
Stateful Monitoring and Responsible Deployment of AI Agents

Debmalya Biswas

Wipro AI, Switzerland

Keywords: Multi-Agent Systems, Autonomous Agents, Agent Architecture, Monitoring, Stateful Execution, Responsible

AI.

Abstract: AI agents can be disruptive given their potential to compose existing models and agents. Unfortunately,

developing and deploying multi-agent systems at scale remains a challenging problem. In this paper, we

specifically focus on the challenges of monitoring stateful agents and deploying them in a responsible fashion.

We introduce a reference architecture for AI agent platforms, highlighting the key components to be considered

in designing the respective solutions. From an agent monitoring perspective, we show how a snapshot based

algorithm can answer different types of agent execution state related queries. On the responsible deployment

aspect, we show how responsible AI dimensions relevant to AI agents can be integrated in a seamless fashion

with the underlying AgentOps pipelines.

1 INTRODUCTION

In the generative AI context, Auto-GPT (Significant

Gravitas, 2023) is representative of an autonomous

AI agent that can execute complex tasks, e.g., make

a sale, plan a trip, make a flight booking, book a con-

tractor to do a house job, order a pizza. Given a user

task, Auto-GPT aims to identify (compose) an agent

(group of agents) capable to executing the given task.

AI agents (Park et al., 2023) follow a long

history of research around multi-agent systems

(MAS) (Weiss, 2016), esp., goal oriented agents (Bor-

des et al., 2017; Yan et al., 2015). A high-level ap-

proach to solving such complex tasks involves: (a)

decomposition of the given complex task into (a hi-

erarchy or workflow of) simple tasks, followed by

(b) composition of agents able to execute the simpler

tasks. This can be achieved in a dynamic or static

manner. In the dynamic approach, given a complex

user task, the system comes up with a plan to fulfill

the request depending on the capabilities of available

agents at run-time. In the static approach, given a set

of agents, composite agents are defined manually at

design-time combining their capabilities.

Unfortunately, designing and deploying AI agents

remains challenging in practice. In this paper, we fo-

cus on primarily two aspects of AI agent platforms:

• given the complex and long-running nature of AI

agents, we discuss approaches to ensure a reliable

and stateful AI agent execution.

• adding the responsible AI dimension to AI agents.

We highlight issues specific to AI agents and

propose approaches to establish an integrated AI

agent platform governed by responsible AI prac-

tices.

The rest of the paper is organized as follows. In

Section 2, we introduce a reference architecture for

AI agent platforms, highlighting the key components

to be considered in designing the following solutions.

In Section 3, we identify the key challenges to moni-

tor stateful AI agents, and outline a snapshot based al-

gorithm that can answer the relevant agent execution

state related queries. We consider responsible deploy-

ment of agents in Section 4, showing how responsi-

ble AI dimensions can be integrated in the underlying

AgentOps pipelines. Finally, Section 5 concludes the

paper and provides some directions for future work.

2 AGENT AI PLATFORM

REFERENCE ARCHITECTURE

In this section, we focus on identifying the key com-

ponents of a reference AI agent platform illustrated in

Fig. 1:

• Reasoning layer

• Agent marketplace

• Integration layer

Biswas, D.
Stateful Monitoring and Responsible Deployment of AI Agents.
DOI: 10.5220/0013160300003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 393-399
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

393



• Shared memory layer

• Governance layer, including explainability, pri-

vacy, security, etc.

Given a user task, the goal of an AI agent platform

is to identify (compose) an agent (group of agents)

capable to executing the given task. So the first com-

ponent that we need is a reasoning layer capable of

decomposing a task into sub-tasks, with execution of

the respective agents orchestrated by an orchestration

engine.

Chain of Thought (CoT) (Wei et al., 2022) is

the most widely used decomposition framework to-

day to transform complex tasks into multiple manage-

able tasks and shed light into an interpretation of the

model’s thinking process. CoT can be implemented

using two approaches: user prompting and automated

approach.

• User Prompting: Here, during prompting, user

provides the logic about how to approach a certain

problem and LLM will solve similar problems us-

ing same logic and return the output along with

the logic.

