Garbage Classification from Visual Footprints: Using
Transfer Learning Strategy

Zheyuan Xu and Nasim Hajari

Department of Mathematics & Information Technology, Concordia University of Edmonton, Edmonton, Canada

Keywords:

Abstract:

Garbage Classification, Machine Learning, Computer Vision, Pre-Trained Models, Transfer Learning.

This study investigates the application of computer vision models based on deep learning, to improve waste
sorting and promote environmental sustainability. The research evaluates the effectiveness of Convolutional
Neural Networks (CNN5s) and transfer learning techniques by comparing the performance of eleven pre-trained
models in classifying household waste from images into eight distinct categories. Through the implementation
of fine-tuning, learning rate scheduling, and overfitting prevention strategies, the study optimizes model perfor-
mance. Remarkably, the ConvNeXtBase and EfficientNetV2L models achieved impressive accuracy rates of
99.00% and 98.64%, respectively, underscoring the potential of modern CNN architectures in waste classifica-
tion tasks. Furthermore, a comparative analysis with recent studies reveals that the dataset’s size, quality, and
category diversity play crucial roles in determining model performance, with larger and more diverse datasets
enabling superior generalization. The originality of this research lies in its comprehensive, side-by-side com-
parison of multiple pre-trained models on garbage classification application. This offers valuable insights into
balancing knowledge retention and adaptation to new tasks. The findings underscore the significant potential
of advanced neural network architectures in enhancing waste management and recycling practices.

1 INTRODUCTION

Managing waste effectively is a significant global
challenge, with inefficient sorting processes leading
to increased environmental pollution and negatively
affecting recycling efforts (Satvilkar, 2018). Tradi-
tional methods, which often depend on manual sort-
ing, are not only time-consuming but also prone to er-
rors. This study was inspired by the growing need for
smarter solutions in garbage classification and waste
management, especially as the volume of waste con-
tinues to rise with improving economies and living
standards. Recent advancements in computer vision
and machine learning present promising solutions for
enhancing the accuracy of waste sorting. In this re-
search, we take a close look at how different pre-
trained computer vision models, perform in classify-
ing waste into eight specific categories. Our goal is
to fill a noticeable gap in the existing research by of-
fering a detailed comparison of these models, specif-
ically for transfer learning in the context of garbage
classification. The remaining of this paper is orga-
nized as follows: the review of the relevant literature
is presented in Section 2. Section 3 explains method-
ology including data preparation and preprocessing
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and selecting and fine-tuning the pre-trained mod-
els. Section 4 discusses the implementation of trans-
fer learning, evaluates the models’ performances, and
compares their effectiveness, ultimately identifying
the top two models for this task. Finally, Section 5
wraps up with conclusions.

2 LITERATURE REVIEW

In recent years, the application of transfer learning
in garbage classification has steadily drawn the inter-
est of many researchers. Although, the early results
are not quite satisfactory, the algorithms efficiencies
have been improved recently (Wang, 2022; Endah
et al., 2020). Wu et al. (Wu et al., 2022) proposed
an improved VGG16 model for waste classification,
addressing overfitting and computational inefficiency
issues found in the traditional model. The improved
VGG16 achieved a high accuracy of 96.21% on the
test set, with fewer parameters and shorter training
time. This enhancement demonstrates its potential for
real-world waste classification. Additionally, Ma et
al. (Ma et al., 2022) compared MobileNet and Mo-
bileNetV2, finding that MobileNetV2 was more ac-
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curate and resource-efficient, making it ideal for em-
bedded waste sorting systems, achieving 98.7% accu-
racy with minimal resources. Mehedi et al. (Mehedi
et al., 2023) considered three different CNN archi-
tectures: a custom 6-layer baseline CNN, VGG16,
and MobileNetV2. Their results showed that VGG16
had the best performance in terms of accuracy of
96.00%. MobileNetV2 also performed well with
an accuracy of 95.51%, while the benchmark CNN
had an accuracy of 90.61%. Shukurov (Shukurov,
2023) used five pre-trained CNN architectures for
fine-tuning, finding that models optimized with the
Adam optimizer, particularly ResNeXt50, achieved
high validation accuracy with minimal overfitting.
Lou and Gou (Lou and Gou, 2023) introduced trans-
fer learning and Efficient Channel Attention mecha-
nism (ECA) to enhance the feature extraction of the
model. They introduced ECAE-Net, a model based
on EfficientNetV2-S, which achieved 96.8% accuracy
with fewer parameters and FLOPs, demonstrating the
potential of incorporating attention mechanisms and
optimization techniques. The research by Goel et
al. (Goel et al., 2023) focused on four well-known
models: DenseNet-161, ResNet-50, InceptionV3, and
EfficientNet-B7. All models, augmented with mi-
gration learning methods, achieved high test accu-
racies, with ResNet50 leading at 94.70%. Haque et
al. (Haque et al., 2024) researched customized CNN
models with pre-trained models such as DenseNet,
ResNet and Xception. DenseNet169 emerged as the
top performer with a 99.58% accuracy, outperforming
the other models in terms of both training and valida-
tion accuracy.

