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Abstract: Large Language Models (LLMs) have demonstrated significant capabilities in intelligent activities such as
natural language comprehension, content generation, and knowledge retrieval. However, training and deploy-
ing these models require substantial computation resources, setting up a significant barrier for developing AI
applications and conducting research. Various model compression techniques have been developed to address
the demanding computational resource issue. Nonetheless, there has been limited exploration into high-level
quantization strategy to offer better flexibility of balancing the trade-off between memory usage and accu-
racy. We propose an effective mixed-quantization method named MXQ to bridge this research gap for a better
memory-accuracy balance. Specifically, we observe that the weight distributions of LLMs vary considerably
from layer to layer, resulting in different tolerances to quantization errors. Motivated by this, we derive a
novel quantization optimisation formulation to solve for the layer-wise quantization parameters, while enforc-
ing the overall quantization memory consumption budget into the constraints. The new formulation can be
efficiently solved by converting to a mixed integer programming problem. Experiments shows that our method
can achieve the 1% accuracy loss goal with additional bit budget or further reduce memory usage on Llama
models. This unlocks a wide range of quantization options and simplifies memory-accuracy trade-off.

1 INTRODUCTION

When deploying or fine-tuning pre-trained Large Lan-
guage Models (LLMs), GPUs are typically employed
to accelerate the neural network’s forward and back-
ward propagation processes. These specialized pro-
cessors excel at executing massive parallel opera-
tions, such as large-scale matrix multiplication (Baji,
2018). To minimize latency, the model parameters,
gradients, and associated optimizer states are stored
in GPU memory using high-precision numeric rep-
resentations like float16 or float32. However, this
approach often proves inadequate in addressing the
increasing computational resource demands resulting
from the exponential growth in parameters of pre-
trained LLMs, driven by the scaling laws (Kaplan
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et al., 2020). The high computational demands have
hindered research on large LLMs (Ding et al., 2023),
as only very limited researches surveyed were able to
conduct practical experiments due to the prohibitive
costs of deploying large pre-trained language models
to validate their hypotheses experimentally.

Fortunately, an innovative model compression
technique, known as model quantization, has been de-
veloped to tackle this challenge and significantly re-
duce storage requirements. Quantization is a tech-
nique used to convert the high-precision numeric
representation of large pre-trained models’ parame-
ters into compact, low-bit equivalents. This process
reduces memory consumption and boosts inference
speed. Although current quantization methods strive
to preserve model precision as much as possible,
some loss of accuracy is inevitable. It is almost im-
possible for a quantized model to maintain the exact
accuracy of the unquantized model. The quantization
research community typically aims for near-lossless
compression, commonly considered to be within 1%
error relative to the uncompressed baseline, as defined
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Figure 1: Model quantization converts an original model to the quantized model with several steps: quantization grid, optimi-
sation with calibration dataset, and quantized weights and metadata storage.

in the MLCommons benchmark (Reddi et al., 2020).
The key challenge of quantization lies in the trade-off
between reducing the memory requirements and pre-
serving the model performance.

The general pipeline of a model quantization pro-
cess is shown in Figure 1. First, the quantization
method maps the original high-precision numeric rep-
resentation of parameters into a narrower range of val-
ues, known as quantization grids or bins, allowing
them to be packed into fewer bits. Then, an optimisa-
tion step is usually employed to compensate for quan-
tization errors, which may require additional metrics,
such as a calibration dataset. After that, adjacent
weights are packed into the same byte to save space.
The associated metadata are usually quantized using
the same process to further reduce storage, which is
also known as double-quantization in (Dettmers et al.,
2023). Finally, the quantized model is saved in persis-
tent storage for distribution.

However, existing methods using this approach
lack flexible controls of the memory-accuracy balance
since they tend to adopt identical quantization config-
urations across all weight matrices with diverse dis-
tributions. To tackle this issue, we propose a novel
mixed-quantization method named MXQ, which can
offer a broader spectrum of options for memory-
accuracy trade-off and simplify memory management
by using intuitive bit budget.

Specifically, we conducted a comprehensive in-
vestigation on the weight distribution of all neural net-
work layers in Llama family models and observed an
intriguing phenomenon: the MLP and self-attention
modules exhibit significantly distinct weight distribu-
tions across various layers, as shown in Figure 2. For
example, mlp.down proj has a wider weight band
while mlp.gate proj owns a much narrower one.