• Automating Chain of Thought Prompting: Manu-

ally handcrafting CoT can be time consuming and

provide sub-optimal solution, Automatic Chain of

Thought (Auto-CoT) (Zhang et al., 2022) can be

leveraged to generate the reasoning chains auto-

matically thus eliminating the human interven-

tion.

Tree of Thoughts (Yao et al., 2023) extends CoT

by exploring multiple decomposition possibilities in

a structured way. From each thought, it can branch

out and generate multiple next-level thoughts, creat-

ing a tree-like structure that can be explored by BFS

(breadth-first search) or DFS (depth-first search) with

each state evaluated by a classifier (via a prompt) or

majority vote.

Agent composition implies the existence of an

agent marketplace / registry of agents - with a well-

defined description of the agent capabilities and con-

straints. For example, let us consider a house painting

agent C whose services can be reserved online (via

credit card). Given this, the fact that the user requires

a valid credit card is a constraint, and the fact that

the user’s house will be painted within a certain time-

frame are its capabilities. In addition, we also need

to consider any constraints of C during the actual ex-

ecution phase, e.g., the fact that C can only provide

the service on weekdays (and not on weekends). In

general, constraints refer to the conditions that need

to be satisfied to initiate an execution and capabilities

reflect the expected outcome after the execution ter-

minates.

In the context of MAS, specifically, previous

works (Capezzuto et al., 2021; Trabelsi et al., 2022;

Veit et al., 2001) have considered agent limitations

during the discovery process. (Veit et al., 2001) pro-

poses a configurable XML based framework called

GRAPPA (Generic Request Architecture for Passive

Provider Agents) for agent matchmaking. (Capez-

zuto et al., 2021) specifies a compact formulation for

multi-agent task allocation with spatial and tempo-

ral constraints. (Trabelsi et al., 2022) considers agent

constraints in the form of incompatibility with re-

sources. The authors then propose an optimal match-

making algorithm that allows the agents to relax their

restrictions, within a budget. Refer to (Biswas., 2024)

for a detailed discussion on the discovery aspect of AI

agents.

Given the need to orchestrate multiple agents, we

also need an integration layer supporting different

agent interaction patterns, e.g., agent-to-agent API,

agent API providing output for human consumption,

human triggering an AI agent, AI agent-to-agent with

human in the loop. The integration patterns need to

be supported by the underlying AgentOps platform.

To accommodate multiple long-running agents,

we also need a shared long-term memory layer en-

abling data transfer between agents, storing interac-

tion data such that it can be used to personalize future

interactions. The standard approach here is to save the

embedding representation of agent information into

a vector database that can support maximum inner

product search (MIPS). For fast retrieval, the approx-

imate nearest neighbors (ANN) algorithm is used that

returns approximately top k-nearest neighbors with an

accuracy trade-off versus a huge speed gain.

Finally, the governance layer. We need to ensure

that data shared by the user specific to a task, or user

profile data that cuts across tasks; is only shared with

the relevant agents (authentication and access con-

trol). We further consider the different responsible

AI dimensions in terms of data quality, privacy, re-

producibility and explainability to enable a well gov-

erned AI agent platform.

3 STATEFUL AGENT

MONITORING

Stateful execution (Lu et al., 2024) is an inherent char-

acteristic of any distributed systems platform, and can

be considered as a critical requirement to materialize

the orchestration layer of an AI agent platform. Given

this, we envision that agent monitoring together with

failure recovery will become more and more criti-

cal as AI agent platforms become enterprise ready,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

394



Figure 1: AI agent platform reference architecture.

and start supporting productionized deployments of

AI agents.

However, monitoring AI agents (similar to moni-

toring large-scale distributed systems) is challenging

because of the following reasons:

• No global observer: Due to their distributed na-

ture, we cannot assume the existence of an entity

having visibility over the entire execution. In fact,

due to their privacy and autonomy requirements,

even the composite agent may not have visibil-

ity over the internal processing of its component

agents.

• Non-determinism: AI agents allow parallel com-

position of processes. Also, AI agents usually de-

pend on external factors for their execution. As

such, it may not be possible to predict their be-

havior before the actual execution. For example,

whether a flight booking will succeed or not de-

pends on the number of available seats (at the time

of booking) and cannot be predicted in advance.

