity (Section 2) and programming language
translation (Yoneda et al., 2024). The DA can be
performed at various levels of granularity. At finer
levels, machine instruction or memory access-level
analyses are often employed (e.g., (Cohen and Nis-
sim, 2018)). However, such fine-grained analyses
present challenges, including the significant overhead
incurred and the additional effort required to render
the collected data interpretable to humans. By con-
trast, system call-level analyses are coarse-grained.
Coarse-grained methods are more selective in terms
of the information that they capture, such as system
call invocations, resulting in lower overhead and eas-
ier interpretation than fine-grained methods. We refer
to the data obtained from system call-level DA as “DA
data” in the following sections.

1.3 Objective of this Study

The objective of this study is to determine whether a
given malware sample truly exhibits malicious behav-
ior in a test environment. However, despite numer-
ous studies exploring malware detection using vari-
ous levels of DA and machine learning (ML), con-
clusively demonstrating with clear evidence that ma-
licious behavior occurred in a test environment re-
mains a significant challenge. As DA involves exe-
cuting a target program and converting its behavior
into time-series data, the absence of malicious be-
havior during the analysis period is a critical limita-
tion. This limitation must be verified, because there
are cases in which even when a user attempts to ex-
ecute malware, the intended functionality may not be
achieved. For example, as explained in Section 1.1,
malware may conceal its malicious behavior using
anti-analysis techniques or fail to execute correctly

2As an exception, some operations such as numerical
computations can directly invoke CPU instructions.

because of the absence of the necessary libraries in
the test environment. In addition, if this limitation
is not verified, there is a risk of generating data on
malware behavior that lacks information on malicious
behavior. However, traditional ML-based malware-
detection methods can classify samples as malicious.
We emphasize that this issue is fundamentally dis-
tinct from false positives (i.e., misclassifying clean-
ware as malware). We are concerned with the possi-
ble scenario in which ML models classify data lack-
ing malicious behavior as malware, thereby creating
an illusion of successful detection. This is because
ML does not directly detect malicious behavior; in-
stead, it establishes a decision boundary between la-
bels based on the provided features. Therefore, we do
not consider “whether the classified label is malware
or cleanware” and “whether malicious behavior was
exhibited or not” to be equivalent. In other words,
rather than comparing malware with cleanware, the
determination should be based on whether the mal-
ware actually exhibited malicious behavior.

For these reasons, we consider the inability to pro-
vide conclusive evidence that the sample exhibits ma-
licious behavior in a test environment to be a key is-
sue. To address this, we tested the following four hy-
potheses:

(1) DA data can provide evidence of the malicious
behavior exhibited by malware.

(2) The DA data can provide evidence of anti-
analysis behavior exhibited by malware.

(3) By inputting DA data into a large language model
(LLM), the DA data can be interpreted, and the
malicious behavior of malware can be explained.

(4) The anti-analysis behavior of malware can be ex-
plained by inputting the DA data into the LLM.

Our Proposal is to shift the focus from an ex-
amination of the attack method, such as the deter-
mination of the malware family, to an evaluation of
the maliciousness of the behaviors exhibited by the
program. We employed LLMs because given that
some LLMs, such as ChatGPT 4o3, possess back-
ground knowledge of system calls and malware be-
havior, we believe that they can interpret DA data and
explain the occurrence of malicious activity with con-
crete evidence. Additionally, we believe that LLMs
are compatible with DA data since DA data consist
of highly interpretable string-formatted data that pro-
vide insights into the behavior of computer programs.
Moreover, one of the key advantages of LLMs is
their discussion capabilities. That is, after interpreting
the DA data that indicate malware behavior, LLMs

3https://chatgpt.com/?model=gpt-4o

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

444



should provide possible recovery strategies and meth-
ods to prevent future attacks through continuous dia-
logue and discussion.

The ultimate goal of this study is not only to detect
malware but also to provide evidence that the malware
exhibited malicious behavior in the test environment.
Therefore, this study examines both the presentation
of evidence from DA data and the explanation of mal-
ware behavior by leveraging DA data in conjunction
with an LLM.

