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Abstract: Sanskrit is a highly composite language, morphologically and phonetically complex. One of the major chal-
lenges in processing Sanskrit is the splitting of compound words that are merged phonetically. Recognizing
the exact location of splits in a compound word is difficult since several possible splits can be found, but only
a few of them are semantically meaningful. This paper proposes a novel deep learning method that uses two
bi-encoders and a multi-head attention module to predict the valid split location in Sanskrit compound words.
The two bi-encoders process the input sequence in direct and reverse order respectively. The model learns
the character-level context in which the splitting occurs by exploiting the correlation between the direct and
reverse dynamics of the characters sequence. The results of the proposed model are compared with a state-
of-the-art technique that adopts a bidirectional recurrent network to solve the same task. Experimental results
show that the proposed model correctly identifies where the compound word should be split into its com-
ponents in 89.27% of cases, outperforming the state-of-the-art technique. The paper also proposes a dataset
developed from the repository of the Digital Corpus of Sanskrit (DCS) and the University of Hyderabad (UoH)
corpus.

1 INTRODUCTION

NLP systems have come to a range of importance
in recent years. The automation of text and speech
processing tasks is facilitating daily life with en-
hanced ease and comfort. However, this progress ben-
efits mostly the well-resourced and well-tooled lan-
guages. Computationally demanding languages still
suffer from underperforming NLP systems. One such
language is Sanskrit, an ancient Indian language with
texts going as far back as 1500 B.C. (Hellwig, 2015).
The digitization of Sanskrit scriptures has given impe-
tus to research in most Sanskrit NLP tasks, but current
efforts are mostly oriented towards general Sanskrit
literature and scriptures (Goyal et al., 2012)

A feature of Sanskrit that makes it more complex
to process is the use of compound words obtained
from the phonetic union of words. In order to un-
derstand the meaning of the compound word, it is
necessary to identify the words that compose it and,
therefore, split the compound word into its compo-
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Figure 1: Different possible split locations of the compound
word māmabhigatāh. given by the standard Sandhi splitter.
All splits are syntactically correct but only the first one is
semantically meaningful.

nent words (see Figure 1).
Sanskrit word splitting is similar to other word

segmentation tasks for Asian languages, such as
Thai (Haruechaiyasak et al., 2008), Chinese, and
Japanese (i.e., Kanji). Nowadays, most of the re-
search is oriented towards Chinese and Japanese and
focuses on enhancing the performance of single seg-
mentation criterion. To reduce feature engineering ef-
forts (Zheng et al., 2013; Pei et al., 2014; Cai and
Zhao, 2016; Yao and Huang, 2016), in Chinese lan-
guage, compound words are segmented through a se-
quence labeling process to assign labels to each char-
acter of the compound word and segment the compo-
nent words.
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In Sanskrit, the same process is generally accom-
plished by applying the Sandhi rule (Krishna et al.,
2016). Besides Sandhi, a number of other morpho-
logical processes are involved in Sanskrit word for-
mation, especially compounding and inflection. How-
ever, Sandhi deals explicitly with phonological and
orthographic processes at word junctions or between
words in a sentence. It is a process that changes the
sounds and, on occasion, the structure of words, im-
portant for exact interpretation and generation of text
in Sanskrit. Although compounding and inflection
are also of prime importance for Sanskrit grammar,
Sandhi is more crucial for it because it has a direct
influence on the joining and pronunciation of words
and hence their syntactic and semantic meaning. Seg-
menting Sanskrit words is not a trivial task because
the Sandhi phenomenon causes phonetic transforma-
tions at word junctions. This not only results in word
junctions being obscured, but the characters at the
junctions are changed through deletion, insertion, and
replacement operations. Learning how to predict the
Sandhi split presents the additional challenge of not
only correctly splitting compound words, but also pre-
dicting where to split them (Dave et al., 2021). The
task is further complicated by the fact that the lan-
guage is inflectional, with a large number of deriva-
tional affixes. Since Sanskrit compound words can
be split at multiple locations, the split words will
be syntactically correct but semantically meaningless.
But till now researchers only consider the splitting of
compound words that have one valid split location.

Figure 1 shows the possible split locations of the
compound word māmabhigatāh. . Although several
splits are possible, only mām+abhigatāh. is syntac-
tically and semantically meaningful. Determining
the semantically correct split for a word is context-
dependent.

