
Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup
and Delivery Problems

Daiki Shimada, Yuki Miyashita a and Toshiharu Sugawara b

Waseda University, Shinjuku, Tokyo 1698555, Japan

Keywords: Multi-Agent Pickup and Delivery, Cooperation, Path Finding.

Abstract: We propose an efficient method for determining subsequent movements based on temporarily generated short-

est paths in the multi-agent pickup and delivery (MAPD) problem. The MAPD problem involves multiple

agents (such as carrier robots) continuously performing transportation tasks in a vast environment with obsta-

cles while avoiding collisions with other agents. Our method is an extension of the decentralized path-finding

algorithms, priority inheritance with backtracking (PIBT), and can be efficient in environments with narrow

one-way paths and few detours. Our method, PIBT with provisional booking (PIBT-PB), not only secures the

next node as in PIBT but also provisionally books some nodes in advance based on dynamic priorities between

agents to detect possible conflict earlier. Therefore, it reduces the number of “turning back” and wasted “wait-

ing” actions in environments. Our experiments show that PIBT-PB is more efficient than the baselines, PIBT

and windowed PIBT, and even in less restrictive environments, it performs as efficiently as PIBT.

1 INTRODUCTION

Significant interest has been growing in the field of

multi-agent systems (MAS) designed for executing

sophisticated collaborative and coordinated tasks. Ex-

amples of such applications include cooperative se-

curity monitoring using multiple patrolling robots,

material transportation using carrier robots in ware-

houses (Ma et al., 2017), construction sites (Miyashita

et al., 2023; Ankit et al., 2022), rescue environ-

ments (Jennings et al., 1997), and automated cater-

ing robots in restaurants (Wang, 2023). In these sys-

tems, agents must individually determine appropriate

actions based on their recognition of the surroundings

to fulfill their objectives while avoiding negative inter-

ference, such as collision and resource conflict. Par-

ticularly, we address the problem of the multi-agent

pickup and delivery (MAPD) (Ma et al., 2017) in

a construction site context. Here, numerous agents

(e.g., carrier robots) continuously pick up heavy and

large materials and deliver them to the required desti-

nations during the night, ready for the next day’s in-

stallation work by human builders. This process is

carried out while avoiding collisions and deadlocks.

Therefore, it can be viewed as a repeated multi-agent

a https://orcid.org/0000-0002-1676-9346
b https://orcid.org/0000-0002-9271-4507

path finding (MAPF) problem, where multiple agents

generate collision-free paths between their start and

goal locations.

In a construction site, installation materials are

stored in a few storage areas and carried to specific

locations where the materials will be installed. An-

other example of an MAPD situation is where mate-

rials are carried to and from trucks in the loading bay.

This suggests that agents in the MAPD problem tend

to gather in a few areas, restricting the paths that they

can select and easily leading to deadlock and conges-

tion. These problems can be mitigated in automated

warehouses because they are specially designed to

accommodate the movement of carrier agents, with

wide paths and many detours of similar lengths. How-

ever, this is not the case for construction sites; agents

must move along relatively narrow paths that do not

allow them to pass each other. The topological struc-

ture of the environment may change because of new

walls and doors installed the previous day. Further-

more, agents may take detours to avoid head-on col-

lisions, but some detours are relatively longer. There-

fore, the agent has to find a possible collision as early

as possible to generate collision-free paths.

Numerous studies on MAPF and MAPD prob-

lems (Ma et al., 2017; Okumura et al., 2019a; Sharon

et al., 2015; Yamauchi et al., 2022; Li et al., 2020)

have been conducted because of their many appli-

528
Shimada, D., Miyashita, Y. and Sugawara, T.
Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems.
DOI: 10.5220/0013158300003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 528-537
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

cations, and our study focuses on a decentralized

path-finding algorithm, such as priority inheritance

with backtracking (PIBT) (Okumura et al., 2019a)

and windowed priority inheritance with backtracking

(winPIBT) (Okumura et al., 2019b) algorithms, be-

cause they guarantee reachability in a decentralized

manner with fewer constraints on the arrangement of

destinations. Agents using these algorithms can deter-

mine paths for their tasks individually based on their

priorities, thus reducing the planning time by localiz-

ing the computation. Although PIBT is usually effi-

cient, it may delay the detection of possible collisions

because the agent communicates with other agents

two nodes away and can only secure the next position

toward its destination. To address this issue, winPIBT

exclusively secures some nodes with a fixed time win-

dow. A longer window enables agents to detect pos-

sible collisions earlier, but the overall efficiency may

decrease because the low-priority agents are restricted

from moving by the secured nodes, even if no colli-

sions occur.

Thus, we propose a method called PIBT with pro-

visional booking (PIBT-PB). In this method, agents

secure their immediate next nodes as in PIBT, but re-

frain from securing subsequent nodes. Instead, they

tentatively book several nodes in advance, which are

referred to as provisional nodes. This strategy al-

lows for earlier detection of potential head-on col-

lisions and prevents the obstruction of other agents.

The number of provisional nodes is flexible, and can

be adjusted based on the topological structure of the

environment. We show that PIBT-PB maintains the

reachability of all agents in the relaxed bi-connected

area, as in PIBT, and demonstrate that it performs

as efficiently as PIBT. Our experimental results indi-

cate that PIBT-PB reduces the makespan — the total

time required to complete all tasks, including plan-

ning time — compared to the baseline methods, PIBT

and winPIBT, in our test environment. In addition, we

discuss the benefits and limitations of the proposed

approach.

