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Abstract: As digital transactions grow in prevalence, the threat of fraud has become a critical challenge for businesses
and individuals. Fraudsters increasingly employ sophisticated tactics, disguising malicious activities as le-
gitimate behavior, which renders traditional detection methods inadequate. This paper introduces a real-time
fraud detection framework leveraging Heterogeneous Temporal Graph Neural Networks (HTGNN) to address
these challenges. The proposed approach constructs a heterogeneous temporal graph from transaction data
and employs a neural network architecture that integrates spatial, temporal, and semantic information. This
allows for a comprehensive representation of transactions, entities, and their dynamic interactions over time.
Unlike static approaches, our method captures the temporal evolution of behaviors, ensuring deeper insights
into fraudulent patterns. The framework is designed to enhance detection accuracy while maintaining com-
putational efficiency for real-time applications. Through rigorous experimentation and analysis, we expect to
demonstrate that the proposed HTGNN framework significantly outperforms existing techniques in identify-
ing fraudulent transactions, ultimately contributing to more robust and effective fraud detection systems.

1 INTRODUCTION

The shift to online operations, accelerated by digital-
ization and the COVID-19 pandemic, offers benefits
like cost savings and accessibility but also heightens
the risk of digital fraud across platforms like online
banking, e-commerce, and social media. Such fraud
leads to financial losses, data breaches, and eroded
trust, driving urgent demand for advanced detection
technologies. With the global fraud prevention mar-
ket projected to reach $66.6 billion by 2028(Tumiwa
et al., 2024), real-time fraud detection systems have
become essential, enabling instant transaction moni-
toring to mitigate losses and protect customer trust.

However, the swift evolution of fraudulent activi-
ties poses significant challenges for current fraud de-
tection and prevention methods, as demonstrated in
studies such as (Awoyemi et al., 2017), (Zhou et al.,
2019), (Dornadula and Geetha, 2019), (Maniraj et al.,
2019), and (Sailusha et al., 2020). While traditional
machine learning models are often used for identify-
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ing patterns in structured data, they often struggle to
capture the complex and dynamic nature of real-world
fraud scenarios. A particularly concerning trend is
the rise of hidden or camouflaged behaviors, where
malicious activities are deliberately masked to resem-
ble legitimate transactions, making them harder to de-
tect. To address these challenges, graph-based ma-
chine learning methods have emerged as promising
solutions due to their ability to model intricate rela-
tionships and interactions between entities.

To address these limitations, graph-based machine
learning methods have shown promise due to their
ability to model the intricate relationships between
entities and transactions. Graphs naturally represent
complex dependencies by organizing data into nodes
(representing entities such as users, transactions, and
accounts) and edges (representing relationships be-
tween them). This structure enables the modeling
of relationships that extend beyond simple transac-
tions, allowing for a more nuanced understanding of
fraud. In particular, heterogeneous temporal graphs
are especially powerful in capturing the spatial, tem-
poral, and semantic contexts of transactions and en-
tities. These graphs can provide a rich, multifaceted
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view of fraud, integrating diverse data types to better
understand and detect malicious behavior. Temporal
information allows systems to track the evolution of
behaviors over time, spatial information reveals the
interactions between different entities, and semantic
data adds context to the meaning behind each transac-
tion. Together, these aspects provide a comprehensive
framework for fraud detection.

Despite significant advancements in graph-
based algorithms, such as Graph Neural Networks
(GNNs), Graph Convolutional Networks (GCNs),
and attention-based mechanisms (Rao et al., 2020),
(Xiang et al., 2022), (Xiang et al., 2023a), and (Xie
et al., 2023), most existing systems still focus on
leveraging one or two of these dimensions-spatial,
temporal, or semantic-often in isolation or in simple
combinations. While these methods offer im-
provements over traditional techniques, they remain
inadequate in capturing the full complexity of modern
fraudulent activities. More critically, there is a lack of
real-time systems that effectively integrate all three
dimensions simultaneously, which is essential for
timely fraud detection and prevention.

In this paper, we introduce a novel framework for
real-time fraud detection that integrates spatial, tem-
poral, and semantic information using heterogeneous
temporal graphs within an inductive setting. Our ap-
proach addresses the limitations of current models
by comprehensively analyzing fraud patterns across
these three types of information while dynamically
adapting to the evolving nature of fraudulent behav-
iors. By operating in real-time, our framework en-
hances the ability to detect and prevent fraudulent ac-
tivities as quickly as possible, minimizing potential
financial losses and mitigating risks before they esca-
late. The contributions of this paper include:

• We propose a methodology for transforming
transaction data into a heterogeneous temporal
graph structure, enabling the integration of spa-
tial, temporal, and semantic information for learn-
ing transaction representations.

• We design a robust heterogeneous temporal graph
neural network architecture and real-time system
to effectively capture and learn comprehensive
transaction representations.

• We conduct empirical experiments to evaluate the
proposed framework on both real-world and syn-
thesis datasets, demonstrating its effectiveness in
accurately detecting fraud and efficiently handling
real-time data processing.