To account for this challenge, given in input a
compound word, the method in (Dave et al., 2021)
uses a bidirectional-LSTM to predict the Sandhi-
window, which is a portion of the compound word
wherein the Sandhi transformation has taken place.
The model outputs a sequence where only the char-
acters in the Sandhi-window are marked 1. All other
characters are marked 0 (see Figure 2).

Similarly to (Dave et al., 2021), our model takes a
Sanskrit compound word, i.e., a sequence of charac-
ters, as input. The model returns a sequence of 0 and
1 values, with 1 indicating the split location of the
compound word. In contrast to (Dave et al., 2021),
our novel model uses two BiLSTMs and a multi-head
attention layer to predict the split location in the San-
skrit compound word. To the best of our knowledge
this is the first work where two Bidirectional-LSTMs

act as encoders to capture the character-level con-
textual information of the Sanskrit compound word.
These two encoders process the input sequence in di-
rect and reverse order and, thus, will be named di-
rect and reverse encoders respectively. As highlighted
in (Sutskever et al., 2014), the processing order of the
input sequence allows for capturing diverse informa-
tion about the character-level contexts of each input
character. Furthermore, multi-head attention layers
focus on different parts of the sequence, i.e., short-
term and long-term dependencies, to capture the cor-
relations between the outputs of the direct and reverse
encoders and predict the exact split point in the San-
skrit compound word. Using two parallel BiLSTMs, a
network can learn from sequential data with more en-
riched, and subtle information captured, while higher
model capacity is achieved at minimal overhead and
computational complexity. This in turn helps improve
the performance of predicting the location of Sanskrit
compound word. To train and validate our model, we
augmented the dataset used in (Dave et al., 2021) with
new compound words and their respective splits col-
lected from the Digital Corpus of Sanskrit (Hellwig,
2021). Incorrect splits, and words not following the
Sandhi rule of compound word formation were man-
ually discarded.

Overall, this paper proposes:
• A novel multi-headed attention-based bi-encoder

model that exploits direct and reverse dynamics
at a character level to predict the split location in
compound Sanskrit words; The code implementa-
tion will be made publicly available to ease future
comparisons.

• An enhanced dataset of compound Sanskrit words
following the Sandhi rule with their respective
split points. The dataset will be made publicly
available to the research community1.
In the following, we first describe the main mo-

tivation behind solving the described problem, then
discuss related works and illustrate the proposed neu-
ral architecture. Finally, we present and discuss our
experimental results and conclusions at the end.

2 MOTIVATION

Sandhi splitting is important for proper understanding
and analysis of Sanskrit text, as it reveals the correct
meaning of each word within the compound words.
The difficulty in applying Sandhi split lies in the abil-
ity to apply the correct division of compound words.

1Code and dataset available at https://github.com/
IrfanAliBabar/ABBIE-Sanskrit
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Figure 2: Sandhi window for predicting the location in a compound word.

We stress here that Sanskrit compound words can be
divided at more than one point. Although the divided
words will be syntactically correct, they can be se-
mantically meaningless.

In this context, the work in (Patankar, 2023) high-
lights the need for tools that can effectively apply
Sandhi splitting to ensure comprehensive morpholog-
ical analysis. Such tools would enable computational
linguistic research with better analysis and advanced
models. Predicting the correct splitting location in
Sanskrit compound words is important to develop bet-
ter text understanding that supports digital preserva-
tion, revealing the cultural and historical significance
of Sanskrit texts, and filling the resource gaps.

The few currently available Sandhi splitting tools
use rule-based implementations (Linguistics, 2 24)
and have significant drawbacks in that they are rigid
and cannot handle exceptions or variations. Using
these tools requires a lot of time and resources to
maintain and update these rules as new linguistic phe-
nomena are discovered. One of the main issues is
maintaining consistency among these rules, which re-
quires a great linguistic expertise. Furthermore, the
performance of a rule-based system with very diverse
data sets may not be good if the rules are too narrow
leading to inconsistent results and, under conditions
of incomplete or incorrect rules, to errors that are very
difficult to correct. Addressing these drawbacks with
better techniques, mostly based on artificial intelli-
gence, could improve the reliability of Sanskrit text
analysis tools.