In addition, the Kurtosis line plots indicate the start-
ing and ending layers tend to exhibit higher Kurto-
sis value, which demonstrates the degree of quantiza-
tion difficulty varies significantly across different lay-
ers. Motivated by this observation, we design a new
quantization optimisation formulation by introducing
a set of layer-wise configurations to handle their dis-
tinctive distributions. Moreover, the memory budget
is controlled by a well-devised storage cost function
in the formulation constraints. For efficient optimi-
sation, we convert the quantization formulation to a
mixed integer linear programming (MiLP) problem.
The quantization error matrices and storage cost ma-
trices are pre-computed before solving the LP prob-
lem to accelerate the overall quantization process.

Comprehensive experiments were conducted to
validate the effectiveness of MXQ on language mod-
els, showing a good balance between memory storage
and model performance. The contributions of this pa-
per are summarized as follows:

• We propose an effective quantization method
named MXQ for precise budget control and flex-
ible memory-accuracy balance. MXQ provides
a novel optimisation formulation with layer-wise
configurations in the objective and a storage cost
function in the constraints.

• The new formulation is transformed into a mixed
integer linear programming (MiLP) problem,
which can be solved with efficient off-the-shell LP
solvers, which contributes to fast quantization.

• Experiments are performed on perplexity bench-
marks for the Llama family of language mod-
els, showing flexible control and better memory-
accuracy balance over state-of-the-art quantiza-
tion methods.
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Figure 2: This figure illustrates the weight distributions across all layers of the Llama-2-13B model, represented by various
percentiles (0%, 99%, 99.9%, 99.99%, and 100%). The numbers in parentheses the total parameters of each module. The
Kurtosis line plot shows the degree of deviation from a normal distribution, where a value of 3 indicates no deviation. The
higher Kurtosis value denotes greater divergence thus greater difficulty to quantize accurately. The varying column heights and
the Kurtosis line plot highlight distinct patterns across different layers, motivating the design of a novel layer-wise quantization
method. This figure is best viewed in color and with zoom for clarity.

2 RELATED WORKS

The Quantization techniques have been extensively
explored, and numerous innovative methods were in-
vented and applied in a variety of use cases, such
as inference (Frantar et al., 2023; Lin et al., 2023),
fine-tuning (Dettmers et al., 2023; Guo et al., 2024)
and optimizer state (Dettmers et al., 2022). These
techniques can be generally categorised into two
categories: (1) Quantization Aware Training (QAT)
(Nagel et al., 2021), requiring backward propagation
and being tightly coupled with model training, and
(2) Post Training Quantization (PTQ) (Nagel et al.,
2019), which is a training-free methodology. PTQ
has been recognised as the mainstream due to the
substantial number of pre-trained LLMs. For ex-
ample, the HuggingFace model search page reports
around 700,000 models published as of June 2024.
Consequently, advancements in PTQ research provide
greater practical values.

In this paper, we focus on a specific class of the
PTQ method, i.e., weight-only quantization method.
Specifically, considering whether an extra calibration
dataset is adopted during quantization, weight-only
method can be further divided into two categories:

calibration-based methods and calibration-free meth-
ods. Below, we survey the papers most relevant to our
proposed mixed-quantization method.

2.1 Calibration-Based Methods

The calibration-based approaches, based on advanced
mathematical theory such as the Hessian matrix and
Fisher information, usually produce better-quantized
models. However, they tend to be slow and prone to
overfitting the calibration dataset. The representative
state-of-the-art implementations of calibration-based
approaches include GPTQ and AWQ.

GPTQ (Frantar et al., 2023) is based on Optimal
Brain Quantizer (OBQ) (Frantar and Alistarh, 2022),
which quantized one weight at a time while con-
stantly updating all not-yet-quantized weights to
compensate for the error incurred by quantizing a
single weight. GPTQ improves OBQ by quantizing
weight column-wise to eliminate repeated calculation
of the inverse of the Hessian Matrix, thus scaling
to a larger model with parameters as many as a few
hundred billion. GPTQ has extensively optimized
kernels to accelerate mixed-precision matrix multi-

A Mixed Quantization Approach for Data-Free Quantization of LLMs

355



plication. Thus, the GPTQ quantized models not only
save memory but also run faster.