The structure of this paper is as follows: Section 2
reviews the related work. Section 3 describes the de-
tails of the proposed method. Section 4 outlines the

experimental setup. Section 5 presents the corre-
sponding results and discussions. Section 6 concludes
the paper and discusses potential future work.

2 RELATED WORK

In recent years, a wide range of machine learning
techniques has been proposed to address the chal-
lenge of fraud detection. Early works primarily fo-
cused on traditional machine learning methods ap-
plied to real-world datasets. For instance, (Maes et al.,
2002) utilized Bayesian Belief Networks (BBN) and
Artificial Neural Networks (ANN) on a dataset ob-
tained from Europay International, demonstrating the
effectiveness of these models in identifying fraudu-
lent credit card transactions. Similarly, (Sahin and
Duman, 2011) employed decision trees and support
vector machines (SVMs) on a major national bank’s
dataset, showcasing the potential of these methods in
fraud detection tasks. Other studies, such as (Saputra
et al., 2019), (Maniraj et al., 2019), (Dornadula and
Geetha, 2019), (Sailusha et al., 2020), and (Varun Ku-
mar et al., 2020), have explored ensemble learning
methods to enhance detection accuracy. While these
approaches achieved reasonable success, they primar-
ily relied on static features and often lacked the abil-
ity to generalize well to more complex and dynamic
fraud patterns.

With the rise of deep learning, researchers began
exploring more sophisticated architectures to address
the limitations of traditional machine learning mod-
els. Studies like (Fu et al., 2016), (Alarfaj et al.,
2022), (Hasugian et al., 2023), and (Karthika and
Senthilselvi, 2023) applied deep learning techniques,
which outperformed earlier methods by learning in-
tricate patterns in transaction data. However, these
models typically focused on individual transactions
or cardholders, thereby missing the broader context
provided by the relationship between transactions and
the entities involved. This limitation, highlighted by
(Xiang et al., 2023b), indicated the need for models
that can exploit both labeled and unlabeled data, es-
pecially in large-scale, real-world scenarios.

As fraud detection systems evolved, graph-based
approaches began gaining attention due to their abil-
ity to model the complex relationships inherent in
transactional data. The novel work by (Wang et al.,
2019) and (Liu et al., 2020) laid the foundation for
using graph neural network (GNN) in fraud detection,
particularly for datasets with partial labels. These
methods leveraged the relational structure of trans-
actions to improve detection accuracy. Building on
this, (Dou et al., 2020) and (Peng et al., 2021) in-
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troduced GNN-based techniques that incorporated re-
inforcement learning for neighbor selection, tackling
the challenge of fraudsters’ camouflage. Further-
more, (Liu et al., 2021) proposed PC-GNN, which
effectively addressed the issue of imbalanced learn-
ing in graph-based fraud detection. These methods
demonstrated that graph-based models could uncover
patterns that traditional and deep learning models
missed, particularly when it came to exploiting the
relational data between transactions and entities.

One significant advancement in this domain was
xFraud (Rao et al., 2020), which utilized a hetero-
geneous GNN architecture to aggregate transaction
information and introduced a prediction result inter-
pretation module, improving both model transparency
and performance. (Xiang et al., 2022) proposed a
joint feature learning framework for capturing spatial
and temporal patterns in fraud detection, emphasiz-
ing the importance of modeling dynamic transaction
behavior over time. In their subsequent work, (Xi-
ang et al., 2023b) extended this by integrating entity
information into transaction node representations and
using temporal graph attention to aggregate historical
transactions within a homogeneous graph structure.
These studies highlight a growing trend towards more
graph-based fraud detection models.

The BRIGHT framework, introduced by (Lu et al.,
2022), represents one of the most significant attempts
at developing a real-time fraud detection system. It
leverages a Two-Stage Directed Graph (TD Graph)
to enable efficient real-time inference by restricting
message-passing to historical transaction data. This
approach dramatically reduces computational over-
head, making real-time detection feasible. Further-
more, BRIGHT employs the Lambda Neural Net-
work (LNN) architecture to decouple the inference
process into batch and real-time stages, improving
both speed and accuracy. However, while BRIGHT
makes strides in real-time detection, it focuses pre-
dominantly on spatial information using graph convo-
lutional networks, which may not be robust enough to
handle increasingly sophisticated fraud tactics. De-
spite the advancements, there remains a critical gap
in the literature: the lack of comprehensive real-time
fraud detection systems that fully leverage both tem-
poral and semantic information surrounding transac-
tions. Fraudsters continuously evolve their strategies,
utilizing techniques such as obfuscation, transaction
fragmentation, and exploiting security vulnerabilities,
which current models may fail to capture adequately.
Our proposal aims to build upon the BRIGHT frame-
work by incorporating richer temporal and semantic
data into the GNN-based fraud detection process. By
integrating all historical time windows and capturing

the contextual relationships between transactions and
entities over time, our model seeks to enhance de-
tection accuracy while maintaining the efficiency re-
quired for real-time applications.