The remainder of this paper is organized as fol-
lows: Section 2 reviews the relevant literature with
an emphasis on investigations of anti-analysis tech-
niques, malware detection, the generation of malware
explanations, and the DA techniques. Additionally,
we draw a contrast between the approaches applied in
these studies and ours. Section 3 presents the pro-
posed method, including the developed DA system
and the preprocessing method used to create a prompt
for the LLM. Section 4 describes the experimental en-
vironment, collection, and execution of malware sam-
ples, and the use of LLMs. Section 5 presents the ex-
perimental results, followed by a discussion including
an example of DA data that provides insight into mal-
ware behavior.

2 RELATED WORK

As explained in section 1.1, malware can employ anti-
analysis techniques. According to (Chen et al., 2016)
and (Bulazel and Yener, 2017), malware can de-
tect debuggers or virtualizations by leveraging Win-
dows APIs, specific fields within process environment
blocks, and certain CPU instructions. In addition, to
detect signs of analysis, malware may probe the en-
vironment, such as user profiles, running processes,
and drivers, and monitor user interactions. There-
fore, they examined anti-analysis techniques by fo-
cusing on how these features were implemented us-
ing various approaches. By contrast, our study inves-
tigates which system calls are involved in achieving
anti-analysis behavior. While their work attempted to
generate an interpretation of anti-analysis techniques
depending on their experience, our study generated it
depending on the DA data and the LLM perspective.

Several studies have focused on malware detec-
tion and have employed various DA and ML methods.
For example, (Cohen and Nissim, 2018) and (Panker
and Nissim, 2021) proposed frameworks for malware
detection. They simulated a cloud-computing envi-
ronment by running web and mail server services
on VMs. They employed the memory level DA,
extracted features from volatile memory dumps us-

ing the Volatility Framework4, and detected malware
using ML. (Nissim et al., 2018) obtained informa-
tion about invoked system calls by analyzing volatile
memory dumps. They combined sequential mining
with ML algorithms to detect malware. Therefore,
they employed both DA and ML because their pri-
mary goal was detection. However, as mentioned
in Section 1.3, we want to emphasize that the de-
termination of whether a sample is malicious should
be based on concrete evidence of malicious behavior
rather than a simple comparison with benign samples.
Therefore, our study focuses on using LLMs to gener-
ate behavioral explanations and discusses malicious-
ness based on DA data.

(Sun et al., 2024) generated behavioral explana-
tions of malware similar to a cyberthreat intelligence
report by inputting DA data into an LLM (such as
ChatGPT 3.5). To address the challenges in process-
ing large-scale low-level DA data, they proposed two
methods: Attack Scenario Graph (ASG) and Natural
Language Description (NLD) transformations. ASG
reduces the data volume by mapping DA data into
a graph representation, whereas NLD converts low-
level system calls into higher-level descriptions; for
example, an execve system call becomes “execute a
program.” In contrast to their focus on the limitations
of LLM, our study focused on the limitations of tra-
ditional malware analysis and detection techniques.
We generated behavioral explanations based on the
rationale that malware should be determined based
on evidence of malicious behavior, while focusing on
serving resources for cybersecurity professionals by
automating the translation of DA data into human-
readable reports.

DA techniques have been investigated to gain
deeper insights and improve analysis efficiency. (Ot-
suki, 2016) developed Alkanet, a DA system for an-
alyzing malware, designed to target Windows XP. It
hooks system calls by setting hardware breakpoints at
the jump targets of the sysenter instruction (which
transitions to kernel mode) and sysexit instruc-
tion (which transitions to user mode). They focused
on improving the execution efficiency by narrowing
down information collection to system calls, which
are typically indicative of the exhibition of malicious
behavior by a program. (Hsu et al., 2023) modified
the Linux kernel to prevent malware execution. They
extracted code from the memory, created an ELF5 file,
and submitted it to the VirusTotal API for analysis.