Better methods of Sandhi splitting will be of
great help in language learning and teaching, mak-
ing Sanskrit user-friendly for both teachers and stu-
dents. Additionally, learning to predict the position
of the Sandhi split can provide interesting linguistic
insights into word formation in almost all Dravidian
languages. Finally, modeling how words are formed
in Sanskrit can provide an NLP framework for orga-
nizing words in other Indian languages.

3 RELATED WORK

Most of the NLP systems for Sanskrit word splitting
combine Panini’s phonetic and morphological rules

with lexical resources.
These systems are based on the application of

formal methods (Huet, 2005; Goyal et al., 2007;
Kulkarni and Shukl, 2009), or they use statistical
approaches such as Dirichlet processes (Natarajan
and Charniak, 2011), or finite-state methods (Mittal,
2010), graph queries (Krishna et al., 2016), or hybrid
systems (Haruechaiyasak et al., 2008).

The biggest challenge to splitting words in San-
skrit is to find out the most semantically accurate
word segmentation among all the possible splits of a
compound word. (Krishna et al., 2016) solved this
issue by modeling word segmentation as a query ex-
pansion task under a path-constrained random walks
(PCRW) framework. They further fine-tuned their
model by adding morphological information using
Inductive Logic Programming (ILP). This resulted
in significant improvement in the performance mea-
sures.

Several works have proposed the use of recur-
rent neural network to solve the problem. The pa-
per (Hellwig, 2015) presents a neural network-based
method that does compound splitting and Sandhi
resolution jointly in Sanskrit text. The paper uses
Long Short-Term Memory cells for labeling tasks
in Sanskrit analysis. Hellwig proposed an alterna-
tive method of Sandhi resolution in Sanskrit by de-
veloping a classifier that depends on the gold stan-
dard string splits. The source sequence represents a
string split in phonemes, while the target sequence
presents transformations applied to each phoneme.
A classifier will then be trained to correctly split
compounds and apply the appropriate Sandhi res-
olution in the process, generating the correspond-
ing Sandhi rule. Five possible transformations rules,
namely R1-5, are defined that will guide the classi-
fication of phonemes in each string. Next, the pa-
per (Hellwig and Nehrdich, 2018) proposes an end-
to-end trained neural network for Sanskrit tokeniza-
tion, which jointly performs compound splitting and
resolves phonetic mergers (Sandhi), requiring neither
feature engineering nor outside linguistic resources
but working on parallel versions of raw and seg-
mented text alone. The models are designed to work
at a character level and allows word splitting in a se-
quence labeling framework for the Sanskrit language.
Their best model uses convolutional and recurrent el-
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ements with shortcut connections (rcNNshort).
The work in (Dave et al., 2021) also presents neu-

ral networks for splitting Sanskrit compound words,
focusing specifically on Sandhi splitting. The work
formulates a sequence-to-sequence prediction prob-
lem, employing recurrent neural networks (RNNs) in
a two-step process. Without additional lexical re-
sources or a priori information, the model takes a
compound word as input and generates the split of
compound words separated by a “+” character as out-
put. This data-driven approach demonstrates superior
performance compared to existing methods without
needing extra lexical or morphological resources.

Some works have included attention to solve the
problem. In (Aralikatte et al., 2018), the authors pre-
sented an attention-based deep learning method to de-
termine the split position of compound words. Based
on the predicted position of split, the method de-
termines the Sandhi components by graphically seg-
menting the compound word. Compared to rule-
based Sandhi models, knowing the split position al-
lows to massively reduce the number of possible splits
to check. In (Reddy et al., 2018), the model primarily
identifies word splits and the correctness of unsand-
hied strings from a sandhied input string, which shall
not take into account morphological and semantic de-
tails. The paper shows that the attention module im-
proved the results significantly.

The problem of splitting compound words has
also been studied for other languages, such as Chi-
nese. In (Gong et al., 2019), the authors described
a model that automatically switches between several
segmentation criteria to improve the segmentation
process with the assistance of multiple LSTM net-
works and a switcher. The model mainly follows two
solution approaches: 1. Several LSTM cells that rep-
resent the criteria of segmentation and a switcher for
routing between the LSTMs. 2. Switch-LSTM offers
a more flexible solution to the multi-criteria Chinese
word segmentation problem and supports knowledge
transfer to the new criteria. The use of multiple seg-
mentation criteria is important not only for enhanced
performance but also for knowledge transfer and flex-
ibility, leading to improvements in multi-criteria Chi-
nese word segmentation.