3 METHODOLOGY

3.1 Heterogeneous Temporal Graph
Construction

In this research, we address the problem of transac-
tion fraud detection as a binary node classification
task within an inductive setting on a heterogeneous
temporal graph (HTG). Traditional fraud detection
methods, such as rule-based systems or models that
rely on static features, typically treat each transaction
as an independent event. These methods often over-
look the interconnected and dynamic nature of trans-
actions over time, which can result in missed patterns
or emerging fraud tactics. In reality, transactions are
part of a broader ecosystem where relationships be-
tween entities (e.g., users, devices, locations) evolve,
and fraud behaviors adapt. By failing to account for
these evolving and interconnected factors, traditional
approaches can struggle to detect sophisticated or hid-
den fraud. In contrast, our heterogeneous temporal
graph model captures the intricate relationships be-
tween entities (e.g., cardholders, merchants, devices)
and how these relationships evolve over time. This
enables deeper insights into both normal and fraudu-
lent behavior patterns, particularly in dynamic envi-
ronments where fraud tactics constantly adapt.

The key challenge in building an effective fraud
detection system lies in accurately modeling the rep-
resentations of transactions. Each transaction is com-
prised of a diverse set of attributes, including quanti-
tative data (e.g., transaction amount, timestamps) and
categorical or identity-based data (e.g., cardholder in-
formation, merchant details, device identifiers). Ba-
sic encoding techniques like one-hot or label encod-
ing are inadequate in capturing the complex, high-
dimensional relationships between these attributes,
leading to suboptimal model performance in detect-
ing fraudulent patterns. To address this limitation, we
propose the construction of a heterogeneous tempo-
ral graph (HTG), where various entities, such as card-
holders, merchants, and devices, are represented as
distinct node types. These node types interact with
each other across time, allowing the model to learn
more nuanced representations of how fraudulent be-
haviors evolve and how different entities interact.

Specifically, in the HTG, each node i is associated
with a node type φ(i) ∈ A , where A is the set of all
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Figure 1: Proposed method: a) Illustration of a heterogeneous temporal graph: The graph depicts multiple timeframes labeled
T1, T2,. . . , Tt−1, Tt , which represent the reference time periods. These timeframes contain historical transaction data and
are used to generate insights from past interactions. The incoming timeframe Tt+1 is highlighted as the target timeframe,
containing all the transactions that require labeling. b) Depicting the HTGNN block components. c) Illustration of the
architecture of Batch Net. d) Illustration of the architecture of Speed Net.

possible types of nodes, including transactions, card-
holders, merchants, and devices. Depending on the
business domain, additional entity types can be incor-
porated into the model, such as shipping addresses,
payment tokens, or IP addresses, to enrich the graph
structure and enhance detection accuracy. Edges e ∈
E are used to represent relationships between transac-
tion nodes and these various entity nodes, forming a
dynamic graph that evolves over multiple timeframes.

Temporal dynamics play a critical role in detect-
ing fraud, as fraudulent activities often unfold gradu-
ally or are strategically hidden within patterns of le-
gitimate behavior. To capture these evolving patterns,
we introduce a temporal dimension to the graph by
constructing it over multiple timestamps j, resulting
in a temporal graph structure G = {G j}t+1

j=1, where

T = {1,2, . . . , t −1, t} denotes the reference time du-
ration and t + 1 denotes the timeframe that includes
the new transactions needing classification, as illus-
tration in Figure 1a. This temporal aspect allows the
model to not only analyze relationships at a single
point in time but also track how behaviors and inter-
actions shift over time.

In our framework, we categorize all transaction
nodes in a given timeframe (t + 1) as target nodes,
which represent new transactions or transactions that
need to be predicted. Other nodes are referred to as
reference nodes. The relationship between target and
reference nodes enables the model to leverage histor-
ical transaction data and identify abnormal patterns,
even in new or previously unseen transactions. To fa-
cilitate the classification task, fraudulent transactions
are labeled as 1, indicating they have been flagged or
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confirmed as fraudulent, while legitimate transactions
are labeled as 0. The relationship between target and
reference nodes enables the model to leverage histor-
ical transaction data and identify abnormal patterns,
even in new or previously unseen transactions. The
labels of transaction nodes are only used for refer-
ence nodes’ original features during the training pro-
cess without the risk of label leakage, ensuring the
integrity of the classification task.