2 RELATED WORK

Many studies have been conducted on MAPF and

MAPD problems (Ma et al., 2017; Okumura et al.,

2019a; Sharon et al., 2015; Standley, 2010; Golden-

berg et al., 2014; Wagner and Choset, 2015; Silver,

2005; Yamauchi et al., 2022; Li et al., 2020). They

can be roughly classified into centralized and decen-

tralized approaches. In centralized approaches, the in-

formation on the environment and all agents, are col-

lected to a single agent/server and it calculates and

distributes all reasonable collision-free paths to all

agents (Sharon et al., 2015; Luna and Bekris, 2011).

For example, in conflict-based search (CBS) (Sharon

et al., 2015), the path planning process is divided

into high- and low-level search subprocesses. In low-

level search, agents independently generate the short-

est paths to their destinations and send them to the

centralized server. The server then modifies all paths

to eliminate possible collisions and distribute them to

individual agents. Although this approach is likely

to control all agents optimally in terms of travel path

length, the computational cost increases as the num-

ber of agents increases. Moreover, we must con-

sider the system’s flexibility issue in the sense that if

one agent cannot move as planned for any reason, all

agents will be affected by the replanning process for

the entire control.

In a decentralized approach (Ma et al., 2017; Oku-

mura et al., 2019a; Ma et al., 2019; Yamauchi et al.,

2022; Li et al., 2020; Farinelli et al., 2020; Miyashita

et al., 2023), agents autonomously decide their own

paths. Although this approach is more flexible, as

agents have only local information, it has some issues

such as the optimality of generated paths and reacha-

bility. For example, in token passing (TP) (Ma et al.,

2017), the agent accesses the token, a type of shared

memory, to refer to its content, generates the shortest

collision-free path, and stores the information on that

path into the token. TP can guarantee reachability un-

der a reasonable assumption for an automated ware-

house but its performance degrades in our target en-

vironment because it has only a few endpoints. Li et.

al (Li et al., 2020) proposed the rolling-horizon colli-

sion resolution (RHCR) in which agents replan their

paths at regular intervals while checking possible col-

lisions within a certain window size. However, in con-

gested situations, path generation becomes costly and

cannot guarantee reachability.

Meanwhile, PIBT can reach the destination with

only local communication, and reachability is guar-

anteed in an environment whose topological structure

is relaxed bi-connected. However, its short-sighted

algorithm delays the detection of collisions, reduc-

ing the efficiency. To overcome this drawback, win-

PIBT (Okumura et al., 2019b) secures a fixed num-

ber of nodes in advance to detect possible collisions

earlier. However, it is not always safe, meaning that

agents may unnecessarily restrict the movement of

other lower-priority agents. Our proposed method

can be considered an extension of PIBT, where some

nodes are provisionally booked in advance if the

nodes are safe to book. Although we already reported

the abstract of this extension (Shimada et al., 2025),

we provide a detailed explanation of the algorithm

Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems

529

Figure 1: Example environment (Env. 3).

(a) Deadlock (b) Priority inheritance

(c) 1 step later

Figure 2: Procedure of Priority Inheritance.

and discusses the theoretical completeness of the al-

gorithm and the results of experimental evaluation.

3 PROBLEM DESCRIPTION

3.1 MAPD

Let A = {a1,a2, ...,aN} be the set of N (∈ N) agents,

where N is the set of non-negative integers. A

MAPD environment can be expressed by a connected

undirected graph G = (V,E) embeddable in a two-

dimensional Euclidean space, where V and E are the

sets of nodes and edge connecting nodes, respectively.

We introduce the discrete time t ∈ N. An agent can

move along edge (u,v) ∈ E connecting two nodes

v,u ∈ V . As G is undirected, if (v,u) ∈ E , (u,v) ∈ E .

We assume that the length of all edges is 1, meaning

that any agent can move to an adjacent node in one

time step (by adding dummy nodes if necessary). An

example of the grid-based environment is shown in

Fig. 1, where red circles are agents that can move up,

down, left, and right if there is space.

The location of agent ai at time t is denoted by

vi(t) ∈ V . At each time t, ai can move to vi(t + 1) ∈
Nvi(t) or stay at the same node vi(t), where Nu = {v ∈
V | (u,v) ∈ E} is the set of the neighbor nodes of

u∈V . A collision occurs when two agents stay at one

node or cross the same edge simultaneously. There-

fore, the following conditions must be satisfied for

∀ai,a j ∈ A (i 6= j).

vi(t) 6= v j(t)∧ (vi(t) 6= v j(t + 1)∨ vi(t + 1) 6= v j(t))
(1)

Meanwhile, synchronized circular movements with-

out collisions are assumed to be possible, that is,

vi(t + 1) = v j(t)∧ v j(t + 1) = vk(t)∧ . . .

∧ vl(t + 1) = vi(t)
(2)

is allowed for different agents ai,a j,ak, . . . ,al ∈ A.

Let Γ = {τ1,τ2, ...} be a finite set of tasks. In

MAPD, task τ j is represented by a pair of pickup node

g1 and delivery node g2 (g1 6= g2). When τ j is as-

signed to ai at t, τ j is removed from Γ and ai travels

from vi(t) to g1,g2 by setting its destination in turn.