The work in (Chen et al., 2015) addressed Chi-
nese word segmentation as a sequence labeling task
and compared several stacked bidirectional recur-
rent architectures. A final sentence-level likelihood
layer (Collobert et al., 2011) is added to maximize the
transition score for the target sequence represented
using BMES encoding. Their best model was based
on a single-layer bidirectional LSTM with bigrams of
pre-trained character embeddings supplied as inputs

Our proposed architecture is totally different from
all the models mentioned above. It uses two bi-
encoders to extract contextual information from the
input sequence and the reverse input sequence. It can
capture different types of relationships and dependen-
cies in the character-level input sequence through the
use of a multi-head attention module that correlates
the outputs of the two bi-encoders to predict the accu-
rate split position in the Sanskrit compound word.

3.1 Existing Tools

Three prominent Sandhi splitter tools are available in
the open domain. These are: (i) JNU splitter (Kumar,
2007), (ii) UoH splitter (Kumar et al., 2010), and fi-
nally, (iii) INRIA Sanskrit Reader Companion (Huet,
2003) (Goyal and Huet, 2013). All these tools ad-
dressed the challenge of splitting differently, but they
work on a principle that is essentially the same. For
a given compound word, an exhaustive set of rules
is applied to every character thus yielding an exten-
sive set of possible word splits. Subsequently, a mor-
pheme dictionary of Sanskrit words, together with a
variety of heuristics, is utilized to remove infeasible
combinations of splits. However, none of these ap-
proaches effectively solves the inherent problem of
first identifying the location of the split to which the
rules need to be applied. This would help narrow the
range of applicable rules and possibly produce more
accurate splits.

4 PROPOSED NEURAL
ARCHITECTURE: ABBIE

Sanskrit compound word splitting can be viewed as a
sequence-to-sequence problem where the input is the
character sequence of the compound word, and the
output is a sequence of the same length where each
element takes values in [0 . . .1] and indicates whether
a splitting occurs (1) or not (0). Therefore, all ele-
ments in these output sequences are 0 except the el-
ements corresponding to the predicted splitting posi-
tions which are set to 1.

To make the prediction more robust, we consider
a splitting window of size 4 in which the splitting
can occur. The split occurs after the second element
takes on the value 1 within the window. For exam-
ple, if the inputs are characters of the compound word
“māmabhigatāh. ”, the expected output will be the se-
quence [0,1,1,1,1,0,0,0,0,0,0,0]. So the split oc-
curs after the second “m” of the compound word.

More formally, given a compound word X =
{x1,x2,x3, .....,xT}, our model analyzes the input se-
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Figure 3: Architecture of Sanskrit Compound Word Split
Position Prediction Model.

quence X in direct and reverse order and, through at-
tention mechanisms aimed at correlating the hidden
states of the recurrent layers, for each input character
xt provides in output yt ∈ L= {0,1}. The label yt indi-
cates whether the character is within the split window.
Once the split window is calculated, the split position
is identified as being between the second and third el-
ements in the window.

To solve the Sandhi splitting problem, we propose
ABBIE, whose architecture includes three main com-
ponents:

1. a character Embedding Layer;

2. two Bi-LSTMs to encode character-level contex-
tual information of the forward (direct) and back-
ward (reverse) sequence;

3. multi-head attention layers to focus on different
parts of the sequence (such as short-term and
long-term dependencies) and capture more infor-
mation.

Figure 3 shows the proposed architecture to predict
the split location in the compound Sanskrit word. In
the following, we provide a detailed description of
each component.

4.1 Embedding Layer

Characters of the input sequence belongs to an alpha-
bet (set of language symbols) of size V . We used a
one-hot-encoding strategy to represent the characters
of the given alphabet. Then, our model maps the lan-
guage symbols into a learned embedding space.

