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Abstract: This study is the first to implement quantum machine learning (QML) on educational data to predict alumni
results. This study aims to show that we can design and implement QML algorithms for this application case
and compare their accuracy with those of classical ML algorithms. We consider three target variables in a
high-dimensional dataset with approximately 100 features and 25,000 instances or samples: whether an alum-
nus will secure a CEO position, alumni salary, and alumni satisfaction. These variables were selected because
they provide insights into the effect of education on alumni careers. Due to the computational limitations of
running QML on high-dimensional data, we propose to use principal component analysis for dimensionality
reduction, a barycentric correction procedure for instance reduction, and two quantum-kernel ML algorithms
for classification, namely quantum support vector classifier (QSVC) and Pegasos QSVC. We observe that
currently one can implement quantum-kernel ML algorithms and achieve results comparable to those of clas-
sical ML algorithms. For example, the accuracy of the classical and quantum algorithms is 85% in predicting
whether an alumnus will secure a CEO position. Although QML currently offers no time or accuracy advan-
tages, these findings are promising as quantum hardware evolves.

1 INTRODUCTION

Machine learning (ML) is promising for revolution-
izing many domains, including healthcare and edu-
cation. However, the increasing complexity of con-
temporary challenges has highlighted the limitations
of classical ML algorithms. Handling big data, long
model-training durations, and hardware constraints
are among the challenges associated with analyzing
current data (Nath et al., 2021). Quantum computing
seems to be a promising solution in this regard (Alam
and Ghosh, 2022), with new possibilities to address
some of these challenges.

Quantum machine learning (QML) is a new do-
main involving the use of quantum computers for in-
formation processing (Payares and Martı́nez, 2023).
QML combines quantum computing with ML tech-
niques (Zeguendry et al., 2023), promising improve-
ments in speedups and conventional ML tasks (Alam
and Ghosh, 2022). Through further research, quan-
tum algorithms will have the potential to enhance ar-
tificial intelligence algorithms, leading to more ac-
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curate predictions, faster optimization, and improved
ML capabilities (Singh, 2023)

Recent advancements in quantum hardware have
advanced the development and application of QML.
Improvements in qubit stability and coherence
(Vepsäläinen et al., 2022; Bal et al., 2024) as well as
an increase in the number of available qubits in quan-
tum processors (IBM, 2023) are expected to enable
the execution of more complex and precise algorithms
compared to current ones (Boger, 2024). The tech-
nology used for generating qubits, an essential com-
ponent of quantum computers, is rapidly advancing
(Ullah and Garcia-Zapirain, 2024). In 2023, IBM sur-
passed the 1,000-qubit milestone with Condor, which
is a 1,121-qubit superconducting quantum processor
built using the cross-resonance gate technology (IBM,
2023).

Herein, we aimed to develop a calibrated, quan-
tum educational-modeling framework to accurately
predict the career outcomes of university alumni. To
the best of our knowledge, there are no studies on
the performance of QML algorithms on educational
data. We used a large dataset of a private university
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to predict three target variables: CEO (i.e., whether
an alumnus will secure a CEO position), salary (i.e.,
whether alumni salary will exceed the median salary),
and alumni satisfaction (i.e., whether alumni would
prefer to study again at the university). As is known,
QML algorithms cannot be implemented on classical
hardware using Qiskit for high-dimensional datasets
(at least without advanced data encoding into quan-
tum states). Hence, this paper proposes a method to
reduce dimensions and instances prior to the imple-
mentation of QML algorithms. We aimed to examine
whether QML algorithms can achieve results compa-
rable to or better than those of classical ML algo-
rithms. Furthermore, we demonstrate that currently,
QML algorithms can be implemented in a space with
reduced dimensions without affecting prediction ac-
curacy in comparison with implementing classical
ML algorithms on original datasets.

Education is a key element of economic devel-
opment (Hanushek and Woessmann, 2010), and au-
thors of (Ceci and Williams, 1997) stated that a pro-
fessional gains notable benefits for each additional
month or year of schooling. Analysis of alumni re-
sults is important for students and the reputation of
educational institutions. Future advancements in this
analysis are expected to benefit students and educa-
tional institutions. This study contributes to educa-
tional data mining by exploring and benchmarking
QML algorithms on an educational dataset of a pri-
vate university and highlighting the potential and cur-
rent limitations of QML algorithms.