3.2 Heterogeneous Temporal Graph
Neural Network (HTGNN)

Our approach stems from the observation that the
transaction volume in the system increases signif-
icantly over time, while each transaction remains
unique and lacks distinct temporal features. This
poses a challenge: extracting temporal information
from all transaction nodes can lead to resource in-
efficiencies and reduced performance, as each user’s
transaction will be different depending on their be-
havior. To address this issue, we propose to shift the
focus to entity nodes, which are more representative
of meaningful patterns in the data. Transactions ex-
hibit clear sequential characteristics, occur at specific
timestamps, and are often linked to previous and sub-
sequent transactions through shared entity attributes,
such as user identity, device type, or IP address. By
focusing on these entity nodes, we can efficiently ex-
tract temporal information directly linked to histori-
cal transactions associated with each entity. In this
context, we designed a heterogeneous temporal graph
neural network block with multiple layers, including a
spatial aggregation layer, temporal aggregation layer,
and semantic fusion layer, as in Figure 1b. In the fol-
lowing subsections, we will provide a detailed archi-
tecture of the layers within the l-th HTGNN block.

3.2.1 Spatial Aggregation Layer

In the proposed graph construction method, entity
nodes (e.g., cardholders, merchants, devices) are con-
nected to transaction nodes across multiple time-
frames. To effectively represent these entities, we
compute spatial embedding vectors by aggregating in-
formation from historical transactions associated with
them. However, not all are equally informative for the
entity’s final representation in the model. To address
this, we leverage a Graph Attention Network (GAT)
(Veličković et al., 2017), which assigns attention co-
efficients that determine the importance of each trans-
action in relation to the entity node. This approach
helps to prioritize relevant transactions and reduce the
influence of noisy or less significant ones.

Each entity node v ∈ A ′ (where A ′ is the set of en-
tity types, A ′ ⊂ A) is associated with a spatial embed-
ding that evolves over time. The embedding of node v
at timestamp t in the l-th HTGNN block is computed
by aggregating information from neighboring trans-
action nodes that occur at timestamp t. Specifically,
at each timestamp t and in the l-th HTGNN block, the
spatial embedding of an entity node v is computed as
follows:

at,l
v,S = GATConvφ(v)(a

t,l−1
u : u ∈ N t(v))

Here, at,l
v,S ∈ Rdtrans represents the spatial embed-

ding of entity node v at timestamp t in the l-th HT-
GNN block, with dtrans being the dimension of the
transaction node embedding. N t(v) denotes the set
of neighboring transaction nodes at timestamp t, and
at,l−1

u ∈Rdtrans is the embedding of transaction node u
at the previous block (l − 1). The initial embedding
at,0

u is set to the raw feature vector of transaction node
u at timestamp t. GATConvφ(v) refers to the graph at-
tention layer specific to the type of entity node v. The
aggregation of information from neighboring transac-
tions for entity node v is expressed as:

at,l
v,S = ∑

u∈N t (v)

αv,uWuat,l−1
u

where the attention coefficients αv,u, representing the
importance of transaction node u to entity node v, are
computed as:

e(u,v) =
(

LReLU
(

a⊤v Wφ(v),vat,l−1
v +a⊤u Wuat,l−1

u

))
αu,v =

exp(e(u,v))
∑k∈N t (v) exp(e(k,v))

Here, e(u,v) represents the score for the rela-
tionship between nodes u and v. Wφ(v),v and Wu
are learnable linear transformations that map the fea-
ture vectors of entity node v and transaction node u
into the same space. The activation function used
is LeakyReLU, and av and au are learnable attention
weight vectors specific to the entity and transaction
nodes, respectively. Different transformation matri-
ces, Wφ(v),v, are applied to different types of entity
nodes.

To ensure robustness and improve the model’s
ability to learn from complex graph data, we apply
multi-head attention. This technique runs multiple at-
tention mechanisms in parallel and aggregates their
outputs, providing a more stable and reliable repre-
sentation for each entity node. Moreover, the transac-
tion nodes act as source nodes, providing the raw in-
formation, while the entity nodes act as target nodes,
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whose spatial embeddings are updated based on the
aggregated transaction data. Importantly, we do not
include self-loops during aggregation, as the focus is
on the aggregation of transactions around them at the
specific timestamp. Finally, we concatenate the raw
entity features at timestamp t, at

v, to form the com-
plete spatial embedding, as:

at,l
v,S =CONCAT ENAT E(at,l

v,S,a
t
v)

In our experiments, raw entity features are con-
structed from several time-varying attributes. For in-
stance, for a user entity node, these features include
the total number of recorded fraudulent transactions,
the number of distinct IP addresses used, the average
transaction amount, and more. These dynamic fea-
tures capture the evolving behavior of entities over
time, enabling the model to represent temporal pat-
terns more effectively. The spatial embeddings of
entity nodes at each timeframe t are then combined
across multiple timestamps to generate temporal em-
beddings, forming a comprehensive spatial-temporal
representation for the entity node.

3.2.2 Temporal Aggregation Layer

After computing the spatial embeddings for each en-
tity node at individual timestamps, we move to the
temporal embedding phase. Temporal embeddings
are crucial in fraud detection, as they enable the model
to capture the evolving behavior of entities over time,
identifying patterns that may indicate fraudulent ac-
tivity. Once the spatial embeddings for entity nodes
are obtained across timeframes, we combine them
from timeframe 1 to timeframe t to derive the spatial-
temporal embeddings. This process not only captures
the evolving relationships and interactions among en-
tities but also provides deeper insight into their histor-
ical context.