Given an input sequence X ∈RT×V where T is the
sequence length, the embedding is achieved by using
an Embedding Matrix E ∈ RV×d with d representing
the embedding dimension. The embedding operation
produces the embedded input EX and can be written
as:

EX = XE, where EX ∈ RT×d . (1)

4.2 Direct and Reverse Bi-Encoders

We used two Bi-LSTMs (Hochreiter and Schmidhu-
ber, 1997) as bi-encoders, which typically refers to
an architecture encoding input sequences in both for-
ward and backward directions to capture full informa-
tion about the context. This makes information from
the whole sequence in the past and future available to
the model and very useful for tasks where context is
important.

In particular, the first bi-LSTM, named direct en-
coder, processes the given input sequence as it is and,
at each time t, computes:

Forward LSTM:
−→
ht = LSTMfw(xt ,

−−→
ht−1) (2)

Backward LSTM:
←−
h t = LSTMbw(xt ,

←−−
ht+1) (3)

The output of the first bidirectional-LSTM, hdirect
t ,

is the concatenation of the forward and backward
LSTM outputs:

hdirect
t =

[−→
ht ,
←−
ht

]
, where hdirect

t ∈ R2n (4)

and n is the number of cell units of the LSTM layer.
Over the entire input sequence, the first bi-LSTM
produce Hdirect ∈ RT×2n, whose rows are the vectors
hdirect

t for t ∈ [1, . . . ,T ].
The second bi-LSTM, named reverse encoder,

processes the input sequence backward. At each time
t, we consider the reversed input x′t , and the second
bi-LSTM will compute:

Forward LSTM:
−→
h′t = LSTM’fw(x′t ,

−−→
h′t−1) (5)

Backward LSTM:
←−
h′t = LSTM’bw(x′t ,

←−−
h′t+1) (6)

Similar to the first bi-LSTM, the output of the sec-
ond bi-LSTM, hreverse

t , is the concatenation of the out-
puts of its forward and backward LSTMs:

hreverse
t =

[−→
h′t ,
←−
h′t

]
, where hreverse

t ∈ R2n. (7)
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Over the entire reversed input sequence, the second
bi-LSTM produce Hreverse ∈ RT×2n, whose rows are
the vectors hreverse

t for t ∈ [1, . . . ,T ].
Hyperbolic tangent (tanh) activation function is

used by all the LSTMs.
Using two bidirectional LSTMs that separately

process the input sequence in different order (direct
and reverse) has advantages over using a single Bi-
LSTM with 2n units. The paper in (Sutskever et al.,
2014) shows that the order (direct and reverse) of pro-
cessing a sequence enables the LSTM to learn dif-
ferent information. In particular, a single Bi-LSTM
learns the left and right context information of each
input character. This will lead to a nuanced under-
standing of the preceding and subsequent sequence of
characters at each sequential element.

In the proposed approach, we use two Bi-LSTMs.
The direct encoder acquires the left (LSTMfw) and
right (LSTMbw) context of each character of the se-
quence X . The reverse encoder analyzes the input se-
quence in reverse order, reverse(X). To put it sim-
ply, the reverse encoder learns the right (LSTM’fw)
and left (LSTM’bw) context of the original (direct)
sequence X . This is important in the subsequent
processing stages when the outputs of the two bi-
encoders is used in the multi-head attention layer.

Furthermore, two Bi-LSTMs with fewer units
each provide better regularization and generalization
than a single Bi-LSTM with many units. At the
same time, independent regularization after each bi-
encoder, especially the use of dropout, reduces the
chances of overfitting. This effectively balances the
complexity involved in splitting Sanskrit compounds
and improves the overall performance of the model.

4.3 Multi-Head Attention Layers

One of the mechanisms incorporated into neural net-
works for natural language processing tasks, more
particularly in the Transformer architecture, is the
Multi-Head Attention (Vaswani et al., 2017). We uti-
lize this mechanism with the bi-LSTM outputs to help
our model learn to focus on different parts of the input
sequence simultaneously and learn various aspects of
relationships between different positions of the se-
quence. In particular, the multi-head attention lay-
ers will correlate different information about left and
right contexts at a character-level. In the case of San-
skrit Sandhi splitting, this mechanism will help the
model attend to different parts of the compound word
to correctly identify the split positions.