4A memory analysis tool that can extract various fea-
tures such as process information and network connections.

5An executable and linkable format (ELF) file is an ex-
ecutable binary file used in Linux. This format is analogous
to the EXE file format used by Windows.

Kernel-Level Malware Analysis and Behavioral Explanation Using LLMs

445



If malware was detected, the process was terminated
using a kernel. We developed a DA system by mod-
ifying the Linux kernel. Detailed descriptions of our
DA system and the motivations for its development
are provided in Section 3.1.

3 METHODS

Figure 2: Overview of our approach.

Figure 2 presents an overview of the proposed ap-
proach. First, we perform system-call-level DA on
malware samples to obtain DA data. We then prepro-
cess the collected DA data and generate explanatory
text by using it as the input for the LLM. Finally, we
examine whether the DA data contains evidence of
malicious and anti-analysis behavior with the gener-
ated text for support. The following sections describe
each of these processes in detail.

3.1 System Call Level DA

As mentioned in Section 1.2, DA is a method by
which the behavior of a program can be analyzed dur-
ing its execution. While tools such as the strace com-
mand were designed to perform system-call-level DA
in the user space of a Linux environment, we choose
to modify the kernel source code directly to obtain
more interpretable data on the program behavior from
the kernel space. Moreover, performing DA through
kernel source code modification may reduce the like-
lihood of interruptions caused by the anti-analysis
technique employed by malware (explained in Sec-
tion 5.3). To run the modified kernel, we construct a
virtual environment using VirtualBox. By subjecting
the target programs to DA within this environment,
we are able to collect interpretable data that effec-
tively captures the behavior of the program, regard-
less of the programming language or file type.

The information obtainable through our DA sys-
tem, SCLDA6, is summarized in Table 1. We mod-

6https://github.com/naru3-99/sclda

Table 1: Information collected by SCLDA.

Name Meaning
Clock Time elapsed since the kernel was started
TID Thread ID that invoked the system call
Syscall ID Unique ID of a system call
Retval The return value of the system call
Arguments The arguments passed to the system call

ify the kernel source code related to the functionali-
ties of system calls, networks, and process creation.
First, we modify the content of the SYSCALL_DEFINE
macro7 to obtain the information in Table 1.

Second, we modify the source code of the network
functionalities to transmit the collected information to
our server program in the host environment through
TCP/IP communication. To enhance the efficiency
of this transmission, the information is accumulated
in a buffer within the kernel. Once the buffer ex-
ceeds a certain threshold, a kernel thread (kthread),
called the sclda_thread, is created to transmit this
information. Consequently, processes executing user
space programs are only required to handle the over-
head associated with retrieving information, whereas
the overhead of transmitting it imposes no additional
burden.

Third, we modify the process creation mechanism
to identify the origin of the invoked system calls. Be-
cause we modified the SYSCALL DEFINE macro, infor-
mation regarding all the system calls invoked by all
the programs in the analysis environment is acquired.
In the following section, we describe a method for
capturing only the system calls invoked by a target
program.

3.2 Thread-Level Aggregation

In modern Linux, processes and threads are uniformly
managed as tasks and represented by a task struct
structure. Each task struct is assigned a unique
thread ID (TID). Therefore, we utilize the TID infor-
mation to identify the origin of the system calls and
determine whether the system-call information is rel-
evant to the execution of the target program.

To illustrate the identification of TIDs associated
with the target program, let us consider an example of
running the sample.elf. First, bash invokes a system
call (either fork, vfork, or clone) to create a task
to run sample.elf. The created task then invokes a
system call (either execve or execveat) to begin exe-
cuting sample.elf. Subsequently, the task that initi-
ated the execution of sample.elf may invoke system

7The SYSCALL_DEFINE macro implements individual
system calls. This macro is expanded into a kernel function
before it is compiled.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

446



calls such as fork to create new tasks that execute the
components of the sample.elf. Therefore, the TIDs
relevant to the target program include both the TID
that initiated the execution of sample.elf and any
descendant TIDs created by that TID.