The core idea is to maintain a persistent mem-
ory of previous time windows, allowing the model to
retain historical information as it progresses through
timeframes. To achieve this, we employ a Long Short-
Term Memory (LSTM) network, which is well-suited
for capturing temporal dependencies by maintaining
long-term memory through its hidden state and cell
state.

Specifically, after constructing the spatial embed-
dings for each entity node at each timeframe t, we
used these embeddings to represent temporal depen-
dencies. For each entity node v, we combine spatial
embeddings from timeframes 1 to t to generate a com-
prehensive spatial-temporal embedding. The LSTM
model is used to process these sequential embeddings:

at,l
v,ST = LST Mφ(v)(a

1,l
v,S,a

2,l
v,S, . . . ,a

t,l
v,S)

where at,l
v,S represents the spatial embedding of entity

node v at time t and HTGNN block l-th, and at,l
v,ST de-

notes the spatial-temporal embedding for node v that
captures information across all time windows up to
t. LST Mφ(v) refers to the LSTM layer specific to the
type of entity node v.

3.2.3 Semantic Fusion Layer

In this module, we focus on extracting the contextual
feature of a transaction node u at timestamp t in the
HTGNN block l-th by the mutual information from its
neighboring entity nodes at timestamp t−1 in the HT-
GNN block l-th, as well as from its own features, to
create a comprehensive embedding for it. Before fus-
ing the semantic information, we project the spatial-
temporal embedding vector of each neighboring en-
tity node v at timestamp t − 1 in the HTGNN block
l-th and the transaction’s feature vector into the same
latent space. This ensures the vectors representing en-
tities and transactions are the same dimensions.

The fusion of semantic information is achieved by
applying scaled dot-product attention, inspired by the
Transformer model (Vaswani et al., 2017), which is
well-suited for capturing complex, multi-entity inter-
actions. For a given transaction node u, the spatial-
temporal embedding vectors of its neighboring entity
nodes are aggregated into a list, denoted as:

E := [at,l
u ,at−1,l

v,ST ] ∀v ∈ N t(u) and φ(v) ∈ A ′

where n is the number of entity types; at,l
u,A0

is the fea-

ture vector of the transaction; and at−1,l
v,ST represent all

the spatial-temporal embedding of all neighbor en-
tity node of node u at timestamp t − 1 in the HT-
GNN block l-th. This setup allows us to compute
the semantic relationship between the transaction and
its neighboring entity nodes. To capture the relation-
ships between these node types, we apply the follow-
ing procedure:

(1) Transform all vectors in the list E to a query, key,
and value vector.

qAi =Wquery ·E[i],∀i = 0 → n

kAi =Wkey ·E[i],∀i = 0 → n

vAi =Wvalue ·E[i],∀i = 0 → n

(2) Compute mutual attention weight by the dot
product between the query and key vector.

δ(Ai,A j) =
exp([qAi ]

T · [kA j ])

∑
n
j=0 exp([qAi ]

T · [kA j ])

(3) The mutual information between node i and node
j is represented as a weighted sum of all value
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vectors vA j and the computed mutual attention
value δ(Ai,A j). This can be expressed mathe-
matically as:

sAi =
n

∑
j=0

δ(Ai,A j) · vA j

Where Wquery,Wkey,Wvalue ∈ Rd×d and θ are the
learnable parameters shared across all entity node
types. The final embedding of transaction u is created
by concatenating those outputs and using Wtrans as the
linear transformation to ensure the length of the trans-
action node feature vectors’ dimension is maintained
through many layers, formulated as:

at,l
u = [sA0 ||sA1 ||sA2 || . . . ||sAn ]

at,l
u =Wtrans ·at,l

u

In short, at,l
u is the output of the HTGNN block

l-th. By enhancing the message-passing process,
HTGNN integrates both spatial and temporal di-
mensions, moving beyond the simplistic aggrega-
tion methods of conventional GNNs. The use of
transformer-based architectures for updating allows
HTGNNs to effectively capture the contextual infor-
mation, leading to richer node representations and im-
proved performance in the fraud detection system.

3.3 Real-Time Transaction Fraud
Detection System

While the stacked HTGNN blocks can provide high
accuracy in offline fraud detection by capturing com-
plex spatial, temporal, and semantic information,
their computational complexity makes them less suit-
able for real-time inference. Running full-batch HT-
GNN models in a real-time setting would introduce
significant latency, delaying fraud detection when im-
mediate decisions are required. To address this chal-
lenge, we implement a dual-model approach based
on Lambda architecture, which enables the system to
maintain both accuracy and efficiency by separating
the process into batch and speed layers.