Attention transforms inputs into three different
vectors: query Q, key K, and value V . It is well known
that the attention mechanism computes (Vaswani

et al., 2017):

Attention(Q,K,V ) = Softmax
(

QK⊤√
dk

)
V. (8)

The idea behind attention is to compare a query vec-
tor against a set of key vectors to compute attention
scores, which are used to create a weighted sum of
the value vectors. The Softmax function is applied
to the product QK⊤ to obtain a set of normalized at-
tention weights to determine how relevant each posi-
tion is relative to every other position in computing
the output. The scaling factor

√
dk is used to prevent

the dot product from being too large in magnitude,
leading to unstable training and slow convergence.

In our model, the attention mechanism considers
the outputs of the two bi-LSTMs as follows:

Q = Hdirect (9)
K = Hreverse (10)
V = Hreverse (11)

Multiple attention heads allow to capture diverse
kinds of relationships and dependencies in the data,
which is very helpful in a complex task such as pre-
dicting the split position. In particular,

MultiHead(Q,K,V ) = [head1, . . . ,headH ]W O (12)

where

headi = Attention(QW Q
i ,KW K

i ,VWV
i )

and W O is the output weight matrix.
In our model, the multi-head attention output A

can be written as:

A = MultiHead(Hdirect,H inverse,H inverse). (13)

4.4 Target Sequence

The outputs of the two bi-encoders and of the multi-
head attention module are concatenated:

Hmerged = Concat
(

Hdirect,A,Hreverse
)

(14)

where Hmerged ∈RT×6n , and n is the hidden state size.
In this way, Hmerged gives a richer, more informa-

tive representation of the input sequence that is useful
to predict more accurately where the split occurs in
the compound word. This concatenation guarantees
that both the local context and the global dependen-
cies, which the attention mechanism would capture,
will be available to the dense layer (with one neuron),
which is used to predict the splitting window. A sig-
moid activation function is used by the dense layer.
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4.5 Detecting the Split Location

Our main objective is to predict the most likely split
location of a compound Sanskrit word based on the
output of the model. The model gives an output se-
quence in which values can range between 0 and 1.
As already stated, the model is trained so to predict a
splitting window of length input length = 4.

The challenge lies in how to exploit the sequence
of output values for the identification of the most
probable window where the actual split occurs. Thus,
we use a sliding window over the output sequence
and select the window with the highest sum of values.
This sliding window helps in smoothing the predic-
tions and makes sure it considers a sequence of char-
acters as a potential split location. Thus, for every po-
sition j in the sequence, we compute a sum of model’s
output values for the window starting at position j,
ending at position j+ input length−1.

The starting position of this window, max start is
considered as the most likely starting point of the win-
dow split. Once the window split is found, the pre-
dicted split arises in the middle of the splitting win-
dow. In our implementation, being input length = 4,
the split arises after the second element taking the
value 1 within the window.

5 TRAINING AND
IMPLEMENTATION DETAILS

ABBIE has been implemented in Python 3.10.14 with
Keras API running on the TensorFlow backend. We
used a character embedding size of 16, bi-directional
encoders with 128 units. A dropout layer of 0.5 is ap-
plied after each Bi-LSTM. We used 2 attention heads
in the multi-head attention layer and dropout layer 0.5
after the multi-head attention layer and the normal-
ization layer. We used batches of size 64, and trained
the model for 40 epochs by the Adam optimizer us-
ing a workstation equipped with an NVIDIA GeForce
RTX 2070 GPU. The total number of trainable param-
eters in our model is 150,737. We adopted the mean
squared error (MSE) as loss function.

6 EXPERIMENTAL RESULTS

In this section, we discuss data preparation, accu-
racy metric for our model, evaluation and comparison
of our results with RNN-BiLSTM architecture (Dave
et al., 2021). We also present ablation studies by com-
paring different variants of our model.

6.1 Dataset

We developed a new dataset containing a total num-
ber of compound words equal to 96535 from differ-
ent books of the Digital Corpus of Sanskrit reposi-
tory (Hellwig, 2021). We combined the dataset from
the University of Hyderabad corpus (UoH, 2024),
comprising 77842, with the data we collected. Over-
all, the full number of samples in the merged data
before preprocessing was 174377. We pre-processed
the merged data to remove duplicates. We discarded
all compounds with more than two splits, incorrect
splits, and words not following the Sandhi rules of
compound word formation. Overall, the final dataset
includes 99900 samples after the pre-processing. 80%
of the data was used for training the model, and the re-
maining for testing. 10% of the training data is used
for validation of the model. The dataset, originally in
the IAST (International Alphabet of Sanskrit Translit-
eration) format (Hellwig, 2021), is pre-processed to
convert to SLP1 (Sanskrit Library Phonetic) (Learn
Sanskrit, 2024), a transliteration scheme better suited
for computational analysis due to its phonetic nature.