After both destinations are visited, another task in Γ

is assigned to ai if Γ 6= ∅. This also means that all

agents individually determine their next destinations

when they have reached the current destinations. We

denote the set of the current destinations of all agents

as D = {d1, . . . ,dN}, where di is the destination of ai

and we define di = nil if ai has no destination.

3.2 Priority Inheritance with

Backtracking (PIBT)

According to PIBT (Okumura et al., 2019a), each

agent ai has a priority that is updated at each time

step. The agent interacts with nearby agents through

a recursive process involving priority inheritance (PI)

and backtracking (BT) to determine its next move

based on the priority order.

Definition 1. (Relaxed bi-connected graph) Graph

G = (V,E) is a relaxed bi-connected graph iff G is a

connected graph, and there is a cyclic path of at least

length 3 between any pair of neighbor nodes in G.

PIBT has been proven to ensure that all agents can

reach their destinations without deadlock, livelock,

or collision, if G = (V,E) is a relaxed bi-connected

graph and |A| ≤ |V |. We briefly explain PIBT. Agent

ai ∈ A has a priority

pi(t) = εi +ηi(t) (3)

for the movement along its planned path. Here, εi

(0≤ ε < 1) is the base value of the unique priority as-

signed to ai initially, and ηi(t) (∈ N) is the elapsed

time after ai updates its destination. Agent ai sets

ηi(t) to 0 when arriving at its destination. Evidently,

agents have different priorities.

First, agent ai ranks the nodes in Nvi(t) ∪{vi(t)},
usually at time t, according to the estimated distance

to its destination from v ∈ Nvi(t) ∪{vi(t)} using some

path-finding methods for MAS, such as cooperative

A* search (CA*) (Silver, 2005). Then, ai secures the

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

530

(a) Deadlock in PI (b) PI after BT

(c) BT (d) 1 step later

Figure 3: Example Procedure of Priority Inheritance and
Backtracking.

next node in the order of priority as follows. Suppose

that ai has the highest priority in its local area. If agent

a j s.t. p j(t) < pi(t) occupies node ai and wants to

move next, ai pushes a j and a j must yield its current

location by moving a certain direction. However, this

may result in a potential collision with other agents.

In this case, ai inherits its priority to a j to avoid it.

An example is shown in Fig. 2, where the arrow indi-

cates the potential moves and p1(t) < p2(t) < p3(t).
In Fig. 2a, a3 attempts to secure a1’s current node, and

thus, a1 has to move left, but as a2 tries to move to the

same node, a1 cannot determine the next node. How-

ever, by PI, the priority of a3 is inherited by a1, thus,

a1 has a higher priority than a2 (Fig. 2b) and can se-

cure the left node. Meanwhile, a2 does not move right

but chooses to “stay” at its current node, which is the

next ranked node toward its destination, as shown in

Fig. 2c.

Backtracking (BT) is a process where the results

of the priority inheritance (PI) process, which at-

tempted to secure a node, are returned in reverse or-

der. Particularly, an agent that fails to secure a node

returns the result directly to the agent that inherited

its priority. Upon receiving this information of fail-

ure, the priority inherited agent attempts to move to

the next best node if possible. If there are no other

agents at that node, it secures that node; otherwise,

it recursively executes PI and attempts to secure that

node. It then repeats this operation. If all relevant

agents cannot determine the next location through the

PI and BT processes, they decide that the PI is stuck

and choose to remain at the current nodes. Note that

in environments that meet the condition of the relaxed

bi-connected graph, it is demonstrated that all agents

can determine their next nodes by PI and BT (Oku-

mura et al., 2019a).

An example procedure of BT is shown in Fig. 3,

in which the priority of each agent is assumed to

be greater in descending order of subscript numbers.

First, the highest priority agent a6 attempts to secure

the next node where a5 is located. Figure 3a shows

(a) Moves at time t (b) At time t +1

(c) Conflict and push (d) Push back again

Figure 4: Inefficient path planning in PIBT.

that the priority of a6 is inherited along a5, a1, a3, and

a4. However, because a4 could not secure the next

nodes, a4 and a3 backtrack by returning the failure

results, as shown in Fig. 3b, and remaining in their

current nodes. Subsequently, a1 can select another

node to move by pushing a2 because a1 has higher

priority than a2 owing to PI. This result of success is

then delivered by backtracking along a2, a1, a5, and

a6 (Fig. 3c). After that, all involved agents can decide

their next nodes. Figure 3d shows their positions at

the next time step, wherein a3 and a4 cannot move,

but they can stay at the same positions.

3.3 winPIBT (windowed PIBT)

The winPIBT (Okumura et al., 2019b) algorithm en-

hances the PIBT by incorporating a time window, al-

lowing agents to secure multiple nodes for consecu-

tive time steps. This extension aims to mitigate the

inefficiencies in PIBT, particularly those stemming

from delayed collision detection.

An example of inefficiency in PIBT is illustrated

in Fig. 4 at time t, where agents a1 and a2 move

to their destinations indicated by flags of the same

colors. Here, agent a2 has a higher priority than a1

(p2(t)> p1(t)), and the agents’ secured nodes for the

next moves are shown in the same colors of agents.