• Communication delays: Communication delays

make it impossible to record the states of all the

involved agents instantaneously. For example,

let us assume that agent A initiates an attempt to

record the state of the composition. Then, by the

time the request (to record its state) reaches agent

B and B records its state, agent A’s state might

have changed.

• Dynamic configuration: The agents are selected

incrementally as the execution progresses (dy-

namic binding). Thus, the “components” of the

distributed system may not be known in advance.

To summarize, agent monitoring is critical given

the complexity and long running nature of AI agents.

We define agent monitoring as the ability to find out

where in the process the execution is and whether any

unanticipated glitches have appeared. We discuss the

capabilities and limitations of acquiring agent execu-

tion snapshots with respect to answering the follow-

ing types of queries:

• Local queries: Queries which can be answered

based on the local state information of an agent.

For example, queries such as “What is the current

state of agent A’s execution?” or “Has A reached a

specific state?”. Local queries can be answered by

directly querying the concerned agent provider.

• Composite queries: Queries expressed over the

states of several agents. We assume that any query

related to the status of a composition is expressed

as a conjunction of the states of individual agent

executions. Examples of status queries: “Have

agents A, B and C reached states x, y and z respec-

tively?” Such queries have been referred to as sta-

ble predicates in literature. Stable predicates are

defined as predicates which do not become false

once they have become true.

• Historical queries: Queries related to the execu-

tion history of the composition. For example,

Stateful Monitoring and Responsible Deployment of AI Agents

395



“How many times have agents A and B been sus-

pended?”. If the query is answered using an ex-

ecution snapshot algorithm, then it needs to be

mentioned that the results are with respect to a

time in the past.

• Relationship queries: Queries based on the re-

lationship between states. For example, “What

was the state of agent A when agent B was in

state y?” Unfortunately, execution snapshot based

algorithms do not guarantee answers for such

queries. For example, we would not be able to an-

swer the query unless we have a snapshot which

captures the state of agent B when it was in state y.

Such predicates have been referred to as unstable

predicates in literature. Unstable predicates keep

alternating their values between true and false -

so are difficult to answer based on snapshot algo-

rithms.

We outline the AI agent monitoring approach and

solution architecture in the next section.

3.1 Agent Snapshot Monitoring

We assume the existence of a coordinator and log

manager corresponding to each agent as shown in

Fig. 2. We also assume that each agent is responsi-

ble for executing a single task.

The coordinator is responsible for all non-

functional aspects related to the execution of the agent

such as monitoring, transactions, etc. The log man-

ager logs information about any state transitions as

well as any messages sent/received by the agent. The

state transitions and messages considered are as out-

lined in Fig. 3:

• Not - Executing (NE): The agent is waiting for an

invocation.

• Executing (E): On receiving an invocation mes-

sage (IM), the agent changes its state from NE to

E.

• Suspended (S) and suspended by invoker (IS): An

agent, in state E, may change its state to S due to

an internal event (suspend) or to IS on the receipt

of a suspend message (SM). Conversely, the tran-

sition from S to E occurs due to an internal event

(resume) and from IS to E on receiving a resume

message (RM).

• Canceling (CI), canceling due to invoker (ICI)

and canceled (C): An agent, in state E/S/IS, may

change its state to CI due to an internal event (can-

cel) or ICI on the receipt of a cancel message

(CM). Once it finishes cancellation, it changes its

state to C and sends acCanceled message (CedM)

to its parent. Note that cancellation may require

canceling the effects of some of its component

agents.

• Terminated (T) and compensating (CP): The

agent changes its state to T once it has finished ex-

ecuting the task. On termination, the agent sends

a terminated message (TM) to its parent. An agent

may be required to cancel a task even after it has

finished executing the task (compensation). An

agent, in state T, changes its state to CP on re-

ceiving the CM. Once it finishes compensation, it

moves to C and sends a CedM to its parent agent.

We assume that the composition schema (static

composition) specifies a partial order for agent tasks.