The remainder of this paper is organized as fol-
lows: a literature review is presented in Section 2.
The research methodology is introduced in Section 3.
Next, we present the findings of our study in Section
4. Finally, Section 5 concludes this study and outlines
future research directions.

2 LITERATURE REVIEW

This section presents the findings of a review of Sco-
pus articles performed to understand the state of the
art of publications pertaining to QML applications.
The query keywords used were “quantum,” “machine
learning,” and “applications” for article titles. This
query was raised on June 26, 2024 and it returned 76
articles. The United States and China have published
the most number of articles on QML, highlighting its
applications in computer science, physics, engineer-
ing, and mathematics.

QML showed a noticeable growing number of
publications recently, with a spike observed in 2023.
A total of 2 articles were published in 2018, 14 in

2020, and 27 in 2023. Because we aimed to elucidate
the state of the art of QML applications, we applied
exclusion criteria and a filtration process for articles
focused on QML applications using real data. This
process decreased the number of analyzed articles to
17.

QML has been applied in diverse fields. In en-
vironmental chemical studies, ML-based quantum
chemical methods are used to understand the behav-
ior and toxicology of chemical pollutants (Xia et al.,
2022). Interestingly, authors of (Lachure et al., 2023)
showed that the current progress in QML and quan-
tum computers may lead to technological advance-
ments in climate change research. In biochemical
thermodynamics, QML is used for metabolism mod-
eling and prediction (Jinich et al., 2019).

In the healthcare domain, QML is used for drug
discovery (Batra et al., 2021; Vijay et al., 2023), onco-
logical treatments (Rahimi and Asadi, 2023), and dis-
ease detection (Pomarico et al., 2021; Esposito et al.,
2022; Miller et al., 2023; Upama et al., 2023; Prabhu
et al., 2023)]. In physics, it is applied in high-energy
physics (Wu et al., 2021b; Wu et al., 2021a; Chan
et al., 2021; Wu et al., 2022; Delgado and Hamilton,
2022), spintronics (Ghosh and Ghosh, 2023), and par-
ticle physics (Fadol et al., 2022).

Several algorithms are pivotal in the current ap-
plication of QML, including quantum support vector
classifier (QSVC), Pegasos QSVC, variational quan-
tum classifier, and quantum neural networks. These
algorithms are implemented using various quantum
simulators and hardware platforms, such as the IBM
Quantum Platform (using IBM Qiskit), Google Quan-
tum AI (using Google Cirq), and quantum computers
and simulators (using Amazon Braket quantum com-
puting).

Currently, several studies have achieved compara-
ble results for classical and QML algorithms (Espos-
ito et al., 2022; Wu et al., 2021b; Wu et al., 2021a;
Chan et al., 2021; Wu et al., 2022; Ghosh and Ghosh,
2023; Fadol et al., 2022; Gujju et al., 2024). Au-
thors of (Prabhu et al., 2023; Ghosh and Ghosh, 2023)
highlighted that QSVC and Pegasos QSVC consider-
ably outperformed a classical support vector classi-
fier (SVC) when using the Aer simulator provided by
Qiskit.

Interestingly, classical and QML algorithms cur-
rently face difficulty in handling big datasets (Wu
et al., 2022; Turtletaub et al., 2020), although fu-
ture QML algorithms are expected to offer more
efficient solutions to handle large datasets (Singh,
2023). However, this will require a higher number
of qubits and stability (Nath et al., 2021; Ullah and
Garcia-Zapirain, 2024; Wu et al., 2022; Peral-Garcı́a
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et al., 2024) along with the addressal of challenges
associated with noise reduction and error mitigation
in quantum computing (Ullah and Garcia-Zapirain,
2024; Wu et al., 2022; Gujju et al., 2024; Peral-Garcı́a
et al., 2024). Our research seeks solutions to these
challenges of QML algorithms.

The current results of the research and application
of QML algorithms are only hinting at the beginning
of QML applications. As quantum computers become
more powerful and accessible, the accuracy and the
model-training durations difference between classical
and QML algorithms will increase, eliciting new pos-
sibilities for QML applications across various indus-
tries and sciences.

3 RESEARCH METHODOLOGY

This section presents data, the modeling framework,
and validation processes used in this study. Next,
we propose the use of principal component analysis
(PCA), barycentric correction procedure (BCP), and
QML algorithms in the proposal. The proposal in-
tends to enable the practical application of QML algo-
rithms and generate a reduced-dimensionality dataset
that preserves data variability while accurately pre-
dicting target variables.