In Figs. 4a and 4b, both agents secure and move ac-

cording to the shortest paths that they individually

generate. After that, they encounter and recognize

the possible collision. Therefore, a2 must push back

the lower-priority agent a1 a few times, as shown in

Figs. 4c and 4d. These moves by a1 are wasteful and

inefficient.

For this problem, in winPIBT, the information of

the secured nodes is shared among all agents (at least,

close agents), and the highest priority agents that have

Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems

531

(a) a2 secures path (b) collision detected

(c) a1 replans a path (d) 3 steps later

Figure 5: Movements in winPIBT.

not yet determined the next node attempt to secure

some future nodes whose number is specified by the

fixed size of the time-window, W (> 0). We illus-

trate how winPIBT mitigates this wasted movement

problem using Fig. 5, where W = 3. At t, a2 secures

the nodes for up to three time steps ahead (Fig. 5a).

Then, a1 attempts to secure three nodes but can se-

cure only one neighbor node (Fig. 5b). If there were

no other path, a1 would stay at this node for three

time steps, but in this situation, there is another path,

and the node after three steps will be the same or

closer to its destination. Thus, it secures three nodes

along an alternative path at t (Fig. 5c). Figure 5d

shows the next reservation at t + 3, indicating that

both agents can reach their destination without unnec-

essary movement. Note that it is obvious that when

W = 1, winPIBT is equivalent to PIBT.

winPIBT introduces the disentangled condition,

which intuitively requires that agents secure paths in

advance while holding Condition (1). This condi-

tion includes that agent ai cannot secure the num-

ber of nodes at t0 that must be equal or less than the

number of the nodes already secured by agent a j if

p j(t0) > pi(t0) and cannot secure the node that has

been secured by a j to pass before a j. Thus, they must

satisfy the following condition,

vi(t) 6= v j(t + k) for t0 ≤ ∀t ≤ t0 +w and 0≤ k ≤ tω
j

(4)

where πi = (vi(t
0), ...,vi(t

0
i +w)) is the nodes secured

by ai (w ≤W), v j(t + k) is the node at time t + k se-

cured by a j, and tω
j is the last time when a j already

secured the node.

Although winPIBT has the reachability to destina-

tions for all agents, the condition expressed by Eq. (4)

indicates that the agents are likely to block the moves

of other agents with the lower priorities even if no col-

lision occurs, resulting in inefficiency. Figure 6a ex-

(a) A blocking situation.
(b) Secured and provisional
nodes.

Figure 6: Comparison between winPIBT and PIBT-PB.

presses an example situation in which p1 < p2 < p3

for agents a1, a2, and a3, and they move to their desti-

nations with the same colors. Because a3 first secures

some nodes earlier, including a crossing node, a2 and

a1 must wait for a1 to pass, even if no collision occurs.

If the fixed length of time window is short, agents may

delay in detecting possible collisions. In contrast, a

longer time window allows earlier collision detection

but increases the likelihood of blocking other agents.

Therefore, we aim to address this problem while ef-

fectively detecting possible collisions.

4 PROPOSED METHOD

4.1 Maximal Bi-Connected Component

and Node Classification

First, we analyze the characteristics of a bi-connected

graph. Inefficient and wasteful behavior in PIBT

occurs when a lower-priority agent ai encounters a

higher-priority agent a j and ai has no other way ex-

cept turning back. This situation occurs in a narrow

path, and the cost of going backward is significant if

the distance is long.

First, let us consider the characteristics of the re-

laxed bi-connected graph.

Proposition 1. If G=(V,E) is a relaxed bi-connected

graph, |Nv| ≥ 2 for ∀v ∈V .

Proof. If ∃u ∈V s.t. Nu is the singleton set, i.e., Nu =
{u′}. Clearly, the pair (u,u′) does not have a cyclic

path.

We can classify nodes in V into one-way and

crossing nodes from Proposition 1.

Definition 2. Node v ∈V is called a one-way node if

|Nv|= 2; otherwise, v is called a crossing node.

We denote the sets of one-way and crossing nodes

as Vow = {v | |Nv| = 2} and Vcrs = {v | |Nv| ≥ 3}, re-

spectively. We also investigate the structure of a re-

laxed bi-connected graph.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

532

Definition 3. Graph G = (V,E) is a bi-connected

graph iff any pair of nodes, v1,v2 ∈ V , has a cyclic

path in G.

For graph G = (V,E) and V ′ ⊂ V , we can nat-

urally generate subgraph G′ = (V ′,E ′), where E ′ =
{(v1,v2) ∈ E | v1,v2 ∈V ′}.

Definition 4. Subgraph G′ = (V ′,E ′) generated from

graph G= (V,E) is maximal bi-connected component

iff G′ is bi-connected and ∀v ∈ V \V ′, the subgraph

naturally generated from V ′∪{v} is not bi-connected.

Proposition 2. (Structure of a relaxed bi-

connected graph) G = (V,E) is a connected graph

and G1 = (V1,E1), . . . ,GK = (Vk,EK) are all maximal

bi-connected subgraphs of G. G = (V,E) is a relaxed

bi-connected graph iff G consists only of a number of

subgraphs of maximal bi-connected components, i.e.,

V =V1∪·· ·∪VK and E = E1∪·· ·∪EK . Furthermore,

any pairwise intersections of maximal bi-connected

subgraphs have at most one node (Miyashita et al.,

2023), and this intersection node has at least four

neighboring nodes, with two of them belonging to

the same maximal bi-connected node.