3 METHODOLOGY

The workflow used in this project is shown in Fig-
ure 1.
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Figure 1: Workflow of the developed system.

The following subsections explain each phase in
details.

3.1 Data Preparation and Preprocessing
3.1.1 Preparation of Datasets

Garbage dataset for this paper comes from the merg-
ing of two publicly available garbage datasets on the
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Kaggle website (Chang, 2018; Mohamed, 2021) The
merged and modified dataset contains 6531 images
divided into eight categories: batteries, brown glass,
cardboard, green glass, metal, paper, plastic, and
white glass. Table 1 shows the number of images con-
tained in each category in the garbage dataset. Fig-
ure 2 shows an example of the final dataset.
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Figure 2: An example of prepared dataset.

With batch_size = 32, img_height = 224, and
img_width = 224, the garbage data is finally divided
into training (70%), validation (15%) and test (15%)
data, where the number of train batches is 143, the
number of batches for both validation and test is 31.

3.1.2 Image Data Augmentation

Image data augmentation artificially increases the size
of the image training dataset by generating many
training instances from existing images. The gener-
ated instances should be as realistic as possible, that
means, given an image from the augmented training
dataset, a human should not be able to tell whether it
was augmented or not (Géron, 2019).

We augment the data by flipping, rotating and ad-
justing is brightness randomly. This also helps the
model to be more resilient towards variations in the
position, orientation, and lighting conditions.

3.2 Transfer Learning
3.2.1 Reason to Use Transfer Learning

The pre-trained models are state-of-the-art models
and generally trained on ImageNet database (Li et al.,



Table 1: Data distribution.
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Classes Number of Images Classes Number of Images
batteries 945 metal 769
brown glass 607 paper 1050
cardboard 891 plastic 865
green glass 629 white glass 775

2024). However, when these state-of-the-art models
are applied to other related tasks/domain, they often
suffer a considerable loss in performance due to their
bias toward the training data and domain. Transfer
learning uses the knowledge gained during training
on a task and domain where sufficiently labeled data
was available as a starting point (Ruder, 2017; Pan
and Yang, 2009). In other words, transfer learning
consists of taking features learned on one problem,
and using them on a new, similar problem. Therefore,
transfer leaning is particularly suitable to the tasks
where the available dataset has too little data to train
a full-scale model from scratch.

3.2.2 Techniques to Avoid Overfitting

Transfer learning could potentially lead to quick over-
fitting, therefore, avoiding overfitting is very impor-
tant for transfer learning. In this paper, four tech-
niques are used to avoid overfitting (Géron, 2019):
Image data augmentation, Dropout, 12 norm regular-
ization and Early stopping.