3.1 Proposal

Herein, we used a large dataset with approximately
100 features and 25,000 instances. Execution of
QML algorithms in simulators is not feasible for large
datasets because of memory constraints. For example,
one cannot run QSVC on a dataset with 750 instances
and 7 features using Google Colab.

Therefore, we propose a methodology to enable
the execution of QML algorithms on a reduced-
dimensionality educational dataset:

1. Dimensionality Reduction Using PCA. We use
PCA to reduce the number of features while pre-
serving data variability of at least 90% in the
reduced-dimensionality dataset.

2. Instance Reduction Using BCP. We employ
BCP to reduce the number of instances, which
previously did not affect the accuracy even on a
small dataset (Ramos-Pulido et al., 2024).

3. Implementation of Classical and QML Algo-
rithms. We implement the classic (i.e., SVC),
and QML (i.e., QSVC and Pegasos QSVC) algo-
rithms.

4. Comparison Between the Results Obtained in
Step 3. We compare the results of the classical

and QML algorithms.

The Sklearn library was used to fit the SVC model
(Pedregosa et al., 2011). The Qiskit library was used
to implement the QML models, following the recom-
mendations provided in (Team, 2024; Javadi-Abhari
et al., 2024). Qiskit is an open-source quantum com-
puting framework, which enables the development
and execution of quantum algorithms on real quantum
processors and simulators. We used Sampler from
qiskit.primitives to execute quantum circuits and ob-
tain statistical results of measurements.

Further, we processed classical data using QML
algorithms by following three steps described in
(Learning, 2023): 1) encoding of quantum data or
preparation of states, 2) processing of quantum data,
and 3) reading and outputting of learning results. Pa-
rameterized quantum circuits (PQCs) can be used
to implement QML algorithms on near-term quan-
tum devices and are sufficiently versatile to depict a
broad spectrum of intricate quantum states (Learn-
ing, 2023). In QML, PQCs are typically used for two
primary purposes: 1) data encoding, wherein the pa-
rameters are determined by data being encoded, and
2) as quantum models, wherein an optimization pro-
cess determines the parameters (Learning, 2023). We
encoded our classical data into quantum states using
the ZZFeatureMap method and employed the Fideli-
tyQuantumKernel class from Qiskit to generate the
kernel. The number of qubits used was dependent on
the model and number of features (refer to Table 1 for
the number of qubits or components used). In addi-
tion, we employed QSVC and Pegasos QSVC from
the Qiskit library for classification tasks.

3.2 Barycentric Correction Procedure

BCP followed in Step 2 of the proposal is described in
(Poulard and Estève, 1995). BCP relies on the calcu-
lation of individual weights and a threshold parame-
ter. The training process involves iteratively adjusting
the weights of the barycenters to minimize the num-
ber of misclassified values. The algorithm defines a
hyperplane wT x+θ, which separates the input space
into two classes. First, we define I1 = 1, ..,N1 and
I0 = 1, ..,N0, where N1 represents number of posi-
tive cases and N0 represents number of negative cases.
The barycenters of the classes are defined using the
following weighted averages:

b1 =
∑i∈I1 αixi

∑i∈I1 αi
, b0 =

∑i∈I0 µixi

∑i∈I0 µi

The weight vector w is defined as the vector dif-
ference w = b1 −b0. The range of w is not fixed, as it
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depends on the relationships between the classes, the
distribution of the data, and the scale of the features.
This vector is central to the classification process be-
cause it defines the orientation of the hyperplane in
the feature space. At each iteration, the barycenter
shifts towards the misclassified patterns. Increasing
the value of a specific barycenter causes the hyper-
plane to move in that direction.The bias term, θ, is
computed as follows:

θ =
maxγ1 +minγ0

2
where γ(x) = −w · x. The range of θ will depend
on the positions of the points in the feature space
and how the classes are distributed. The bias term
θ adjusts the position of the decision boundary. The
barycentric correction is calculated by modifying the
weighting coefficients. We have

αnew = αold +β µnew = µold +λ

where β = min{1,max [30,N1/N0]} and
λ=min{1,max [30,N0/N1]}, (Poulard and Labreche,
1995). In some cases, BCP has considerably outper-
formed the perceptron in time (Poulard and Labreche,
1995).