To trace all the tasks generated in the test environ-
ment, we hooked the kernel clone function8. This
approach allowed us to gather the following data: the
TID of the task that invoked the kernel clone func-
tion (parent TID), the TIDs of the newly created tasks
(child TIDs), and the executable file name associated
with the created task, such as sample.elf. There-
fore, we can trace the parent-child relationships of the
TIDs.

DAData 1: Example of execve system call invocation

1 execve ,retval=0,
2 filename=./sample.elf,
3 argv=[./sample.elf ,],
4 envp=[SHELL=/bin/bash ,]

To isolate only the system calls invoked by the
target program, it is necessary to identify the TID
that initiates the execution of the target program. To
achieve this, we leverage information from execve or
execveat system calls. These system calls receive
parameters such as the filename to execute, comman-
dline arguments, and environmental variables. For
example, when command ./sample.elf is executed
from the bash shell, the SCLDA generates the DA
data shown in DAData 1. To identify the relevant
TID, we reference the filename (line 2 in DAData
1) and argv (line 3 in DAData 1) fields, searching for
matches with the target program name. In the follow-
ing examples, the retval= and (arg1 Name)= fields
are omitted from the presentation of the DA data to
conserve space. Consequently, we can differentiate
the system call information relevant to the target pro-
gram from irrelevant information.

3.3 Preprocessing

The following preprocessing steps are performed to
construct prompts for input into an LLM:

(1) Extract subsequences of system calls that may in-
dicate malicious behavior or anti-analysis tech-
niques.

(2) Construct instructions for LLMs with DA data.

Regarding (1), this preprocessing is essential be-
cause of the limitations in the number of tokens

8The kernel clone function is the primary routine re-
sponsible for task creation. The fork, vfork, and clone
system calls are wrappers around this function.

that the LLM can handle. Given the scope of this
study, extraction was performed manually rather than
through automation. However, because automating
this preprocessing appears to be feasible, it is sug-
gested as a direction for future work. An example
of a constructed prompt in (2) is as follows:

The Instructions. “We analyzed a suspicious pro-
gram and obtained information regarding system-
call invocation. We extracted an important sub-
sequence of the system calls. Your task is to ex-
plain the overall behavior of the subsequence us-
ing fewer than 100 words. Specifically, mention
whether the behavior can be considered malicious
or whether it can be classified as anti-debugging
or anti-VM behavior.”

The Format of the DA Data. “(System Call Name),
retval = (Return Value), Arg1 Name = (Argu-
ment1 Value). Note that the return and argument
values are represented as internal numbers (e.g.,
int or long types) and are not shown as readable
names such as -EFAULT or -EINVAL.”

The DA Data. The subsequence of the system calls,
such as DAData 1, is pasted.

In this study, we initially employ the aforemen-
tioned prompt to input a critical subsequence of sys-
tem calls. Subsequently, we ask additional questions
to the LLM directly, focusing on the points of interest
identified by the authors.

4 EXPERIMENT

The experimental conditions are listed in Table 2.
The programs, resources, and data obtained from our
experiments are publicly available from the GitHub
repository9. Additional experimental conditions were
as follows:

• Kernel modifications were completed for 230 of
the 398 system calls, specifically those from zero
to 173, along with other significant system calls.

• The Malware Bazaar10 API was used to collect
malware samples. Using file command11, we
filtered and retained only the 64-bit ELF files.

• To mitigate the risks of network-based malware
propagation and data leakage, a local PC was iso-
lated from the Internet.
9https://github.com/naru3-99/ICAART2025

10Malware Bazaar is a platform for sharing malware
samples. https://bazaar.abuse.ch/

11The file command displays the format, target archi-
tecture, and whether the architecture is 32- or 64-bit when
executed on an ELF file.