6.2 Split Location Prediction Accuracy

To measure the accuracy of our model, we compare
the predicted split location j with the true one j∗.
Here, j indicates the character location within the
compound word after which the split occurs.

The Split Location Prediction Accuracy is calcu-
lated as:

Accuracy =
∑

N
i=1 δ( j, j∗)

N
(15)

where the function δ( j, j∗) returns 1 if j = j∗ and 0
otherwise. N is the number of compounds in the test
set.

6.3 Results and Comparison

In Tables 1 and 2 we compare our model to the RNN-
BiLSTM model presented in (Dave et al., 2021). We
trained our ABBIE model by minimizing the MSE
loss function on the dataset in (Dave et al., 2021).
As shown in Table 1, the RNN-BiLSTM achieves
an accuracy value of 92.3%, and our ABBIE model
achieves a higher accuracy value of 93.1% on the
same dataset and minimizing the same loss function.

However, the dataset in (Dave et al., 2021) is
limited and smaller than ours. Our dataset is built
from various religious books, poems, etc, and con-
tains complex compound words as well. As shown in
Table 2, on our dataset, the RNN-BiLSTM achieves a
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lower accuracy value, of 87%, suggesting that the pro-
posed dataset is more challenging than the one pro-
posed in (Dave et al., 2021). We stress here that we
used the publicly available implementation of (Dave
et al., 2021) to train the RNN-BiLSTM on our
dataset, where the MSE loss function is minimized as
well. Overall, compared with RNN-BiLSTM, ABBIE
achieves superior performance. In particular, ABBIE
achieves an increase in the accuracy value of about
2.3% on equal terms of data and experimental proto-
col.

To study the effect of adopting different loss func-
tions, we train our model, ABBIE, on our dataset by
using Mean Squared Error (MSE) and Binary Cross-
Entropy (BCE) functions. As shown in Table 2, when
using BCE, ABBIE achieves an accuracy value of
87.7%. Instead, when using MSE, ABBIE achieves
an accuracy value of 89.27%. Overall, for our prob-
lem, an error-based loss function seems to be more
effective.

Figs. 4 and 5 help to visualize how attention val-
ues are distributed across different characters in a
(padded) compound word. For each character of the
word (horizontal axes), the figures show the 128-
dimensional attention vector obtained from the Multi-
Head attention layer by Eq. 13. Under each figure the
True split window and the predicted split window are
also reported. The red dashed vertical line represents
the True split location, while the green vertical line
represents the predicted one.

In Fig. 4, for the compound word “bhArasAD-
hanam”, the predicted split position (green dashed
line) exactly corresponds to the true split position (red
dashed line), which is between “bhAra” and “sAd-
hanam”. This means the model has learned to fo-
cus its attention on the correct characters within the
sequence. A subset of lines, especially in the mid-
dle of the figure, shows focused attention close to the
true split position of higher intensity (blue or red re-
gions) around the respective positions. The presence
of more lines with high intensity at positions around
the split gives a strong and clear signal about the posi-
tion, reducing the ambiguity and hence ensuring cor-
rectness. This behavior indicates that the model learns
to identify key features indicating the presence of a
split position. On the other hand, there is some re-
dundancy since several elements of the attention vec-
tors are observed to contribute to the same prediction,
likely adding to robustness.

In Fig. 5, for the compound word “kalApa-
VAtAH”, the predicted split locations are far from
the true split locations that are between “kalApa” and
“VAtAH”. This is clear from the misalignment of the
green and red dashed lines. The attention heads do

Table 1: Comparison with the state-of-the-art on the
dataset (Dave et al., 2021).

Model Accuracy
RNN-BiLSTM (Dave et al., 2021) 92.3%
ABBIE (ours) 93.1%

Table 2: Comparison with the state-of-the-art on our
dataset.