Proof. The sufficient condition is straightforward.

Suppose that G is a relaxed bi-connected graph. If

there exists ∃v ∈ V \V1∪ ·· · ∪VK such that ∃v′ ∈ Nv

and v′ ∈V1∪·· ·∪VK (if not, G is not connected), then

v and v′ have a cyclic path. Thus, they belong to

a maximal bi-connected subgraph, which also leads

to a contradiction. The latter part is also evident be-

cause if their intersection has two distinct nodes, the

union of these subgraphs forms a larger bi-connected

graph (Miyashita et al., 2023), which contradicts that

these subgraphs are maximal. Furthermore, suppose

there is only one neighboring node v′ of an intersec-

tion node v belonging to a maximal bi-connected sub-

graph Gk. Because v′,v ∈ Vk, there is a cyclic path

connecting these nodes, meaning that v has another

neighboring node v′′ ∈Vk, which leads to a contradic-

tion. This also means that any intersection node of

maximal bi-connected graphs has at least four neigh-

boring nodes.

Proposition 2 shows that if a node u belongs to the

intersection of two maximal bi-connected subgraphs,

then u ∈ Vcrs. Thus, a sequence of one-way nodes

belongs to a maximal bi-connected component.

4.2 PIBT with Provisional Booking

The central idea of PIBT-PB for MAPD in a relaxed

bi-connected area is that an agent first secures the next

node. If it does not inherit the priority from other

Algorithm 1: PIBT-PB at current time t0 for at least securing

the node at t0 +1.

1 pi(t0) is defined by Eq. 3. Agent ai at vi(t0) will

secure a node for t0 +1.

2 πS
i [t] ∈V : Secured node by ai for time t; ai

definitely visits to it at t.

3 πP
i [t] ∈V : Provisional nodes booked by ai for t in

advance.

4 procedure PIBT-PB(A, t0):

5 // t0 suggests the current time.

6 S← A and is sorted by pi(t0) in descending

order.

7 for ai ∈ S do

8 if πS
i [t0 +1] = nil then

9 // ai has no secured node at t0 +1. if

(πP
i [t0 +1] 6= nil) then

10 mPIBT(ai,ai, t0)

11 else

12 mPIBT(ai,nil, t0)

13 end

14 end

15 end

16 end

agents, it attempts to book further nodes provisionally

if the nodes are safe.

The algorithms are listed in Algs. 1, 2, and 3. We

denote the array of nodes that agent ai has secured

at t as πS
i [t] ∈ V , and the array of nodes that ai pro-

visionally booked at t as πP
i [t] ∈ V . In the proposed

method (function PIBT-PB in Alg. 1), agents’ priori-

ties are calculated using Eq. 3 every time. Suppose

that at current time t0 the highest priority agent ai ∈ A

does not secure its next node yet (πS
i [t0] = nil). It first

attempts to secure the next node using a PIBT-like

method, mPIBT. Subsequently, it provisionally books

additional nodes using addProvisionalNodes to detect

a possible collision earlier. We describe how agents

secure/provisionally book nodes in detail.

4.2.1 Securing next Node

In PIBT-PB (Alg. 1), if ai has already provisionally

booked the next node (Line 9 in Alg. 1)) it invokes

mPIBT(ai,ai, t0) to simply check the conflict. Other-

wise, ai invokes mPIBT(ai,nil, t0) (Line 12).

In Alg. 2, when a j 6= nil, ai’s priority is inherited

from a j (including the case ai = a j) and ai releases the

provisional nodes because it is unintentionally pushed

by another agent (Line 3). If ai has no provisionally

booked node at t0 + 1, it calculates the shortest path

to di starting from πS
i (t0) (= vi(t0)) using CA* (or an-

other similar algorithm) by setting the already secured

node at t0+1 and the provisional nodes booked by the

higher priority agents thus far as obstacles (Line 7).

This is temporarily stored to array Π. Note that agent

Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems

533

Algorithm 2: mPIBT at time t0 to decide the next node to

move.

1 procedure mPIBT(ai, a j , t0):

2 if (a j 6= nil∧a j 6= ai) then

3 πP
i ←∅, pi(t0)← p j(t0)

4 end

5 if (πP
i =∅) then

6 // CA∗(ai) searches the shortest path to di

by setting the secured and provisional

nodes as obstacles.

7 Π← CA*(ai),π
P
i [t0 +1]←Π[t0 +1]

8 end

9 while (πP
i 6=∅) do

10 // If there is a potential conflict, PI

occurs.

11 if (∃ak ∈ A s.t. (pk(t0)<

pi(t0))∧ (π
P
i [t0 +1] = πS

k [t0])) then

12 if mPIBT(ak,ai, t0) is nil then

13 // As ak secured a node even if

mPIBT returns nil, the

following CA* returns another

path if exists.

14 Π←CA∗ (ai)

15 πP
i [t0 +1]←Π[t0 +1]

16 continue

17 end

18 end

19 πS
i [t0 +1]← πP

i [t0 +1]
20 if a j = ai then

21 return valid

22 end

23 if (∃ak ∈ A s.t. πP
k [t0 +1] = πS

i [t0 +1])
then

24 πP
k ←∅

25 end

26 if (a j = nil)∧ (πS
i [t +1] 6= di) then

27 addProvisionalNodes(ai ,Π, t0)
28 end

29 return valid

30 end

31 πS
i [t0 +1]← πS

i [t0]
32 // stay if ai finds no node to move next.