Kernel-Level Malware Analysis and Behavioral Explanation Using LLMs

447



Table 2: Experimental Conditions.
Name Configuration
Local PC Core i9-13900k CPU, RTX4090 GPU, Windows 11 Pro
Python Python 3.11.9
Virtualization software Virtual Box 7.0.10 r158379
Virtual OS Debian 12.5.0, modified Kernel 6.1.0-22-amd64
Virtual Environment 8 CPUs, 16GB RAM
LLM ChatGPT 4o, as of September 2024

• To prevent interactions between malware samples,
the system was restored to a clean state using the
VirtualBox snapshot12 feature prior to each exe-
cution.

• Because the exact completion time for each mal-
ware execution could not be determined, we stan-
dardized the execution duration for all samples to
one minute.

5 RESULTS AND DISCUSSION

In this section, we discuss the validity of Hypothe-
ses (1)-(4) presented in Section 1.3. In this study, we
executed 17 malware samples and collected 34 pat-
terns of DA data, with and without sudo privileges.
Through manual analysis, we identified 72 subse-
quences of system calls that potentially indicated ma-
licious or anti-analysis behaviors. Owing to the im-
practicality of presenting all the sequences obtained in
this study, we selected the most significant sequences
and provided detailed explanations.

5.1 Delete System Commands

DAData 2: Deletion of critical system commands.

1 unlink , -13, /sbin/reboot
2 unlink , -13, /usr/sbin/reboot
3 unlink , -2, /bin/reboot
4 unlink , -2, /usr/bin/reboot

One malware sample attempted to delete critical sys-
tem commands (executable files) required for shutting
down and rebooting the system, which was clearly
identified as malicious behavior. In the case of DA-
Data 2, malware was executed without sudo privi-
leges. As a reminder, the first element represents the
system call name, the second represents the return
value, and the subsequent elements correspond to ar-
guments. In this case, an unlink system call was used

12The snapshot functionality in VirtualBox allows users
to save the state of a VM at a specific point in time, enabling
them to revert to this saved state later.

to remove the file, as specified by the first argument.
Although omitted here for brevity, an unlink system
call was invoked to delete the shutdown, poweroff,
and halt commands (with the same paths as those
shown in DAData 2). These subsequences were also
included as inputs for the LLM. The key explanation
provided by LLM is summarized as follows:

• The program attempted to delete important sys-
tem files related to shutdown and reboot com-
mands but failed.

• The return values indicate permission errors (-13)
or file-not-found errors (-2).

• This behavior can be considered malicious.

Next, when the same malware was executed with
sudo privileges, the return value of the unlink sys-
tem call, which targeted commands in the /sbin
folder, changed to zero. By contrast, for commands in
other directories, the return value either changed from
-13 to -2 or remained at -2. From this sequence,
it can be inferred that the system commands were
present in the /sbin folder and were successfully
deleted, whereas no system commands were found in
other directories. The key explanation provided by
LLM is summarized as follows:

• The program successfully deleted the critical sys-
tem binaries in /sbin, as indicated by the return
values.

• The other attempts to delete similar files fail ow-
ing to their absence.

• This behavior is highly malicious, as it could
destabilize or incapacitate the system.

Based on the above results, the DA data provided
conclusive evidence of malicious behavior; the mal-
ware attempted to delete critical system commands
and, in some cases, succeeded in deleting them, thus
supporting Hypothesis (1). Furthermore, the LLM not
only recognized that the malware used the unlink
system call to attempt file deletion but also correctly
identified that a return value of -13 indicated insuffi-
cient permissions, whereas a return value of -2 signi-
fied that the file did not exist13. This demonstrates

13According to the include/uapi/asm-generic/

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

448



that the LLM can provide appropriate explanations
for the system-call subsequences observed during ac-
tual malware execution, as represented by the DA
data, thereby supporting Hypothesis (3).

5.2 Self-Deletion

DAData 3: Self-Deletion.