Model Accuracy
RNN-BiLSTM (Dave et al., 2021) 87.0%
ABBIE - MSE (ours) 89.27%
ABBIE - BCE (ours) 87.7%

not pay proper attention to the true split locations, ei-
ther diffused or misaligned, which drives the model
to attend to other positions. Some elements of the
attention vector appear to focus on higher intensities
around the position of a true split but do not give
sharp attention. Attention is diffused across neighbor-
ing positions. Some lines show a broader attention to
irrelevant positions, which might result in the incor-
rect split position prediction. The true split window
clearly identifies the start of the correct split position
(1 at the true split) and the predicted split window de-
viates significantly, with earlier activations (1s) that
align with the incorrect split.

These heatmaps indicate that not all attention fea-
tures contribute the same in predicting the split win-
dow. Some features show sharper focus at critical po-
sitions, whereas others distribute their attention over
the sequence. This also aligns with the behavior of a
multi-head attention mechanism that allows to learn
aspects complementary to one another when attend-
ing to the input.

6.4 Ablation Studies

To better understand the contribution of each compo-
nent to the ABBIE model, we trained and compared
different variants of our model by using the MSE
function and on equal terms of experimental proto-
col. Results are summarized in Table 3 and discussed
in details in the following.

To assess the contribution of the multi-head at-
tention module, we trained the “Two Bi-Encoders”
model. In practice, this model concatenates the out-

Table 3: Ablation Study. The table shows the contribu-
tion of the multi-head attention module and of the two bi-
encoders to the model accuracy.

Model Accuracy
Two Bi-Encoders 86.5%
One Bi-Encoder + Attention 87.5%
ABBIE (ours) 89.27%
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Figure 4: Heatmap for Correct Split Window Prediction.

Figure 5: Heatmap for Incorrect Split Window Prediction.

puts of the direct and reverse bi-LSTMs and uses a
dense layer to output the target sequence. No atten-
tion mechanism is used in this model. The modified
model achieves an accuracy of 86.5% showing a clear
reduction of 2.8% compared to the ABBIE model.
The results are also comparable to the one reached by
the RNN-BiLSTM model, which does not include any
attention mechanism as well. This result suggests that
multi-head attention plays a crucial role in capturing
the most relevant information in the compound word,
thereby enhancing the accuracy of the split location
prediction.

To assess the contribution of using direct and re-
verse Bi-Encoders, we trained the “One Bi-Encoder
+ Attention” model. This model only includes a sin-
gle Bi-directional LSTM. The output of the direct Bi-
Encoder feeds the multi-head attention module. The
model achieves an accuracy of 87.5%, showing a re-
duction of 1.8% compared to ABBIE. The accuracy
value is slightly superior to the one reached by the
model in (Dave et al., 2021). The result also confirms
the findings of (Sutskever et al., 2014), which can
be summarized here by stating that the direct and re-
verse Encoders capture different contextual informa-

tion. Moreover, the results highlight the importance
of multi-head attention in comparing the direct and
reverse dynamics of the input sequence to predict the
Sandhi split location.

7 CONCLUSION AND FUTURE
WORK

In this research work, we focus on the problem of
predicting where to split compound Sanskrit words
whose formation follows the Sandhi rule without any
use of external resources such as phonetic or mor-
phological analyzers. To address the problem, we
propose a novel deep learning method that uses two
Bi-LSTMs to encode character-level contextual infor-
mation for direct and reverse sequence. The two bi-
encoders are used with a multi-head attention module
to focus on the different parts of the compound word
and predict where the split arises. We also collected
an enhanced dataset that augment the UoH dataset
with challenging compound words from the Digital
Corpus of Sanskrit repository. We compared the per-
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formance of our proposed ABBIE model with other
RNN based architecture.

Overall, this paper shows that bidirectional en-
coders on the direct and reverse input sequences can
be used together with an attention-based module to
get better contextual information on the input se-
quence.

The main limitation of our work, as well as of all
other works on the topic, is that it considers com-
pound words having only one Sandhi split. Despite
we could use our model recursively until no split is
found anymore, in future work, we intend to enhance
our model to also consider the splitting of compound
words which have more than one valid split loca-
tions integrate with the morphological analyzer and
observe the common error patterns.
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