The batch layer is designed to handle large-scale,
high-complexity computations offline. In this layer,
the stacked HTGNN blocks continuously process his-
torical transaction data to detect emerging fraud pat-
terns and update the model periodically. This ensures
that the model remains accurate by learning from
new data and adjusting to evolving fraudulent behav-
iors. In this layer, we design the BatchNet to learn
the embedding of all reference entity nodes. Batch-
Net consists of L stacked HTGNN blocks, one spa-
tial aggregation layer, and one temporal aggregation

layer, as in figure 1c. Each HTGNN block allows
transaction nodes to gather mutual information from
their own features as well as spatial-temporal embed-
dings of related entities at preceding timestamps. The
stacked architecture enhances message passing be-
tween blocks, allowing nodes to aggregate informa-
tion from further away in the graph, which enhances
their representations. Instead of utilizing all HTGNN
block at the end of BatchNet, we employ only the two
first layers to extract the spatial-temporal embedding
of entities, which are then stored as entity embeddings
in key-value databases for future use. We choose the
key-values database to store spatial-temporal of en-
tities nodes to optimize real-time fraud detection by
enabling quick retrieval, reducing database load, and
improving memory efficiency, which is crucial for
handling large datasets and ensuring rapid decision-
making.

To ensure real-time responsiveness, we designed
SpeedNet for the speed layer, a lightweight model fo-
cused on minimizing prediction latency. This layer
operates on streaming transaction data and leverages
the precomputed embeddings of all related entities
generated by the BatchNet. By utilizing these pre-
computed features, the SpeedNet can make rapid pre-
dictions without having to process the entire graph
structure for each incoming transaction in timestamp
t + 1. SpeedNet, illustrated in figure 1d, is built with
a semantic fusion layer that extracts mutual infor-
mation from the features of the target transaction at
timestamp t +1 and the corresponding entity embed-
dings from timestamp t queried from the key-value
database. This process generates the final embedding
for the target transaction, which is then used to com-
pute the transaction’s risk score by the decoder layer.
In our environment, we used two multi-perceptron
layers and a softmax function. By combining these
two layers, the system strikes a balance between accu-
racy and efficiency. The batch layer ensures the model
remains effective by continuously learning from past
transactions, while the speed layer ensures that real-
time transactions are processed quickly enough to
meet the demands of a live fraud detection environ-
ment.

3.4 Training Process

In the training process of our fraud detection system,
both BatchNet and SpeedNet are trained across mul-
tiple time windows. This training method involves
sampling data from specific time intervals to create
mini-batches. Specifically, we consider all histori-
cal data from timestamp 1 to tlatest for training, in
which tlatest is the latest timestamp. However, due
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to the extensive nature of this interval, which can
result in a large volume of data, we divide it into
smaller, manageable time windows for training. Each
mini-batch corresponds to a time partition denoted as
T = {1,2, . . . , t}, where each unit represents a times-
tamp, such as minutes, hours, or days. In our exper-
iments, we define each timestamp as a day. Specif-
ically, the reference subgraph covering timestamps
from 1 to t − 1, denoted as {G j}t−1

j=1, serves as the
input for BatchNet. In contrast, the target subgraph at
timestamp t, along with the spatial-temporal embed-
dings of all entities at timestamp t −1, is provided as
input to SpeedNet.

Following the completion of training at time win-
dow T , the sliding window mechanism comes into
play. We incrementally shift the window to the next
unit, adjusting it to T = 2,3, ..., t +1. This step allows
us to integrate the most recent transactions into the
training set while continuing to leverage the historical
data encapsulated in previous timestamps. The slid-
ing window ensures that the model is exposed to new
transaction patterns over time, enabling it to adapt
to evolving fraud behavior. Moreover, instead of re-
training from scratch with each new window, we ini-
tialize the model with the parameters learned in the
previous training iteration. This transfer of knowl-
edge is crucial for refining the model’s understand-
ing of both short-term and long-term fraud dynam-
ics, as it incrementally builds upon insights gained
from earlier windows. By doing so, the model not
only achieves better generalization but also efficiently
handles large-scale datasets that span extended peri-
ods.Not only that, throughout the training process, the
labels of all transaction nodes in the target subgraph
at timestamp t are used to compute the loss function,
enabling the model to update its predictions. The loss
is calculated using a binary cross-entropy function:

L =−
N

∑
i=1

(yi log(ŷi)+(1− yi) log(1− ŷi))

Where yi represents the ground truth label (fraud-
ulent or normal) of transaction node i, and ŷi denotes
the risk score of node i being fraudulent. By itera-
tively minimizing this loss function across multiple
sliding windows, our system continuously improves
its ability to detect fraudulent transactions, even as
new data arrives.

4 EXPERIMENTS

4.1 The Usage Datasets

We use a real-world transaction dataset, the IEEE
CIS Fraud Detection dataset (referred to as the Vesta
dataset), which was released for the IEEE CIS Fraud
Detection competition. This comprehensive dataset
includes 590,540 transaction records, each meticu-
lously labeled as either normal or fraudulent. Of
these, 20,663 transactions are fraudulent, compris-
ing approximately 3.5% of the dataset. The dataset
contains detailed information on transaction amounts,
payment methods, and device information, with 433
attributes available for each transaction, offering a
rich and diverse set of features for building machine
learning models for fraud detection. In addition to the
transaction labels, the IEEE dataset records transac-
tion information over time, spanning a 6-month pe-
riod.