3.3 Data

The university supplied an anonymized dataset com-
prising survey responses from alumni regarding their
social and economic conditions. In 2023, as a part
of its 80th anniversary celebration, the university
conducted a survey to assess the social and eco-
nomic condition of its alumni since its establish-
ment in 1943. The survey invitation was sent to
all alumni through email and social media. The
Quacquarelli Symonds Intelligence Unit Team and re-
searchers from the university conducted a descriptive
analysis of this survey, a report of which can be found
in (de Monterrey, 2023).

We did not focus on identifying input features as-
sociated with target variables. Instead, we aimed to
predict the following output features: “CEO” indi-
cates whether an alumnus has secured a CEO posi-
tion, “Salary” indicates whether an alumnus’ salary
is higher than the median salary, and “Satisfaction”
indicates whether an alumnus would choose to study
again at the university. The input features included
age, gender, school attended, campus, level of edu-
cation, current address, region of birth, parental edu-
cation and occupation, weekly working hours, years
spent working abroad, life satisfaction, and income
satisfaction along with evaluations of social intelli-
gence, self-knowledge management, and communica-

tion, among others. After transforming the categori-
cal variables into dummy features via one-hot encod-
ing, the total number of features was 104.

3.4 Modeling and Validation

Two experiments were performed to evaluate the dif-
ferences between the performances of the QML al-
gorithms and the classical SVC. In the first exper-
iment, we employed the proposed method to com-
pare the performances of QSVC and Pegasos QSVC
with that of SVC on the same reduced-dimensionality
dataset. In the second experiment, we again used
the proposed method to compare the performance
of the SVC on the complete dataset with those of
the QML algorithms on the reduced-dimensionality
dataset. Notably, the SVC was trained on the com-
plete dataset, while the QSVC and Pegasos QSVC
were fitted on the reduced-dimensionality dataset, i.e.,
a dataset whose instances and dimensions were re-
duced using the proposed method.

Effectiveness of the algorithms was assessed via
random cross validation (CV), which involved gener-
ating five random splits of the complete dataset. For
each split, the models were trained on the training set
(70%) and their prediction accuracy was assessed on
the testing set (30%). The average performance of
each model was then determined by averaging the re-
sults across the five splits.

The metric “accuracy” was used for each algo-
rithm. The tuned hyperparameters and grid were as
follows:

• SVC: C: 1,10,100,1000,10000

• Pegasos QSVC: C: 1,10,100,1000,10000; tau:
100,200,300,400; sample: 1000, 2000, 3000,
4000; components = 8,9,10,11,12

• QSVC: sample: 500, 600, 700, 800; components
= 4,5,6

During training, the optimal hyperparameter val-
ues were selected via random fivefold CV for each
algorithm across each split. The following steps were
involved: the training set (70% of the data) was di-
vided into five almost equal splits. For each value in
the hyperparameter grid (see the last paragraph, sec-
tion 3.4), the algorithms were trained on four of the
splits and evaluated on the remaining one. This pro-
cess was repeated five times, leaving out a different
split each time so that every split was used for vali-
dation once. Average accuracy of each hyperparam-
eter value was then calculated across these five rep-
etitions. The “optimal” hyperparameters were those
with highest average accuracy. Finally, the accuracy
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of the algorithms with the optimal hyperparameters
was evaluated on the testing set.

The hyperparameter C was tuned during the train-
ing of the SVC on the complete dataset. The sam-
ple size and dimensions of the dataset used during the
training of the QML algorithms were adjusted to the
maximum possible extent with the available comput-
ing resources via Google Colab (Research, 2024). An
optimal combination of number of samples and num-
ber of principal components was identified to allow
for effective model training and satisfactory perfor-
mance. In particular, for Pegasos QSVC, C (the reg-
ularization parameter) and tau (number of steps per-
formed during training) were tuned. QSVC could not
be trained with > 6 components and > 750 cases;
therefore, it was tuned with fewer components and
cases. Lastly, for the SVC trained on the reduced-
dimensionality dataset, only C was tuned and dimen-
sions same as those of Pegasos QSVC were retained
to ensure fair comparison for same sample dimen-
sions.

4 RESULTS

Tables 1 and 2 lists all hyperparameters selected and
considerations for each target variable and algorithm.
It provides the number of components extracted via
PCA, sample size used in each case, and optimal hy-
perparameter selected during tuning. For datasets cre-
ated for each target variable, the variability was 92%
when the number of components was five and 96%
when the number of components was 10, implying
that most of the variability was captured. For exam-
ple, for the target variable “CEO” and the proposed
method with Pegasos QSVC, the dataset dimensions
were 1,500 with the optimal hyperparameters being
C = 1000 and τ = 100. Tables 1 and 2 also lists rest
of the features.