33 return nil

34 end

ak s.t. pk(t0)< pi(t0) initially by Eq. 3 may now have

a higher priority by PI. In this case, ak has already se-

cured a node at t0 +1 but has no provisional nodes. If

CA* cannot generate the path, it returns ∅ and jumps

to Line 33. Otherwise, ai continues with another gen-

erated path Π and πP
i [t0 + 1] (= Π[t0 + 1]).

If this is not the case, ai secures the provisional

node (Line 19) and returns “valid” if ai = a j. Sub-

sequently, if ∃ak, s.t. πP
k [t + 1] = πS

i [t + 1], ak release

the provisional nodes because pk(t)< pi(t). Further-

more, if ai is not pushed by another agent, it invokes

addProvisionalNodes to additionally book some pro-

visional nodes if possible. If ai cannot find any neigh-

boring node, it remains at the current node (Line 33).

Algorithm 3: To find some provisional node after t0 +2.

1 procedure addProvisionalNodes(ai , Π, t0):

2 for (t ∈ {t0 +1, . . .}) do

3 // Try to provisionally book πP
i [t0 +2]

and after that.

4 // If ai reached di at t or the next node is

crossing, exit from the for-loop.

5 if (πP
i [t] = di)∪ (Π[t +1] ∈Vcrs) then

6 return valid

7 end

8 // If a possible collision is detected,

9 if (∃ak ∈ A s.t. (Π[t] = πP
k [t])∨ (Π[t] =

πP
k [t +1]∧Π[t +1] = πP

k [t])) then

10 // The lower-priority agent releases

all provisional nodes.

11 if pk(t0)< pi(t0) then

12 πP
k ←∅, πP

i [t +1]←Π[t +1]
13 else

14 πP
i ←∅

15 return nil

16 end

17 end

18 end

19 end

4.2.2 Provisional Booking

In the function addProvisionalNodes (Alg. 3), agent

ai attempts to provisionally book some nodes until ai

has secured or provisionally booked its destination di,

or before a crossing node (Line 5). If ai detects a

potential collision (Line 9), the provisional nodes of

the lower-priority agent will be released. If ai is the

higher-priority agent, the next node in Π[t +1] is pro-

visionally booked and stored to π
p
i [t + 1].

Figure 6b illustrates the situation in which agents

utilizing PIBT-PB avoid the unnecessary blocking of

other agents shown in Fig. 6a. Initially, a3 secures the

right node and provisionally books another right node

(depicted as the two red nodes in Fig. 6b) en route

to its destination by using the mPIBT and addPro-

visionalNodes functions. Next, a2 secures an upper

node without booking any provisional nodes. Sub-

sequently, a1 secures the left node and provisionally

books five left nodes, including its destination node,

based on the shortest path to the destination.

4.3 Property of PIBT-PB

Each agent has unique priority. Hence, one agent ai

always has the highest priority. This agent contin-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

534

ues to have top priority until it arrives at its destina-

tion. Furthermore, from mPIBT in PIBT-PB, ai can

always secure the highest ranked v ∈ Nvi(t) at t based

on the shortest path to its destination because (1) pair

(vi(t),v) has a cycle path, and (2) when ai calcu-

lates the shortest path, other agents do not secure the

next node, and the provisional nodes booked by other

agents are not considered as obstacles. Therefore, the

following proposition is evident from Prop. 2.

Proposition 3. An agent with the highest priority can

reach its destination in a finite time if the environment

G is the relaxed bi-connected graph.

When an agent reaches its destination, its prior-

ity becomes the lowest. Furthermore, if pi(t)> p j(t)
for ai,a j ∈ A, the same inequality holds at t + 1 un-

less ai reaches its destination at t + 1. In addition, if

there is an agent that cannot reach its designation, its

priority will monotonically increase and become the

highest, thus allowing it to finally reach the destina-

tion. Therefore, the following theorem holds.

Theorem 1. When environment G is a relaxed bi-

connected graph, all agents can reach their destina-

tions in a finite time.

When all nodes are crossing, PIBT-PB operates in

the same manner as PIBT, as the process for determin-

ing agents’ subsequent nodes is fundamentally equiv-

alent to PIBT without the use of provisional node

booking. This means that agents using PIBT-PB fol-

low the same paths as those using PIBT. If the envi-

ronment has some one-way nodes, agents can book

provisional nodes and detect possible head-on colli-

sions earlier than with PIBT.

Similar to winPIBT, PIBT-PB requires all agents

to have access to shared memory containing infor-

mation about locations, time, and agents of all se-

cured/provisional nodes. However, in our proposed

approach, agent ai only provisionally books one-way

nodes. Consequently, ai utilizes the node informa-

tion solely for the connected one-way path that termi-

nates at a provisionally unbooked crossing node. This

approach reduces the cost of accessing shared mem-

ory by organizing it according to the graph structure

(Proposition 2) because the provisional nodes are con-

tained within a specific maximal bi-connected com-

ponent of G.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Environment

We evaluate the proposed method by conducting ex-

periments in three environments shown in Fig. 7 (En-

Figure 7: Environment 1 (randomly assigned destinations).