1 readlink , 93, 4096,
2 /proc/self/exe,
3 /home/naru3/workdir/test/mal.elf
4 unlink , 0,
5 /home/naru3/workdir/test/mal.elf

This sample attempted to hide itself by deleting its ex-
ecutable files (DAData 3). The Linux virtual file sys-
tem, specifically /proc/self/exe, contains a sym-
bolic link to the executable that the current process
runs. Therefore, using the readlink14 system call on
/proc/self/exe, malware could obtain the full path
to its own executable. Then, it deleted itself using an
unlink system call. The key explanation provided by
the LLM is summarized as follows:

• The readlink system call was invoked to obtain
the location of the file or verify its integrity.

• A deletion is a typical anti-analysis tactic em-
ployed by malware to hinder detection and foren-
sic analysis.
Based on these results, the DA data successfully

provided evidence of malicious behavior; that is,
the malware obtained its full path and subsequently
deleted itself, thus supporting Hypothesis (2). Fur-
thermore, the LLM not only accurately interpreted the
DA data and generated a correct explanation but also
pointed out that the readlink system call was em-
ployed to verify file integrity, thereby supporting Hy-
pothesis (4).

5.3 Killing Other Processes

DAData 4: Killing other processes.

1 open , 1, 32768, 0,
2 /proc/1025/ status
3 read , 1421, 1, 4096,
4 Name: sudo
5 Pid: 1025
6 PPid: 677
7 TracerPid: 0

errno-base.h header file, which defines error codes in the
kernel source, the explanation of the LLM is accurate.

14The readlink system call retrieves the target path of
the symbolic link specified by the second argument and
stores it in the buffer provided by the third argument.

8 ˜˜(omission)˜˜
9

10 open , 2, 32768, 0,
11 /proc/677/ cmdline
12 read , 6, 2, 4096, -bash\x00
13 kill , 0, 1025, 9

This sample detected a process initiated by bash
shell and sent a SIGKILL signal15 (DAData 4). The
/proc/[PID]/status16 file is a virtual file that pro-
vides information about the process identified by the
[PID] in the path. In this case, it is likely that the
sample read /proc/1025/status to retrieve the par-
ent process ID (PPID). Subsequently, the sample ac-
cessed the /proc/677/cmdline file, where 677 is the
retrieved PPID. The /proc/[PID]/cmdline file con-
tains the command-line arguments used when the pro-
cess was executed. In DAData 4, the argument was
-bash, indicating that the process was initiated by the
bash shell. The sample then sent a SIGKILL signal to
the process with PID = 1025 using the kill system
call. The key explanation provided by LLM is sum-
marized as follows:

• The program read the status information of pro-
cess 1025, accessed the command line of process
677, and sent a SIGKILL signal to terminate pro-
cess 1025.

• This behavior suggests process monitoring and
termination, often associated with malicious in-
tent such as forcibly terminating security or mon-
itoring processes to evade detection.

Using the same approach shown in DAData 4,
the same sample attempted to terminate the kthread,
named sclda thread. As described in Section 3.1,
the sclda thread transmits the DA data to a server
in the host environment. Although the return value
of the kill system call was zero, it is likely that
the sclda thread was not terminated, because it is
impossible to terminate the kthread from the user
space. Moreover, as no anomalies were detected
in the captured TCP packets, we concluded that the
sclda thread was not terminated. The key explana-
tion provided by LLM is summarized as follows:

15The kill system call sends a signal to the target. The
first argument is the PID and the second specifies the signal
to be sent. The SIGKILL signal (9) forcefully and imme-
diately terminates the process without allowing it to catch,
block, or clean.

16TracerPid (line 7 in DAData 4) displays the PID of
a process that analyzes this process using tools such as
strace. In the case of DAData 4, because no user-space
process was analyzing this process, the displayed value was
zero.

Kernel-Level Malware Analysis and Behavioral Explanation Using LLMs

449



• This program sent a SIGKILL signal to terminate
the kthread (i.e., sclda thread).

• kthread operates at a privilege level superior to
that of user-space processes, making it impossible
to terminate a kthread from user space.