AWQ (Lin et al., 2023), based the observation that the
importance of LLM’s weights is non-uniform, pro-
poses a quantization method to identify the minor-
ity “salient” weights by measuring activation magni-
tude and scaling the identified weights to minimize
quantization errors. What makes AWQ unique is that
rather than isolating salient weights into separate stor-
age like sparse matrix, it utilises the same quantized
storage to preserve the salient weights, eliminating
the need to develop specialised mixed-precision ma-
trix multiplication kernel for fast inference.

2.2 Calibration-Free Methods

HQQ (Badri and Shaji, 2023) approaches minimiz-
ing quantization errors by relying solely on the weight
without considering the layer activation. Further-
more, it incorporates the Lp<1-norm loss function to
effectively model outliers through a hyper-Laplacian
distribution, which captures the long-tailed nature of
outlier errors more accurately than the squared error,
resulting in a better representation of error distribu-
tion. The outstanding feature of HQQ lies in its ex-
traordinary quantization speed, which achieves a very
close performance compared to the top quantization
methods.
BnB (Dettmers et al., 2023) employs a novel high-
precision technique to quantize pre-trained model
weights to 4-bit NormalFloat(NF4), which employs
the Gaussian distribution exhibited in model weights.
The 4-bit NormalFloat datatype represents 16 val-
ues (q1,q2, · · · ,q16) in the interval [−1,1]. Each
weight matrix is chunked into small groups for bet-
ter quantization accuracy. Additionally, NF4 employs
the double quantization technique to reduce the over-
head introduced by granular group-wise quantization,
a widely adopted strategy by other state-of–the-art
quantization methods.

3 MIXED QUANTIZATION
METHOD

Previous studies on quantizing LLMs (Dettmers et al.,
2023; Frantar et al., 2023; Lin et al., 2023; Badri
and Shaji, 2023) employed identical quantization con-
figurations across entire model. This approach lacks
flexibility in balancing the trade-off between memory
consumption and model performance under various
resource constraints and may be sub-optimal, espe-
cially in billion-scale LLMs as demonstrated in fig-

Table 1: The mixed quantization configurations.

Parameter Values

b1 2,3,4,8
b2 8
g1 32,64,128
g2 128

ure 2, where some layers exhibit far taller weight
bands and spikes in Kurtosis line, indicating not all
layers are equally quantizable. This necessitates a
new approach that employs non-uniform quantization
settings for optimal quantization.

MXQ allocates optimal quantization configura-
tions to each weight matrix according to a user-
specified overall bit budget for each parameter to
minimize the global quantization error. Specifically,
MXQ identifies ideal configurations that minimize
the sum of Frobenius norm of the difference between
the original matrices and their quantized counterparts
while confining the memory usage within the con-
straint of the target memory budget. Thus the problem
can be formulated as a Mixed integer Linear Program-
ming (Huangfu and Hall, 2018) problem. Let’s denote
ci = (b1,g1,b2,g2) as the configuration parameters
used to quantize the ith matrix of the LLM, where b1
and g1 denote the bit width and group size for quan-
tizing weights, b2 and g2 indicate the bit width and
group size to quantize metadata, such as zero points
and scales. For a visual explanation of the bit width
and group size, refer to Figure 8 in the appendix.

Let C be the set of all possible configurations. In
this paper, we limit the search space as listed in Table
1, leading to the cardinality of all possible configura-
tions to be 12. Moreover, let {W (i)}N

i=1 be the set of N
matrices in the LLM to be quantized. The MXQ qua-
tization probelm can be formulated as an optimisation
problem with equation 1.

argmin
c1,c2,··· ,cN

∑
i∈{1,...N}

ci∈C

∥∥∥W (i)−Ŵ (i)
ci

∥∥∥
F

s.t. ∑
i∈{1,...N}

ci∈C

storage(W (i),ci)≤ β,
(1)

where parameter β denotes the overall memory bud-
get for the quantized model in megabytes. The stor-
age cost function stor is defined in Equation 2:

stor(W (i),ci) = |W (i)| ·
(

b1 +
2b2

g1
+

32
g1 ·g2

)
(2)