3.2.3 Building Customized Models for Fine
Tuning

Eleven pre-trained models in Keras API (Keras-Team,
2024) are selected to implement this comparison
study. Here, we take ConvNeXtBase model as exam-
ple to show how the customized models used in this
paper are built. For the new classification task with 8
categories, the top layer of ConvNeXtBase, originally
designed for 1000 categories, is replaced with a new
layer tailored to this task. The base model of Con-
vNeXtBase is combined with additional layers such
as GlobalAveragePooling2D, Dropout, and Dense to
build the final customized model. Similar modifica-
tions were applied to the other models in the study.

4 IMPLEMENTATION

4.1 Learning Rate Scheduling and
Early Stopping

Choosing a good learning rate is very important. With
a low learning rate, the training will eventually con-

verge to the optimum, but it will last a very long time
to finish. On the other hand, a high learning rate will
make the training process very quickly at first, but it
will end up jittering around the optimum and never
really settling down. Generally, starting with a large
learning rate and then reducing it gradually during the
training yield a good solution faster than with the op-
timal constant learning rate (Géron, 2019). In this pa-
per we use InverseTimeDecay schedule and set the
initial learning rate to 0.00003. We also adapt an early
stopping strategy to avoid overfitting, and eliminate
long and unnecessary training times.

4.2 Fine-Tuning Techniques

The knowledge gained during training is stored in the
weights of a neural network. However, the knowledge
is not stored uniformly in all layers. In a stacked CNN
for image classification, the initial convolution layers
are only trained for extracting low-level features such
as lines and edges, those complex feature such as an-
imals and a body part or faces, are extracted by the
higher convolution layers (Melcher and Silipo, 2020).
Based on the extracted features, the last layer or out-
put layer is responsible for classify the images.

Transfer learning in this paper uses the pre-trained
models to build the transferred models with the
weights gained from the source task as the starting
point for the new task, which is garbage classifica-
tion of eight categories. A key technique in trans-
fer learning is fine tuning, which consists of unfreez-
ing the entire base model obtained above or part of
it, and re-training it on the new data with a very low
learning rate. This can potentially achieve meaning-
ful improvements, by incrementally adapting the pre-
trained features to the new data.

However, unfreezing the entire base model will in-
crease training time, more importantly, it will take a
risk to unlearn the knowledge gained from the source
task. Therefore, we adapt a small learning rate to keep
the learned knowledge from the source tasks as much
as possible.

Table 2 shows the effect of freezing different lay-
ers (0%, 25%, 50%, 75%, and 100% of the layers
from the lower layer to the upper layer) in the base
model, respectively.

This experiment suggests that:
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Table 2: Comparison of freezing different layers.

Freezing the layers in | Early stopping at | Accuracy on test
different percentages epochs dataset
0% 143 95.08%
25% 149 95.41%
25% 95 95.89%
50% 54 95.13%
75% 65 95.15%
100% 227 91.4%

* Freezing 100% layers in the base model produces
the lowest accuracy, 91.40%. This means only the
weights in the classification head involve in train-
ing, limiting the learning ability of the model. Ob-
viously, this is not a good choice.

* In the cases of freezing the layers in percent-
ages: 0%, 25%, 50%, and 75% in the base model,
there is a very little difference in accuracy, and all
models obtain accuracies above 95%, specifically
from 95.08% to 95.89%. Although the optimiza-
tion path for each training process can be differ-
ent, which leads to different training time. How-
ever, the required training time usually reduces as
the freezing layers increase from 0% to 50%.

Note that there is an obvious difference in train-
ing time for two cases of freezing 25% layers.
This can be understood that different optimization
paths require different training time.

It is found that freezing 50% layers is a good bal-
ance between performance (accuracy) and train-
ing efficiency (number of iterations).

Based on the above analysis, this research takes
into account a tradeoff between keeping the learned
knowledge from the source task as much as possi-
ble and making the new model to adapt the new task;
about 50% layers of the base model in the new model
are frozen and at the same time, a very low learning
rate is used for the fine tuning. In addition, each block
needs to be all turned on or off. This is because the
architecture includes a shortcut from the first layer to
the last layer for each block. Not respecting blocks
also significantly harms the final performance.