We define the happened-before relation between

agent tasks as follows:

A task a happened-before task b(a → b) if and

only if one of the following holds:

1. there exists a control / data dependency between

tasks a and b such that a needs to terminate before

b can start executing.

2. there exists a task c such that a → c and c → b.

A task, on failure, is retried with the same or dif-

ferent agents until it completes successfully (termi-

nates). Note that each (retrial) attempt is considered

as a new invocation and would be logged accordingly.

Finally, to accommodate asynchronous communica-

tion, we assume the presence of input/output (I/O)

queues. Basically, each agent has an I/O queue with

respect to its parent and component agents - as shown

in Fig. 3.

Given synchronized clocks and logging (as dis-

cussed above), a snapshot of the hierarchical compo-

sition at time t would consist of the logs of all the

“relevant” agents until time t.

The relevant agents can be determined in a recur-

sive manner (starting from the root agent) by consid-

ering the agents of the invoked tasks recorded in the

parent agent’s log until time t. If message timestamps

are used then we need to consider the skew while

recording the logs, i.e., if a parent agent’s log was

recorded until time t then its component agents’ logs

need to be recorded until (t + skew). The states of the

I/O queues can be determined from the state transition

model.

4 RESPONSIBLE AGENTS

The growing adoption of generative AI, esp. with

respect to the adoption of large language models

(LLMs), has reignited the discussion around responsi-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

396



Figure 2: Agent monitoring infrastructure.

Figure 3: Agent execution lifecycle.

ble AI - to ensure that AI/ML systems are responsibly

trained and deployed.

The table in Fig. 4 summarizes the key challenges

and solutions in implementing responsible AI for AI

agents in comparison to

• ChatGPT style large language model (LLM) APIs

• LLM fine-tuning: LLMs are generic in nature.

To realize the full potential of LLMs for enter-

prises, they need to be contextualized with enter-

prise knowledge captured in terms of documents,

wikis, business processes, etc. This is achieved

by fine-tuning an LLM with enterprise knowledge

/ embeddings to develop a context-specific small

language model (SLM)

• Retrieval-augmented-generation (RAG): Fine-

tuning is a computationally intensive process.

RAG provides a viable alternative by providing

additional context with the prompt, grounding the

retrieval and responses to the given context. The

prompts can be relatively long, so it is possible to

embed enterprise context within the prompt itself.

We expand on the above points in the rest of the

paper to enable an integrated AgentOps pipeline with

responsible AI governance.

Data consistency: The data used for training (esp.,

fine-tuning) the LLM should be accurate and precise,

which means the relevant data pertaining to the spe-

cific use-case should be used to train the LLMs, e.g.

if the use case is to generate summary of a medi-

cal prescription - the user should not use other data

like Q&A of a diagnosis; user must use only medical

prescriptions and corresponding summarization of the

prescription. Many a times, data pipelines need to be

created to ingest the data and feed that to LLMs. In

such scenarios, extra caution needs to be exercised to

consume the running text fields as these fields hold

mostly inconsistent and incorrect data.

Bias/Fairness: With respect to model performance

and reliability, it is difficult to control undesired bi-

ases in black-box LLMs, though it can be controlled

to some extent by using uniform and unbiased data to

fine-tune the LLMs and/or contextualize the LLMs in

a RAG architecture.

Accountability: To make LLMs more reliable,

it is recommended to have manual validation of the

LLM’s outputs. Involving humans ensures if LLMs

hallucinate or provide wrong response, a human can

evaluate and make the necessary corrections.

Hallucination: In case of using LLM APIs or or-

chestrating multiple AI agents, hallucination likeli-

hood increases with the increase in the number of

Stateful Monitoring and Responsible Deployment of AI Agents

397



Figure 4: Responsible AI challenges for Agentic AI.

agents involved. The right prompts can help but only

to a limited extent. To further limit the hallucination,

LLMs need to be fine-tuned with curated data and/or

limit the search space of responses to relevant and re-

cent enterprise data.