For simplicity, we use the same second-level bit width
and group size for scales and zeroes, as variations
in these configurations have minor impact on overall
memory consumption.
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To minimize the objective function in Equation 1,
we calculate Frobenius norms and storage costs with
respect to all possible configurations (N × |C| in to-
tal) for a given LLM. To accelerate the process, the
Frobenius norm and storage cost can be pre-computed
and stored in two matrices beforehand, denoted as
F ∈RN×|C| and S ∈RN×|C|. With these pre-computed
metrics in place, the optimal quantization configu-
rations problem is re-formulated as a mixed integer
linear programming problem by introducing a series
of binary decision variables x j, where j ∈ {1, . . . ,M}
and M = N ×|C|. Specifically, the optimisation prob-
lem can be formulated as follows:

argmin
X

F ·X

s.t. S ·X ≤ β ,

A ·X =


1
1
...
1


N×1

,

(3)

where X =


x1
x2
...

xM


M×1

,

x j ∈ {0,1} ∀ j ∈ {1, . . . ,M} ,
F =

(
f1 f2 · · · fM

)
,

S =
(
s1 s2 · · · sM

)
,

A =



|C|︷ ︸︸ ︷
1, · · · ,1

|C|︷ ︸︸ ︷
0, · · · ,0 · · ·

|C|︷ ︸︸ ︷
0, · · · ,0

|C|︷ ︸︸ ︷
0, · · · ,0

|C|︷ ︸︸ ︷
1, · · · ,1 · · ·

|C|︷ ︸︸ ︷
0, · · · ,0

...
...

. . .
...

|C|︷ ︸︸ ︷
0, · · · ,0

|C|︷ ︸︸ ︷
0, · · · ,0 · · ·

|C|︷ ︸︸ ︷
1, · · · ,1


N×M

.

As we search for one optimal configuration out
of |C| for a total number of N matrices, we initial-
ize A ∈ RN×M in Equation 3, i.e., a matrix of N rows
by M columns with only 0’s and 1’s. Each row con-
tains |C| consecutive ones corresponding to positions
of the weight matrices encoded in A. Equation 3
can be solved efficiently by off-the-shelf LP solvers
such as Gurobi (Gurobi Optimization, LLC, 2023)
and HiGHS (Huangfu and Hall, 2018). In this pa-
per, the scipy wrapper of HiGHS is adopted to solve
Equation 3.

4 EXPERIMENTS

Theoretically, our method can be extended to support
quantization methods that support layer-wise config-
urations. However, limited by time and computation
resources, we focused our experiments on leveraging
HQQ (Badri and Shaji, 2023) as the underlying quan-
tization implementation due to its impressive quanti-
zation speed and outstanding accuracy. The design
of the experiments primarily emphasizes the 3- and
4-bit quantization as these configurations better pre-
serve the performance of LLMs (Dettmers and Zettle-
moyer, 2023). Besides the perplexity, which is a strin-
gent measurement of accuracy and generally reflects
true performance of the LLM (Dettmers and Zettle-
moyer, 2023). Additionally, we benchmarked quanti-
zation speed and actual GPU memory consumption in
order to evaluate the quantization algorithms compre-
hensively.

We evaluated the performance of our MXQ on the
state-of-art large language models such as the Llama
family models to verify the efficacy of the MXQ. The
selected baselines were simultaneously tested under
the same experimental settings. To facilitate the ex-
periment and maximize reproducibility, we developed
a harness tool named lm-quant-toolkit, open-sourced
on GitHub, to execute the experiments and collect
data. The procedures to execute the experiments are
elaborated in the appendix 5.

4.1 Settings

The proposed method was applied to the Llama (Tou-
vron et al., 2023) family models, including Llama-2-
7B, Llama-2-13B, and Llama-3-8B. We employed the
Hugging Face(huggingface, 2024) perplexity evalu-
ation method, which is slightly different from those
used in prior works and tends to yield lower values
than those reported in existing research, on the two
datasets: WikiText-2 (Merity et al., 2016) and C4
(Raffel et al., 2020) respectively. The current state-of-
the-art calibration-based and calibration-free quanti-
zation methods are adopted as the baselines, including
HQQ (Badri and Shaji, 2023), BnB (Dettmers et al.,
2023), GPTQ (Frantar et al., 2023) and AWQ (Lin
et al., 2023). These baselines were re-evaluated with
3 or 4-bit configurations according to Table 1, ensur-
ing a fair comparison.