4.3 Models at Work

The eleven selected models are all implemented and
the results are visualized. Due to limited space, let us
take ConvNeXtBase as an example to show the im-
plementation and result’s visualization. The accuracy
and loss of training and validation for ConvNeXtBase
are shown in Figure 3. The confusion matrix is shown
in Figure 4.
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Figure 3: Accuracy and loss of training and validation for
ConvNeXtBase.

4.4 Evaluation and Comparison

The accuracy, precision, recall and F1-score compari-
son for models on the test dataset is shown in Tables 3
to 6 respectively.

After comparing the performance of all models,
ConvNeXtBase is considered as the best one, and Ef-
ficientnetV2L is the second best one for the specific
classification task.

4.4.1 Comparison with Recent Results by
Transfer Learning

Table 7 lists the accuracies obtained from some trans-
fer learning studies in the past three years and com-
pare them with this paper. Figure 5 shows visual com-
parison of transfer learning performance in this paper.

The comparative analysis of test results high-
lights the impact of dataset size, number of cate-
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Table 3: Accuracy of models on test dataset.

Model Accuracy Model Accuracy
MobileNetV2 | 94.68% ResNet50V2 95.26%
VGG16 93.60% | InceptionResNetV2 | 96.05%
VGGI19 95.02% NASNetLarge 97.35%
DenseNet169 | 97.65% EfficientNetV2L 98.64 %
DenseNet201 | 97.71% ConvNeXtBase 99.00%
Xception 96.42%

Table 4: Precision of models for all categories on test dataset.

batteries | brown | card- | green | metal | paper | plastic | white
glass | board | glass glass
MobileNetV2 0.98 0.99 098 | 096 | 0.86 | 0.95 0.92 0.94
VGG16 0.99 0.99 097 | 096 | 0.90 | 0.96 0.87 0.91
VGG19 0.96 1.00 | 097 | 098 | 0.86 | 0.96 0.95 0.93
DenseNet169 0.98 1.00 1.00 | 099 | 093 | 0.97 0.96 0.98
DenseNet201 1.00 1.00 | 099 | 099 | 093 | 097 0.94 0.96
Xception 0.98 096 | 099 | 095 | 093 | 0.96 0.95 0.96
ResNet50V2 0.98 092 | 099 | 095 | 090 | 094 0.93 0.93
Inception-ResNetV2 0.98 094 | 099 | 095 | 093 | 097 0.94 0.92
NasNetLarge 0.98 1.00 | 096 | 1.00 | 093 | 0.95 0.97 0.97
EfficientNetV2L 0.99 099 | 099 | 099 | 097 | 0.98 0.96 0.97
ConvNeXtBase 1.00 1.00 | 099 | 099 | 097 | 098 0.99 0.97
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Figure 4: Confusion matrix for ConvNeXtBase.

gories, and model architecture on classification accu-
racy. ConvNeXtBase and EfficientNetV2L in this pa-
per achieved 99.00% and 98.62% accuracy in 6531
images in 8 categories, respectively, showing ex-
cellent performance. This result demonstrates that
the two models are able to efficiently capture com-
plex features and have strong feature extraction ca-
pabilities. Also, the study reveals that while larger
datasets generally enhance accuracy, the dataset qual-
ity and distribution are equally crucial. Models like
VGG16 and MobileNetV2 demonstrated robustness
across different datasets, but newer models such as
EfficientNetV2L and ConvNeXtBase showed signif-
icant improvements, particularly with a moderate or

large number of categories. The analysis underscores
the importance of balancing dataset characteristics
with the right model architecture to achieve optimal

performance.
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Figure 5: Accuracy comparison graphs for various transfer
learning strategies.