In addition to using real-world datasets, we con-
duct further experiments using synthetic data. The
PAYSIM dataset is a synthetic dataset generated from
simulations that replicate real-world financial trans-
actions. It was designed to address privacy concerns
while retaining the statistical properties and trans-
actional behaviors observed in natural financial sys-
tems. This dataset is created by a sophisticated fi-
nancial simulator based on real transaction data. The
PAYSIM dataset includes 6,362,620 transactions, of
which 8,213 are fraudulent (the frau ratio approx-
imately 0.129%) each labeled as either normal or
fraudulent. In addition to the transaction labels,
this dataset records transaction information over time,
covering a 1-month period. The dataset provides de-
tailed attributes for each transaction, such as time
step, type, amount, sender name, receiver name, and
old and new balances for both sender and receiver. A
summary of the training and testing data statistics for
both datasets is presented in table 1.

Table 1: Training and Testing Data Statistics. Note: #Time-
frames is the number of timeframes used in the training
and testing phase. Similarly, #Transactions is the number
of transactions used.

Dataset #Timeframes #Transactions

Train Test Train Test
CSI 145 36 487,837 102,703
Paysim 24 6 6,239,040 123,580
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4.2 Baseline

To evaluate the performance of our proposed method,
we compare it against several established baseline
models in fraud detection, including traditional ma-
chine learning algorithms, graph-based methods. Be-
low, we outline the baseline models used in our ex-
periments:

• LightGBM (LGB): is a fast, decision-tree-based
algorithm designed for large-scale datasets, mak-
ing it ideal for fraud detection. It handles both cat-
egorical and continuous features efficiently, sup-
ports imbalanced datasets, and offers quick train-
ing times.

• BRIGHT(Lu et al., 2022): is a proposed so-
lution designed to tackle challenges in deploy-
ing Graph Neural Networks (GNNs) for real-
time fraud detection. It utilizes historical trans-
action data to derive insights for new transactions
through a Graph Convolutional Network (GCN).
This method models relationships between trans-
actions and entities, allowing the network to ag-
gregate relevant information from past transac-
tions.

4.3 Implement Details

4.3.1 Feature Encoding

In our experiments, we begin by preprocessing each
dataset to create a clean version. We either retain the
original values or transform them based on our under-
standing of the relevant business domain, while also
encoding categorical attributes. Consequently, each
row in the feature matrix corresponds to a transac-
tion. For the LightGBM (LGB) model, we directly
use this feature matrix as input. In contrast, for graph-
based methods, we apply normalization before uti-
lizing the features. For BRIGHT, we also incorpo-
rate this matrix for the transaction node features in
the input graph, while setting the features of the en-
tity nodes to zero vectors, as suggested in the original
proposal. For our proposed approach, we selectively
extract components from the feature matrix to repre-
sent the transaction node features, with entity node
features derived from the same matrix but tailored
to reflect the unique characteristics of each entity, as
shown in Figure 2.

4.3.2 Experimental Setup

To identify the optimal hyperparameters, we utilize
grid search to determine the ideal configuration for
the graph neural network (GNN), specifically focus-
ing on the number of layers and hidden units. We

Figure 2: Illustration of the difference features are used in
experiments.

evaluate GNN layer counts from the set {1, 2, 3, 4,
6, 8, 16} and hidden unit options from {56, 128,
256, 512}. For the LightGBM model, we train it us-
ing 10,000 trees. We incrementally adjust the num-
ber of HTGNN blocks and time window size, select-
ing configurations that optimize model performance.
For the training process, we employ the Adam opti-
mizer with a learning rate of 10−3 and a weight de-
cay of 10−4. The remaining hyperparameters include
a dropout rate of 0.2, a total of 10,000 epochs, and
an early stopping mechanism with a patience of 50
epochs. All experiments are conducted on a DGX
server equipped with four A100 GPUs.

4.4 Evaluation Metrics

In evaluating our proposed fraud detection method,
we use the following metrics:

• Average Precision (AP) evaluates binary classifi-
cation, especially on imbalanced data, by averag-
ing precision and recall over thresholds.

• AUC-ROC measures a model’s ability to distin-
guish classes, showing the balance between true
and false positives across thresholds.

• Prediction time (or Latency) is the time a model
takes to predict after input. Low latency is critical
for timely fraud detection.

5 RESULTS AND DISCUSSION

5.1 Experimental Results

The comparative analysis of fraud detection methods
reveals the superior performance of the HTGNN 2-
hop model across both the IEEE-CIS and PAYSIM
datasets, as shown in Table 2 and Figure 3. On the
IEEE-CIS dataset, the HTGNN 2-hop achieved the
highest AUC-ROC score of 0.94, significantly outper-
forming traditional models like LGB, which recorded
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Table 2: The comparative performance of different models for fraud detection on IEEE-CIS Fraud Detection and PAYSIM
dataset. Notes: the prediction time is measured in milliseconds.