Table 3 presents the prediction results for the dif-
ferent algorithms and target variables. Overall, the
SVC trained using the complete dataset performed the
best across all target variables, achieving the highest
accuracy for “Salary” and “Alumni Satisfaction.” For
“CEO,” the SVC with the complete dataset and QSVC
with < 4% of the instances retained and five principal
components showed comparable results.

The performance of the QML algorithms was ob-
served to improve with increasing number of compo-
nents and instances. Conversely, decreasing the num-
ber of components and instances reduced the perfor-
mance. This important finding shows that in future,
when we can use increasing amount of information,
the performance of the QML algorithms may substan-

Table 1: Hyperparameters and Considerations for Classical
Methods.

Target: CEO
SVC BCP + PCA

+ SVC
Components All 10
Variability 100% 96%

sample All 1,500
Hyperparameters C=1000 C= 10

Target: Salary
Components All 10
Variability 100% 96%

Sample All 4,000
Hyperparameters C=100 C= 1000

Target: Alumni Satisfaction
Components All 10
Variability 100% 96%

Sample All 2,000
Hyperparameters C=1 C= 1

Abbreviations: BCP: barycentric correction procedure,
PCA: principal component analysis, SVC: support vector

classifier

Table 2: Hyperparameters and Considerations for Quantum
Methods.

Target: CEO
BCP + PCA BCP + PCA

+ QSVC + Pegasos
Components 5 10
Variability 92% 96%

sample 1,000 1,500
Hyperparameters C=1000

tau=100
Target: Salary

Components 5 10
Variability 92% 96%

Sample 1,000 4,0000
Hyperparameters C=1000

tau=100
Target: Alumni Satisfaction

Components 5 10
Variability 92% 96%

Sample 1,000 2,000
Hyperparameters C=100

tau=100
Abbreviations: BCP: barycentric correction procedure,
PCA: principal component analysis, QSVC: quantum

SVC, Pegasos: pegasos QSVC.

tially improve.
For “Salary,” the BCP + PCA + QSVC model

exhibited performance comparable to that of the
BCP+PCA+SVC model, highlighting the effective-
ness of QSVC even on limited data. The proposed
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Table 3: Accuracy of the different models across different
target variables.

Target: CEO
SVC BCP + PCA

+ SVC + QSVC + Pegasos
Acc 86 85 86 85

Target: Salary
Acc 73 60 59 56

Target: Alumni Satisfaction
Acc 86 81 81 81
SVC: support vector classifier; BCP + PCA + SVC:
Proposed method with SVC, BCP + PCA + QSVC:

Proposed method with QSVC, BCP + PCA + Pegasos
QSVC: Proposed method with Pegasos QSVC

method with SVC and that with Pegasos QSVC
yielded the same accuracy for “CEO” and “Alumni
satisfaction.” In particular, BCP + PCA + QSVC and
BCP + PCA + SVC achieved 85% accuracy for pre-
dicting whether an alumnus would secure a high-
level-management position and 81% accuracy for pre-
dicting whether an alumnus would choose to study at
the university again.

5 CONCLUSIONS

This study demonstrated that quantum machine learn-
ing algorithms can achieve results comparable to
those of classical ML algorithms when applied to
reduced-dimensional educational data, addressing
three key target variables: whether an alumnus se-
cures a CEO position, alumni salary, and alumni satis-
faction. These results are promising, as they confirm
the feasibility of designing and implementing QML
algorithms for practical applications in educational
analytics despite current hardware limitations. The
findings highlight the potential for QML methods, es-
pecially as quantum computing technology evolves.

Notably, while the accuracy of QML algorithms,
such as QSVC, outperforms the 85% accuracy of their
classical counterpart, SVC, for the CEO prediction
task, no significant advantages in terms of computa-
tional efficiency were observed. However, this aligns
with expectations given the current state of quantum
hardware.

Future research will focus on addressing computa-
tional constraints and exploring quantum-native tech-
niques such as quantum principal component analy-
sis (QPCA). Incorporating QPCA into the proposed
method has the potential to reduce dimensionality in
a quantum framework, which could enhance the scal-
ability of QML algorithms.

The findings of this research reinforce the rel-

evance of QML for educational applications, with
implications extending beyond this domain to other
fields, such as social sciences, where complex data is
prevalent.
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