S CONCLUSIONS

This study evaluates several pre-trained CNN mod-
els and transfer learning techniques for classify-
ing household waste into eight categories, analyz-
ing eleven models with ConvNeXtBase and Efficient-
NetV2L as top performers, achieving 99.00% and
98.64% accuracy, respectively. The study’s origi-
nality lies in the detailed comparison of models us-
ing expanded datasets and exploring fine-tuning tech-
niques to enhance performance. Data augmentation
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Table 5: Recall of models for all categories on test dataset.

batteries | brown | card- | green | metal | paper | plastic | white
glass | board | glass glass

MobileNetV2 0.98 0.94 0.95 0.99 | 097 0.98 0.91 0.86

VGG16 0.96 0.97 0.97 0.97 0.97 0.97 0.88 0.84
VGG19 0.96 094 | 096 | 1.00 | 097 | 096 | 0.88 | 0.92
DenseNet169 0.99 096 | 097 | 1.00 | 0.99 | 0.99 | 0.95 0.93
DenseNet201 0.99 0.99 0.97 0.99 | 0.99 0.99 0.95 0.92
Xception 0.99 0.95 0.95 0.97 0.97 0.99 0.92 0.93
ResNet50V2 0.99 090 | 095 | 095 | 096 | 098 | 0.86 | 091
Inception-ResNetV2 0.98 0.95 097 | 097 | 095 | 0.96 0.91 0.93
NasNetLarge 0.99 0.96 0.96 099 | 096 | 0.97 0.96 0.96
EfficientNetV2L 0.99 099 | 099 | 1.00 | 0.96 | 099 | 097 | 093
ConvNeXtBase 0.99 0.99 0.98 0.99 1.00 | 0.99 0.95 0.99
Table 6: F1-Score of models for all categories on test dataset.
batteries | brown | card- | green | metal | paper | plastic | white
glass | board | glass glass
MobileNetV2 0.98 0.96 0.96 0.98 0.91 0.97 0.91 0.90
VGG16 0.97 098 | 097 | 097 | 093 | 097 | 0.87 | 0.87
VGG19 0.96 097 | 097 | 099 | 091 | 096 | 0.92 | 0.92
DenseNet169 0.98 0.98 0.98 0.99 | 096 | 0.98 0.95 0.95
DenseNet201 0.99 0.99 0.98 0.99 | 096 | 0.98 0.94 0.94
Xception 0.98 095 | 097 | 096 | 095 | 097 | 094 | 0.95
ResNet50V2 0.98 0.91 097 | 095 | 093 | 096 | 089 | 0.92
Inception-ResNetV2 0.98 0.94 0.98 0.96 | 094 | 097 0.92 0.92
NasNetLarge 0.98 0.98 0.96 0.99 | 0.95 0.96 0.96 0.96
EfficientNetV2L 0.99 0.99 0.99 0.99 | 097 | 0.98 0.97 0.95
ConvNeXtBase 1.00 099 | 099 | 099 | 098 | 098 | 097 | 0.98
Table 7: Recent results achieved by transfer learning.

Authors, year No. of images | No. of categories Models Accuracy
This paper, 2024 6,531 8 ConvNeXtBase 99.00%
This paper, 2024 6,531 8 EfficientNetV2L | 98.62%

Haque et al., 2024 15,515 12 DenseNet169 99.58%
Lou and Gou, 2023 2,725 14 EfficientNetV2S | 95.50%
Wu et al., 2022 7,000 4 VGG16 96.21%
Mehedi et al., 2023 24,705 2 VGG16 96.00%
Mehedi et al., 2023 24,705 2 MobileNetV2 95.51%
Shukurov, 2023 15,000 12 ResNeXt50 95.00%
Goel et al., 2023 21,984 10 EfficientNetB7 93.75%
Goel et al., 2023 21,984 10 DenseNet161 93.25%
Goel et al., 2023 21,984 10 InceptionV3 92.54%
Goel et al., 2023 21,984 10 ResNet50 94.70%
Ma et al., 2022 12,000 5 MobileNetV2 98.70%
and early stopping were used to avoid overfitting. The REFERENCES

results underscore the superiority of modern neural
network architectures in waste classification, empha-
sizing dataset quality and size. A comparative analy-
sis with recent studies highlights the significance of
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Moreover, newer CNN models outperform older ar-
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on efficient waste classification.
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