Based on these results, it can be concluded that the
DA data accurately reflected the behavior exhibited
by the program, supporting Hypotheses (1) and (2).
In addition, it became evident that SCLDA demon-
strated a certain level of resistance to anti-analysis
techniques. The LLM correctly interpreted the DA
data and provided an appropriate explanation, thereby
supporting Hypotheses (3) and (4).

6 CONCLUSION

In this study, we generated behavioral explanations
for malware by inputting DA data into LLMs. This
approach is based on the understanding that dynamic
analysis, which involves executing a target program
and converting its behavior into data, is critically lim-
ited by the absence of malicious behavior during the
analysis period. Additionally, we demonstrated that
our DA system (i.e., kernel-level analysis) has the po-
tential to partially disable malware anti-analysis tech-
niques. This offers a clear advantage over conven-
tional methods that rely on user-space tools, such as
strace. We have made our DA system publicly avail-
able, including the modified kernel source code and
other necessary programs.

We tested the four hypotheses presented in Section
1.3. Based on the experimental results and discussion,
the following conclusions were drawn regarding the
hypotheses:

(1) The DA data provided evidence of the malicious
behavior exhibited by malware.

(2) The DA data indicated the use of anti-analysis
techniques by the malware.

(3) The LLM was able to interpret DA data and ex-
plain the malicious behavior of malware.

(4) The LLM was able to explain the anti-analysis
behavior of malware.

In particular, we found that the DA data could re-
veal both what the malware “attempted to do” and
what it “actually did.” Therefore, even if the execu-
tion of malicious behavior failed and no actual dam-
age occurred, it was shown that there is a possibility
of determining it as malware based on “it attempted
to do.”

REFERENCES

Bulazel, A. and Yener, B. (2017). A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: PC, mobile, and web. In Proceedings of the
1st Reversing and Offensive-Oriented Trends Sympo-
sium, ROOTS, New York, NY, USA. Association for
Computing Machinery.

Chen, P., Huygens, C., Desmet, L., and Joosen, W. (2016).
Advanced or not? a comparative study of the use
of anti-debugging and anti-VM techniques in generic
and targeted malware. In IFIP International Informa-
tion Security Conference.

Cohen, A. and Nissim, N. (2018). Trusted detection of ran-
somware in a private cloud using machine learning
methods leveraging meta-features from volatile mem-
ory. Expert Systems with Applications, 102:158–178.

Hsu, F.-H., Hunag, J.-H., Hwang, Y.-L., Wang, H.-J., Chen,
J.-X., Hsiao, T.-C., and Wu, M.-H. (2023). A kernel-
based solution for detecting and preventing fileless
malware on linux. Preprints.

Nissim, N., Lapidot, Y., Cohen, A., and Elovici, Y.
(2018). Trusted system-calls analysis methodology
aimed at detection of compromised virtual machines
using sequential mining. Knowledge-Based Systems,
153:147–175.

Otsuki, Y. (2016). Research on System Call Tracing for
Malware Analysis based on Virtualization Technol-
ogy. PhD thesis, Ritsumeikan University.

Panker, T. and Nissim, N. (2021). Leveraging malicious
behavior traces from volatile memory using machine
learning methods for trusted unknown malware detec-
tion in linux cloud environments. Knowledge-Based
Systems, 226:107095.

Sun, Y. S., Chen, Z.-K., Huang, Y.-T., and Chen, M. C.
(2024). Unleashing malware analysis and understand-
ing with generative ai. IEEE Security & Privacy,
22(3):12–23.

TrendMicro (2024). The linux threat landscape re-
port. https://www.trendmicro.com/vinfo/us/
security/news/cybercrime-and-digital-threats/
the-linux-threat-landscape-report. Accessed:
2024-09-14.

W3Techs (2024). Usage statistics and market share of op-
erating systems for websites. https://w3techs.com/
technologies/cross/operating system/web server. Ac-
cessed: 2024-09-14.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

450