All the experiments were conducted on a Linux
workstation with Nvidia RTX 4090 GPU. The hard-
ware and software specifications are presented in the
Table 3. The Llama models, published by Meta, were
fetched from the HuggingFace.
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Table 2: This table presents the perplexity metrics of the proposed MXQ method along with various baseline methods on the
Llama family models. The table includes some of MXQ’s representative bit budgets, ranging from 3.07 to 6.89. As the budget
increases, the MXQ’s perplexity approaches or even surpasses the state-of-the-art methods, demonstrating its effectiveness in
prioritizing accuracy over memory.

Llama-2-7B Llama-2-13B Llama-3-8B

Method Config BPP1 ↓WikiText22 ↓C43 ↓MEM4 ↓WikiText2 ↓C4 ↓MEM ↓WikiText2 ↓C4 ↓MEM

FP16 - 16 5.18 6.95 12.55 4.63 6.45 19.21 5.81 8.98 14.96

HQQ
b4

g32

4.51 5.28 7.06 4.07 4.69 6.51 7.63 6.07 9.41 5.82
MXQ 4.51 5.29 7.08 3.89 4.69 6.51 7.28 6.11 9.47 5.62
GPTQ5 4.51 5.39 7.11 4.74 4.72 6.54 8.43 8.80 10.44 6.71
AWQ 4.51 5.26 7.04 3.98 4.69 6.51 7.59 6.07 9.39 5.72

HQQ
b4

g64

4.25 5.30 7.11 3.79 4.70 6.54 7.07 6.19 9.60 5.51
MXQ 4.25 5.31 7.13 3.71 4.71 6.54 6.90 6.29 9.76 5.49
GPTQ 4.25 5.39 7.13 4.50 4.73 6.56 7.97 11.83 11.77 6.46
AWQ 4.25 5.29 7.07 3.74 4.71 6.53 7.10 6.15 9.52 5.46

HQQ

b4
g128

4.13 5.35 7.16 3.65 4.74 6.57 6.80 6.38 9.94 5.36
MXQ 4.13 5.33 7.17 3.72 4.74 6.57 6.94 6.40 9.96 5.54
BnB6 4.13 5.32 7.12 3.60 4.72 6.55 6.71 6.20 9.64 5.31

GPTQ 4.13 5.39 7.18 4.39 4.74 6.57 7.74 97.03 27.77 6.33
AWQ 4.13 5.31 7.10 3.62 4.71 6.55 6.92 6.21 9.67 5.33

HQQ
b3

g32

3.51 5.62 7.53 4.07 4.89 6.78 7.63 7.09 11.16 5.82
MXQ 3.51 5.65 7.63 4.17 4.92 6.84 7.54 7.30 11.68 6.16
GPTQ 3.51 5.94 7.81 3.20 5.09 6.96 5.93 17.76 17.98 4.88
AWQ7 3.51 - - - - - - - - -

HQQ
b3

g64

3.25 5.82 7.80 3.41 4.98 6.94 6.33 7.80 12.35 5.11
MXQ 3.25 6.04 8.13 3.98 5.06 7.05 7.18 9.52 15.23 5.80
GPTQ 3.25 6.13 8.07 2.98 5.14 7.06 5.49 11.16 14.33 4.64
AWQ 3.25 - - - - - - - - -

HQQ
b3

g128

3.13 6.20 8.39 3.08 5.15 7.14 5.69 9.31 14.90 4.75
MXQ 3.13 6.36 8.60 3.85 5.24 7.34 6.92 12.23 19.49 5.67
GPTQ 3.13 6.32 8.30 2.87 5.24 7.19 5.27 52.78 30.04 4.52
AWQ 3.13 - - - - - - - - -