Method IEEE-CIS PAYSIM

AUC-ROC AP Prediction time AUC-ROC AP Prediction time
LGB 0.851±0.003 0.361±0.025 0.69±0.019 0.882±0.013 0.454±0.011 0.52±0.019

BRIGHT 0.863±0.014 0.371±0.012 1.81±0.014 0.891±0.021 0.475±0.005 1.67±0.01

HTGNN 1-hop 0.931±0.013 0.611±0.007 1.85 ± 0.007 0.923±0.023 0.662±0.002 1.68±0.012

HTGNN 2-hop 0.940±0.010 0.641±0.008 1.80±0.013 0.956±0.003 0.682±0.011 1.67±0.041

HTGNN 3-hop 0.896±0.004 0.591±0.007 1.87 ± 0.001 0.907±0.003 0.623±0.003 1.69 ± 0.006

an AUC-ROC of 0.85, and BRIGHT, which scored
0.86. Additionally, the HTGNN 2-hop’s AP score
of 0.64 far exceeded that of LGB 0.36 and BRIGHT
0.37, underscoring its enhanced capability in identi-
fying true fraud cases.

On the PAYSIM dataset, the HTGNN 2-hop again
stood out with an impressive AUC-ROC of 0.96, out-
performing both LGB 0.88 and BRIGHT 0.89. Its AP
score of 0.68 on PAYSIM further reinforced its supe-
riority, surpassing LGB’s 0.45 and BRIGHT’s 0.48.
While the HTGNN 2-hop model required slightly
longer training times than the traditional models, its
prediction time of 1.8 milliseconds on IEEE-CIS and
1.67 milliseconds on PAYSIM remained comparable
to that of BRIGHT and manageable for real-time de-
ployment.

These results highlight that, while traditional
models like LGB and BRIGHT offer faster prediction
times, the HTGNN 2-hop model provides a substan-
tial boost in both AUC-ROC and AP, making it the
most effective method for capturing complex fraud
patterns and improving detection accuracy. As de-
picted in Figure 4, the histogram of risk scores for
normal transactions reveals that our proposed HT-
GNN 2-hop model concentrates the majority of nor-
mal transaction scores below 0.5 on both datasets. In
contrast, both the LGB and BRIGHT models show
a significantly higher number of normal samples with
risk scores above 0.5, indicating a higher likelihood of
misclassifications. This difference highlights that the
HTGNN 2-hop model generates more reasonable and
accurate risk scores, thereby reducing the chance of
false positives in fraud detection. The ability to push
genuine transactions into lower risk score ranges is
a clear indicator of the model’s superior calibration,
further solidifying its reliability in high-stakes fraud
detection environments. Overall, the HTGNN 2-hop
model demonstrates a commendable balance between
performance and efficiency, establishing it as a lead-
ing approach for fraud detection tasks within hetero-
geneous temporal graphs.

Figure 3: Receiver operating characteristic curve.

5.2 Discussion on the Application of
HTGNN to Real Fraud Detection
Systems

Training HTGNN across various product scenarios
offers both opportunities and challenges, especially
in data representation and feature extraction. With
heterogeneous data and transaction timelines, HT-
GNN efficiently captures relationships and temporal
dynamics. It adapts to fields like e-commerce, in-
surance, and telecommunications. For example, in
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Figure 4: The risk score histogram.

e-commerce, HTGNN can identify fraudulent activ-
ities by analyzing user behavior patterns, such as sud-
den changes in purchase frequency, unusually large
transactions, or abnormal browsing habits. However,
it struggles to predict transactions involving unseen
entities, as it assigns them a zero vector, limiting ac-
curacy due to the lack of historical data.

6 CONCLUSION

In this paper, we introduced a novel framework for
real-time fraud detection that leverages the power of
heterogeneous temporal graphs to integrate spatial,
temporal, and semantic information. By utilizing a
robust heterogeneous temporal graph neural network
(HTGNN) architecture, our approach captures com-
plex relationships and evolving patterns of fraud that
traditional models often miss, particularly those re-
lated to hidden or disguised fraudulent activities. Our
framework operates in real-time, enabling early de-
tection of fraudulent transactions, thereby minimiz-
ing financial losses and reducing operational risks for
organizations. The empirical results from our evalu-
ations on large, complex datasets demonstrate the ef-
fectiveness of the proposed model in accurately de-
tecting fraud and handling real-time data process-
ing. This work provides a significant advancement
in the field by offering a comprehensive and adap-
tive solution to the challenges posed by evolving
fraud tactics. Future work could explore extending

this framework by incorporating more sophisticated
graph-based models, with a focus on enhancing in-
terpretability and providing clearer insights into the
decision-making process.
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