Figure 8: Environment 2.

vironment 1 — Env. 1), Fig. 8 (Environment 2 —

Env. 2), and Fig. 1 (Env. 3) and compared the perfor-

mance of agents using PIBT-PB with that of agents

using the baselines, PIBT and winPIBT. Env. 1 is a

model of a warehouse, which is often used for experi-

ments in some papers. Pickup and delivery nodes are

selected randomly when a task is generated. In this

type of environment, we cannot identify the clear dif-

ference in performance between PIBT and winPIBT;

however, we aim to demonstrate the superior perfor-

mance of our method. Env. 2 is a simple model de-

signed to illustrate the differences between PIBT and

PIBT-PB. Although only four corners are one-way

nodes, PIBT-PB outperforms PIBT. In Env. 2, green

and blue nodes denote pickup and delivery points, re-

spectively. Thus, the agent first moved to a green

node and then proceeded to a blue node, located ei-

ther on the same or opposite side. Env. 3 (Fig. 1) sim-

ulates a construction site where agents pick up ma-

terials at one of the storage areas (green nodes) and

deliver them to a node in the installation areas (blue

nodes). Their pickup and delivery locations are un-

balanced, thus congestion may occur near pickup and

delivery areas if the number of agents is large.

The initial positions of the agents were randomly

assigned to each environment, and 1000 (600) MAPD

tasks were allocated to Envs. 1 and 3 (Env. 2). Each

task τ comprises pickup and delivery points τ =
(g1,g2). The assigned agent sets g1 and then g2 as

its destinations. Upon task completion, another task

is assigned from Γ, which is a set of MAPD tasks. The

efficiency metric for MAPD is the makespan, which

measures the number of steps from the start of the

experiment to the completion of all tasks; a lower

Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems

535

makespan indicates a better performance. The win-

dow size of winPIBT W (> 1) was optimized for the

shortest makespan and varied according to the envi-

ronment. Experiments were conducted by varying the

number of agents N to assess the performance impact

on PIBT-PB and the baselines. The results presented

below are the averages of 20 independent trials.

5.2 Experimental Results

The results are presented in Fig. 9. Across all three

environments, the findings demonstrate that PIBT-PB

outperformed the other methods, achieving shorter

makespan time steps regardless of agent quantity. As

shown in Figure 9a, PIBT and winPIBT displayed

nearly identical performances in Env. 1, where the

agent numbers ranged from 20 to 100, and the win-

PIBT window sizes were set at W = 5 and 10. The

value W = 10 was larger in other environment. Thus,

agents could find possible conflicts much earlier than

those of agents using PIBT. However, they restricted

other agents’ movement. Because the advantages

and disadvantages cancel each other out, the values

of makespans for winPIBT were almost identical to

those of PIBT. In contrast, PIBT-BP did not book any

crossing nodes as provisional nodes in advance and

needlessly restricted other agents’ movements, while

it could detect possible conflicts effectively. For ex-

ample, the makespan of PIBT-PB (1040.8) was ap-

proximately 14.3% lower than that of PIBT (1214.7)

when N = 100.

The makespans in Env. 2 are plotted in Fig. 9b,

in which we varied the number of agents from 10 to

50. With 48 nodes in the moving area (white nodes),

N = 50 means the environment is extremely crowded.

Figure 9b shows that the agents using PIBT-PB ex-

hibited shorter makespans than those using the base-

lines, even in such a simple environment. Because the

pickup and delivery nodes could be set to four corner

nodes, agents could reach them with the final step by

provisional booking. Even in a grid-like environment,

such as Env. 2, agents using winPIBT restricted other

agents by securing some nodes on the opposite side,

making the performance of winPIBT optimal when

W = 3, a relatively small window size.

In Env. 3, PIBT-PB demonstrated superior perfor-

mance, whereas PIBT and winPIBT (W = 5) showed

nearly identical results, with winPIBT having a slight

edge. In this setting, winPIBT agents frequently

blocked other agents, causing them to wait at inter-

section points in the central areas. The benefits and

drawbacks of winPIBT compared to PIBT balance

each other, similar to Env. 1, resulting in a compa-

rable efficiency. However, PIBT-PB agents success-

fully avoided unnecessary blockages at intersections

where agents could potentially hinder each other’s

movements, thus enhancing the efficiency of detect-

ing head-on collisions.

5.3 Discussion

Our experiments revealed that PIBT-BP improved

MAPD problem-solving efficacy compared with tra-

ditional priority-based methods, including PIBT and

winPIBT. WinPIBT agents increased path-planning

efficiency by using time windows for early collision

detection, unlike PIBT. However, winPIBT also im-

posed strict movement constraints on other agents, of-

ten hindering them at intersections by securing addi-

tional nodes. To mitigate this, we avoided securing

extra nodes at intersections, where movement might

be restricted. Critical scenarios to prevent potential

collisions in narrow, one-way paths where agents can-

not pass each other and must backtrack and waste

time. Therefore, PIBT-PB agents books as many pro-

visional nodes as possible on one-way routes to detect

future collisions. PIBT-BP is expected to be particu-

larly effective in maze-like environments, with lim-

ited or lengthy alternative routes and warehouse set-

tings.