MXQ8

6.89 6.89 5.25 7.01 6.40 4.66 6.48 11.91 6.01 9.30 8.49
5.72 5.72 5.26 7.03 5.54 4.67 6.50 10.22 6.04 9.35 7.57
5.02 5.02 5.28 7.05 5.01 4.68 6.50 9.18 6.05 9.38 7.00
4.21 4.21 5.32 7.14 4.43 4.72 6.55 8.04 6.34 9.84 6.46
4.17 4.17 5.33 7.16 4.44 4.73 6.56 8.07 6.38 9.93 6.48
4.11 4.11 5.34 7.18 4.46 4.74 6.58 8.10 6.42 9.99 6.50
4.07 4.07 5.36 7.21 4.44 4.75 6.59 8.12 6.46 10.08 6.53
3.95 3.95 5.43 7.29 4.44 4.79 6.65 8.06 6.59 10.36 6.45
3.87 3.87 5.45 7.33 4.46 4.81 6.67 8.12 6.73 10.59 6.35
3.83 3.83 5.46 7.36 4.42 4.82 6.69 8.04 6.80 10.71 6.30
3.65 3.65 5.54 7.50 4.32 4.87 6.76 7.81 7.09 11.24 6.27
3.19 3.19 6.15 8.30 3.91 5.11 7.12 7.05 11.20 17.89 5.73
3.15 3.15 6.25 8.45 3.87 5.18 7.25 6.96 12.02 19.10 5.69
3.11 3.11 6.49 8.75 3.82 5.30 7.43 6.88 12.52 20.16 5.65
3.07 3.07 6.78 9.12 3.78 5.57 7.72 6.80 13.54 21.40 5.61

1 Bit per parameter, i.e. the average bits a paratemer takes.
2 Perplexity on the WikiText2 dataset, evaluation follows the HuggingFace algorithm (huggingface, 2024).
3 Perplexity on a subset of the C4 dataset, which is composed of the first 1,100 entries of the en validation split.
4 Memory is measured using PyTorch’s API after loading the quantized model into GPU. This column is reported in GiB.
5 We used github.com/AutoGPTQ/AutoGPTQ for this experiment.
6 The 4-bit BnB employes 64 as the group size. However, the bit per parameter is 4.13 according to (Dettmers et al., 2023).
7 The github.com/casper-hansen/AutoAWQ used by this experiment has no 3-bit quantization implementation.
8 Additional bit budgets unavailable to other baseline methods.
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Figure 3: This figure illustrates the potential trade-offs between memory and perplexity within the 3-bit to 5-bit range for the
Llama-2-13B models on the WikiText2 dataset using the calibration-free quantization methods such as HQQ and BnB. The
red triangle at the lower right corner denotes the FP16 baseline. The gaps between the there horizontal lines represent the 1%
and 2% perplexity degradation ranges respectively. The tiny square indicates the BnB performance. As evidenced by this plot,
MXQ offers far more options to balance memory and performance. It achieves the 1% performance loss goal at a bit budget
around 5.6. Additionally, it enables aggressive 77% memory saving at a bit budget around 3.7 while maintaining perplexity
drop within 5%.

4.2 Results and Analysis

The perplexity metrics for various Llama models are
presented in Table 2. The evaluation results for our
mixed quantization method are shown as the “MXQ”
rows at the bottom of the table. We tested a few hun-
dred bit budgets, ranging from 2.75 to 7.75, some of
the representative bit budgets as listed in the Table 2.
The upper section of the table displays the results for
HQQ, GPTQ, and AWQ under various bit and group
size settings. The first column denotes the quantiza-
tion method, while second column indicates the com-
bination of bit width and group size.

Figure 3 presents the broader range of quantiza-
tion options and the corresponding performance met-
rics within the 3-bit to 5-bit range for the Llama-2-
13B models on the WikiText2 dataset on the Llama-
2-13B model. The calibration-free quantization meth-
ods such as HQQ and BnB are included as reference.
The red triangle at the lower right corner denotes the
FP16 baseline. The gaps between the there horizontal

lines represent the 1% and 2% perplexity drop zones.
MXQ offers a flexible trade-off between memory

consumption and accuracy by unlocking a variety of
budget-perplexity options, showing good potential for
real application with diverse memory constraints. On
one hand, MXQ can leverage slightly larger memory
budget for better accuracy, which is not an option for
the existing methods. As demonstrated in Table 2, at
the bit budget of 6.89, MXQ surpasses all SoTA meth-
ods on WikiText2 and C4 perplexity metrcis for all the
three Llama models. Additionally, MXQ achieves the
1% performance loss goal at a bit budget around 5.6
on the Llama-2-13B model as evidenced in the Fig-
ure 3. On the other hand, MXQ enables aggressive
memory reduction. As illustrated by Figure 3, MXQ
achieves approximately 77% memory saving at a bit
budget around 3.7 while maintaining perplexity drop
within 5% on the Llama-2-13B model.