Data Privacy: With respect to conversational pri-

vacy (Biswas, 2020), we need to consider the privacy

aspects of enterprise data provided as context (RAGs)

and/or enterprise data used to fine-tune the LLMs. In

addition, the novel privacy aspect here is to consider

the privacy risks of data (prompts) provided voluntar-

ily by the end-users, which can potentially be used as

training data to re-train / fine-tune the LLMs.

5 CONCLUSION

Agentic AI is a disruptive technology, and there is

currently a lot of interest and focus in making the

underlying agent platforms ready for enterprise adop-

tion. Towards this end, we outlined a reference archi-

tecture for AI agent platforms. We primarily focused

on two aspects critical to enable scalable and respon-

sible adoption of AI agents - an AgentOps pipeline

integrated with monitoring and responsible AI princi-

ples.

From an agent monitoring perspective, we focused

on the challenge of capturing the state of a (hierar-

chical) multi-agent system at any given point of time

(snapshot). Snapshots usually reflect a state of a dis-

tributed system which “might have occurred”. To-

wards this end, we discussed the different types of

agent execution related queries and showed how we

can answer them using the captured snapshots.

To enable responsible deployment of agents, we

highlighted the responsible AI dimensions relevant to

AI agents; and showed how they can be integrated

in a seamless fashion with the underlying Agen-

tOps pipelines. We believe that these will effectively

future-proof agentic AI investments and ensure that

AI agents are able to cope as the AI agent platform

and regulatory landscape evolves with time.

REFERENCES

Biswas, D. (2020). Privacy Preserving Chatbot Conver-
sations. In IEEE Third International Conference
on Artificial Intelligence and Knowledge Engineering
(AIKE), pages 179–182.

Biswas., D. (2024). Constraints Enabled Autonomous
Agent Marketplace: Discovery and Matchmaking. In
Proceedings of the 16th International Conference on
Agents and Artificial Intelligence (ICAART), pages
396–403.

Bordes, A., Boureau, Y.-L., and Weston, J. (2017). Learning
End-to-End Goal-Oriented Dialog.

Capezzuto, L., Tarapore, D., and Ramchurn, S. D. (2021).
Large-Scale, Dynamic and Distributed Coalition For-
mation with Spatial and Temporal Constraints. In
Multi-Agent Systems, pages 108–125. Springer Inter-
national Publishing.

Lu, J., Holleis, T., Zhang, Y., Aumayer, B., Nan, F., Bai, F.,
Ma, S., Ma, S., Li, M., Yin, G., Wang, Z., and Pang,
R. (2024). ToolSandbox: A Stateful, Conversational,
Interactive Evaluation Benchmark for LLM Tool Use
Capabilities.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

398



P., and Bernstein, M. S. (2023). Generative Agents:
Interactive Simulacra of Human Behavior.

Significant Gravitas (2023). AutoGPT. https://github.com/
Significant-Gravitas/Auto-GPT.

Trabelsi, Y., Adiga, A., Kraus, S., and Ravi, S. S. (2022).
Resource Allocation to Agents with Restrictions:
Maximizing Likelihood with Minimum Compromise.
In Multi-Agent Systems, pages 403–420. Springer In-
ternational Publishing.

Veit, D., Müller, J. P., Schneider, M., and Fiehn, B. (2001).
Matchmaking for Autonomous Agents in Electronic
Marketplaces. In Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, page
65–66. Association for Computing Machinery.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H.,
Le, Q., and Zhou, D. (2022). Chain of Thought
Prompting Elicits Reasoning in Large Language Mod-
els. CoRR, abs/2201.11903.

Weiss, G. (2016). Multiagent Systems, Second Edition.
Intelligent Robotics and Autonomous Agents. MIT
Press, 2nd edition.

Yan, J., Hu, D., Liao, S. S., and Wang, H. (2015). Mining
Agents’ Goals in Agent-Oriented Business Processes.
ACM Trans. Manage. Inf. Syst., 5(4).

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. (2023). Tree of Thoughts: De-
liberate Problem Solving with Large Language Mod-
els.

Zhang, Z., Zhang, A., Li, M., and Smola, A. (2022). Auto-
matic Chain of Thought Prompting in Large Language
Models.

Stateful Monitoring and Responsible Deployment of AI Agents

399