6 CONCLUSION

We proposed PIBT with provisional booking (PIBT-

BP), which extends PIBT to detect possible collisions

earlier. First, agents using PIBT-BP secure the next

node similar to PIBT, and then attempt to provision-

ally book additional one-way nodes in advance, as

booking a crossing node often blocks other agents’

actions. Subsequently, if no collision is detected, the

agent proceeds through the provisional nodes step-by-

step. If a higher-priority agent approaches, it releases

the booked nodes and generates an alternative path by

treating the approaching agent as an additional obsta-

cle. Nonetheless, agents always reach their destina-

tions, because the first step follows a method that is

essentially identical to PIBT.

One of the future works is to improve the dynamic

prioritization used for controlling agents. In this

study, the prioritization depends on the time elapsed

since the destination was updated and restarted.

Therefore, an agent with a nearby destination may

have to take a detour owing to its priority level. To

avoid this situation, we propose utilizing information,

such as the distance between the agent and the des-

tination, as well as the structural information of one-

way paths in the environment. We also need to adapt

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

536

(a) Env. 1 (b) Env. 2 (c) Env. 3
Figure 9: Experimental Results of Makespan.

our method to accommodate flexible environments,

such as construction sites. These environments un-

dergo changes where paths are generated or elimi-

nated owing to the construction of new walls, doors,

polls, and changes in material storage areas.

REFERENCES

Ankit, K., Tony, L. A., Jana, S., and Ghose, D. (2022).
Multi-agent Cooperative Framework for Autonomous
Wall Construction. In Saraswat, M., Sharma, H., Bal-
achandran, K., Kim, J. H., and Bansal, J. C., editors,
Congress on Intelligent Systems, pages 877–894, Sin-
gapore. Springer Nature Singapore.

Farinelli, A., Contini, A., and Zorzi, D. (2020). Decentral-
ized task assignment for multi-item pickup and deliv-
ery in logistic scenarios. In AAMAS.

Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturte-
vant, N., Holte, R., and Schaeffer, J. (2014). Enhanced
partial expansion A*. J.Artif.Intell.Res, 50:141–187.

Jennings, J., Whelan, G., and Evans, W. (1997). Coopera-
tive search and rescue with a team of mobile robots.
In 1997 8th International Conference on Advanced
Robotics. Proceedings. ICAR’97, pages 193–200.

Li, J., Tinka, A., Kiesel, S., Durham, J. W., Kumar, T. K. S.,
and Koenig, S. (2020). Lifelong Multi-Agent Path
Finding in Large-Scale Warehouses. In AAMAS.

Luna, R. and Bekris, K. E. (2011). Push and swap: Fast co-
operative path-finding with completeness guarantees.
In IJCAI, pages 294–300.

Ma, H., Honig, W., Kumar, T., Ayanian, N., and Koenig, S.
(2019). Lifelong path planning with kinematic con-
straints for multi-agent pickup and delivery. In AAAI.

Ma, H., Li, J., Kumar, T. S., and Koenig, S. (2017). Lifelong
Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. In Proc. of the 16th Conf. on Autonomous
Agents and MultiAgent Systems, AAMAS ’17, pages
837–845.

Miyashita, Y., Yamauchi, T., and Sugawara, T. (2023). Dis-
tributed Planning with Asynchronous Execution with
Local Navigation for Multi-agent Pickup and Delivery
Problem. In AAMAS.

Okumura, K., Machida, M., Défago, X., and Tamura, Y.
(2019a). Priority Inheritance with Backtracking for
Iterative Multi-agent Path Finding. In Proc. of the
Twenty-Eighth International Joint Conf. on Artificial
Intelligence, IJCAI-19.

Okumura, K., Tamura, Y., and Défago, X. (2019b). win-
PIBT: Expanded Prioritized Algorithm for Iterative
Multi-agent Path Finding. CoRR, abs/1905.10149.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artif.Intel, 219:40–66.

Shimada, D., Miyashita, Y., and Sugawara, T. (2025). Path
Finding with Flexible Provisional Booking in Multi-
agent Pickup and Delivery Problems. In Arisaka, R.,
Sanchez-Anguix, V., Stein, S., Aydoğan, R., van der
Torre, L., and Ito, T., editors, PRIMA 2024: Princi-
ples and Practice of Multi-Agent Systems, pages 74–
80, Cham. Springer Nature Switzerland.

Silver, D. (2005). Cooperative pathfinding. In Proc. of the
AAAI Conf. on Artificial Intelligence and Interactive
Digital Entertainment, volume 1, pages 117–122.

Standley, T. S. (2010). Finding optimal solutions to cooper-
ative pathfinding problems. In AAAI, volume 1, pages
28–29.

Wagner, G. and Choset, H. (2015). Subdimensional expan-
sion for multirobot path planning. Artif.Intell, 219:1–
24.

Wang, Z. (2023). Research on optimal route planning and
delivery strategy of multiple robots using HCA algo-
rithm in a restaurant. In 2023 IEEE 2nd Int. Conf.
on Electrical Engineering, Big Data and Algorithms
(EEBDA), pages 1740–1746.

Yamauchi, T., Miyashita, Y., and Sugawara, T. (2022).
Standby-Based Deadlock Avoidance Method for
Multi-Agent Pickup and Delivery Tasks. In AAMAS.

Multi-Agent Path Finding Using Provisionally Booking Nodes for Pickup and Delivery Problems

537