In addition to evaluating perplexity, we conducted
a comprehensive assessment of the actual GPU mem-
ory consumption and quantization time of MXQ and
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Figure 4: This figure illustrates the GPU memory usage,
measured in gigabytes(GiB) when loading baseline and
quantized Llama models into GPU prior to executing any
inference. All quantized models exhibit a substantial reduc-
tion in memory consumption when compared to the FP16
baseline. Notably, the MXQ approach offers additional
memory saving comparing to HQQ.

the baseline quantization methods on the Llama mod-
els. As presented in Figure 4, all quantization meth-
ods demonstrate significant drop in memory usage,
decreasing it to approximately one-third of the mem-
ory required by the unquantized models. Notably,
MXQ exhibits additional memory reduction when
compared to HQQ. With respect to the quantization
time, despite the fact that MXQ incurs small overhead
on the MiLP algorithm to find optimal quantization
configurations, it is able to quantize the Llama-2 13B
model within 1 mintue, which is an order of magni-
tude smaller than the AWQ and GPTQ.

Lastly, we examined the differences between
MXQ and HQQ in bit budget allocation. The Fig-
ure 6 and 7 present the quantization config assigments
for the MLP and self attention modules of Llama-2-
13B model respectively. As demonstrated by the fig-
ures, HQQ allocates identical bit bugdets to all lay-
ers and modules. In contrast, MXQ tends to sacri-
fice the initial layers of the MLP modules to favor the
second and third layer of the self attention modules,
specifically the K and Q. This approach aligns with
the MiLP formulation defined in Equation 3, which
aims to minimize the sum of Frobenius norms and sat-
isfy the memory constraints. We verified the sum of
Frobenius norms produced by MXQ is indeed smaller
than the that of HQQ.

5 CONCLUSION

The mixed quantization (MXQ) represents an ef-
fective approach to optimizing the balance between
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Figure 5: This figure compares the quantization time of
various quantization methods: MXQ, HQQ, AWQ, GPTQ.
The three Llama variants: Llama-2-7B, Llama-2-13B and
Llama-3-8B, are evaluated using b4g32, b4g64 and b4g128
configurations on a NIVDIA RTX 4090 GPU. The quan-
tization time is measured in seconds and displayed in log
scale (log10). Notably, GPTQ and AWQ quantization are
approximately an order of magnitude slower than MXQ and
HQQ.

model accuracy and memory consumption. By speci-
fying a bit budget, this methodology offers a broader
spectrum of quantization options, enabling the identi-
fication of optimal quantization configurations to en-
hance existing quantization methods. This innovative
optimization formulation to allow us to solve layer-
wise quantization parameters, incorporating memory
budget constraints. This approach enables our method
to offer an advantageous memory-performance bal-
ance when quantizing transformer-based large mod-
els. Incorporating the proposed MXQ into the repos-
itory of quantization utilities would constitute a valu-
able supplement, enriching the tools available for op-
timizing increasingly larger transformer-based mod-
els.

Future work will focus on enhancing the accuracy
of MXQ and extending its generalizability by experi-
menting with other transformer-based language mod-
els and multi-modal models. Furthermore, we plan
to incorporate end-to-end benchmarks such as IFEval,
BBH, MATH Level 5, GPQA, MUSR, and MMLU-
PRO in our evaluations to ensure the robustness of the
proposed method’s performance on real-world tasks.
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Figure 6: This figure presents a comparison of quantization configuration allocations for the MLP modules in the Llama-
2-13B model, as determined by MXQ and HQQ, under a bit budget of 4.51. The column diagrams depict the assigned
quantization configurations, with light purple columns indicating the b4g32 configuration, while the accompanying line plots
show memory usage in megabytes. Taller columns correspond to greater quantization errors. Notably, MXQ tends to sacrifice
the budgets of MLP modules in the initial layers. This figure should be viewed in color and zoomed in for optimal clarity.
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Figure 7: This figure presents a comparison of quantization configuration allocations for the self attention modules in the
Llama-2-13B model under a bit budget of 4.51. The column diagrams depict the assigned quantization configurations, with
light purple columns indicating the b4g32 configuration, while the accompanying line plots show memory usage in megabytes.
Taller columns correspond to greater quantization errors. As demonstrated in this figure, MXQ assigns bit bugdets aggres-
sively to the second and third layer of self attention modules (K and Q) to mininize sum of FNorm. This figure is best viewed
in color and with zoom for clarity.
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APPENDIX

Experiments Procedure

The results presented in the previous sections were
produced by conducting experiments on the Llama
family models. The Llama model experiments in-
clude quantization and perplexity evaluation.

The specialized harness tool named lm-quant-
toolkit facilitates the tasks to quantize, evaluate lan-
guage and vision transformer models using the pro-
posed MXQ method as well as the baselines such as
HQQ, AWQ, GPTQ. This harness is designed to per-
form long-running experiments. It tracks the experi-
ment status and automatically resumes interrupted ex-
periment from last failed point. It collects experiment
duration, GPU memory consumption and key met-
rics such as perplexity and Open LLM LeaderBoard
scores. It consolidates outputs from sub-tasks into
experiment dataset in .csv format for further analysis
and reporting.

The quantization and evaluation of LLMs re-
quire substantial computation and storage resources.
Our experiment environment’s hardware and software
configurations are presented in Table 3.

The patched softwares need to be cloned from
github, as noted under Table 3, then be installed using
the PIP’s editable install method as they haven’t been
integrated in the upstream yet. Additional Python
libraries are automatically installed when the lm-
quant-toolkit is installed. For complete dependen-
cies, please review the ‘pyproject.toml‘ file of the lm-
quant-toolkit project.

The three Llama models, published on Hug-
ging Face by Meta, employed in this experiment
are the Llama-2-7B(meta-llama/Llama-2-7b-hf),
Llama-2-13B(meta-llama/Llama-2-13b-hf) and
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Figure 8: This figure illustrates the mapping of parameters in large language models (LLMs) to a low-bit representation with
a bit width of 4 and a group size of 64 (denoted as b1 = 4,g1 = 64 or simply b4g64). The small square boxes represent the bits
used to store the quantized parameters. In this scheme, a total of n parameters are divided into m = n/64 groups, with each
quantized parameter occupying 4 bits. To optimize memory storage, two successive parameters are packed into a single byte.
Additionally, per-group metadata, such as scales and zero points, are quantized using a similar approach but with a distinct bit
width and group size, referred to as b2 and g2, respectively.

Table 3: Experiment hardware/software configuration

Item Configuation

CPU Intel i9-14900KF
Memory 192 GiB

Disk HP SSD FX900 Pro
2TB x 2

GPU NVIDIA GeForce
RTX 4090

OS Ubuntu 24.04
Python 3.11.9
CUDA 12.5

PyTorch 2.4.1
lm-quant-toolkit master1

AutoAWQ 0.2.5
AutoGPTQ ea829c7 with the

CUDA 12.5 patch2

HQQ aad6868 with MXQ
patch3

1 The lm-quant-toolkit is published on github:

https://github.com/schnell18/lm-quant-toolkit.
2 The CUDA 12.5 patch can be fetched from:

https://github.com/schnell18/AutoGPTQ.
3 The MXQ patch can be fetched from:

https://github.com/schnell18/hqq.

Llama-3-8B(meta-llama/Meta-Llama-3-8B). The
main procedure to reproduce the language model
experiment results consists of:

1. evaluate the FP16 baseline’s perplexity metrics
on WikiText2 and C4 dataset for original Llama

models

2. quantize the selected Llama models using AWQ,
GPTQ, HQQ with configurations b4g32, b4g64,
b4g128, b3g32, b3g64 and b3g128

3. evaluate perplexity metrics on WikiText2 and C4
dataset for the AWQ, GPTQ and HQQ quantized
models

4. quantize the selected Llama models using MXQ
with a wide range of bit budgets ranging from 3.07
to 8.51

5. evaluate perplexity metrics on WikiText2 and C4
dataset for the MXQ quantized models

6. aggregate, analyze and visualize experiment re-
sults using R

The lm-quant-toolkit includes bash scripts to au-
tomate the aforementioned evaluation tasks. The re-
sults of the evaluation tasks, formatted as .csv files,
are stored in the experiment directories specified in
the corresponding task script. The quantized models
are stored under the snapshot directory specified in
the quantization scripts.

For future reference, the experiment result .csv
files are archived under the data-vis/data folder in
the lm-quant-toolkit repository with the compan-
ion R scripts to visualize the experiment data located
under the data-vis folder.
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