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Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual

question answering or image captioning. However, inconsistencies between the visual information and the
generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the
trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally
costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level.
In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on token-level
at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs. Meta-
Token can be applied to any open-source LVLM without any knowledge about ground truth data providing a
calibrated detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs outperforming
baseline methods by up to 46.50pp in terms of area under precision recall curve values.

1 INTRODUCTION

LVLMs have demonstrated impressive visual-
language understanding skills by aligning text and
visual features. However, besides their remarkable
zero-shot performance on visual downstream tasks,
LVLMs suffer from the problem of hallucinations
(Li et al., 2023b; Liu et al., 2024b; Rohrbach et al.,
2018) inherited from the underlying Large Language
Models (LLMs) or caused by faulty interpretation of
the image input by the vision branch. In the context
of LVLMs, hallucination refers to the problem
of inconsistencies between the generated text and
the visual input (Liu et al., 2024b) diminishing
the trustworthiness of these models. Especially in
safety-critical applications like autonomous driving
(Gao et al., 2024; Tian et al., 2024) or medicine
(Jiang et al., 2024; Li et al., 2023a), the reliability of
the underlying model is indispensable for decision
making. In order to address this problem, recent
works (Liu et al., 2024a; Gunjal et al., 2023; Zhao
et al., 2024; Dai et al., 2023b; Xing et al., 2024) have
proposed additional instruction tuning datasets and
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Figure 1: MetaToken. Based on generated image cap-
tions (i), we calculate our proposed input features (ii) (see
Sec. 3.2). Afterwards, we apply the trained meta classifier
(iii) to detect |hallucinated and | true objects (iv). More-
over, (v) MetaToken can be easily integrated into LURE
(Zhou et al., 2023) to improve the hallucination mitigation.

pre-training strategies to detect and mitigate halluci-
nations on a sentence- or subsentence-level. Another
common strategy comprises stacked L(V)LMs to
post-hoc detect and rectify hallucinations (Wu et al.,
2024; Yin et al., 2023; Jing et al., 2023).

In this work, we tackle the problem of object hal-
lucination in image captions. To this end, we intro-
duce MetaToken, a lightweight hallucination detec-
tion method which can be applied to any open-source
LVLM. MetaToken builds up on the idea of meta clas-
sification (Lin and Hauptmann, 2003; Hendrycks and
Gimpel, 2017; Chen et al., 2019; Rottmann et al.,
2020; Fieback et al., 2023) to detect hallucinated ob-
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Table 1: Related Work on Hallucination Detection. A comparison of existing approaches on hallucination detection with
respect to computational efficiency, i.e., whether the respective method can be implemented without an additional dataset,

fine-tuning or prompting an L(V)LM.

indicates ’yes’, X indicates 'no’.

method

w/o add. dataset

w/o fine-tuning  w/o prompting

LogicCheckGPT (Wu et al., 2024)
Woodpecker (Yin et al., 2023)
M-HalDetect (Gunjal et al., 2023)
HaELM (Wang et al., 2023)
FAITHSCORE (Jing et al., 2023)
UNIHD (Chen et al., 2024)
Ours

>
> X X X X X

jects on token-level based on the model output only.
Fig. 1 depicts our approach. In contrast to existing
methods, our approach neither requires an additional
dataset, fine-tuning an L(V)LM nor cost-intensive
L(V)LM prompting. Within a comprehensive statis-
tical analysis, we investigate a broad set of input fea-
tures which are indicative of hallucinations providing
deep insights into the sources of this specific type of
model errors. We evaluate our method on four state-
of-the-art (SOTA) LVLMs (Dai et al., 2023a; Ye et al.,
2023; Zhu et al., 2023; Huang et al., 2023) achiev-
ing area under receiver operator characteristic curve
values (Davis and Goadrich, 2006) of up to 92.12%
and area under precision recall curve values (Davis
and Goadrich, 2006) of up to 84.01%. Moreover,
we show that our method can be incorporated into
the LVLM Hallucination Revisor (LURE) mitigation
method (Zhou et al., 2023). While the initial LURE
method reduces hallucinations by up to 52.98%, we
achieve a hallucination reduction by up to 56.62%
through the superior precision-recall-ratio of MetaTo-
ken. Our main contributions are as follows:

* We propose and investigate a comprehensive set
of statistics as potential factors of object halluci-
nations.

e Based on these statistics, we introduce MetaTo-
ken, a lightweight binary classifier to detect object
hallucinations as a post-hoc method. MetaToken
can be applied to any open-source LVLM without
any knowledge about the ground truth data.

* We show that MetaToken can be easily integrated
into the LURE mitigation method, outperform-
ing the initial LURE results through a superior
precision-recall-ratio.

The remainder of this work is structured as fol-
lows: An overview over related work in the field of
LVLM hallucination and meta classification is pro-
vided in Sec. 2. In Sec. 3, we introduce MetaToken,
which comprises a formal definition of meta classi-
fication and our proposed input features followed by

the experimental details in Sec. 4. Finally, we present
our numerical results in Sec. 5 and discuss limitations
of our work in Sec. 6.

2 RELATED WORK

2.1 Hallucinations in LVLMs

Hallucinations in LVLMs can occur on different se-
mantic levels, where coarse-grained object hallucina-
tion (Rohrbach et al., 2018) refers to objects gener-
ated in the language output, which are not depicted in
the input image, whereas fine-grained hallucination
describes inconsistencies with respect to object at-
tributes or relations between objects (Li et al., 2023b;
Liu et al., 2024b). For a comprehensive survey on hal-
lucinations in LVLMs, we refer to (Liu et al., 2024b).

The problem of hallucination mitigation is mainly
tackled by either retraining the model with an instruc-
tion tuning dataset (Liu et al., 2024a; Gunjal et al.,
2023), rectifying image captions as a post-processing
step or incorporating new pre-training or generation
strategies. LURE (Zhou et al., 2023) serves as a post-
hoc method to rectify object hallucinations by train-
ing an LVLM-based revisor to reconstruct less hallu-
cinatory descriptions. MARINE (Zhao et al., 2024)
enriches the visual context of LVLMs by incorporat-
ing object grounding features into the LLM input. In
(Dai et al., 2023b), a new pre-training objective is in-
troduced to mitigate object hallucinations by improv-
ing the object-level image-text alignment. Since the
reliability of the generated language output still re-
mains an unsolved problem, many studies focus on
the problem of hallucination detection. In (Wu et al.,
2024), the problem of hallucination detection and mit-
igation is solved simultaneously by raising logical
correlated questions and checking for logical consis-
tency throughout the generated answers afterwards.
Similarly, Woodpecker (Yin et al., 2023) serves as
a post-processing hallucination detection and correc-
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tion method incorporating visual knowledge valida-
tion for both instance- and attribute-level hallucina-
tions. A human-labeled dataset is published in (Gun-
jal et al., 2023), which is used to train an LLM-
based classifier to classify between accurate and in-
accurate sentences. In (Wang et al., 2023), a hallu-
cination evaluation framework is introduced by train-
ing an LLM to distinguish between hallucinated and
hallucination-free image captions. Both, (Jing et al.,
2023) and (Chen et al., 2024), propose a pipeline con-
sisting of several LVLMs and LLMs to verify each
claim contained in the generated language output. In
this work, we tackle the problem of object hallucina-
tion detection using meta classification. In contrast
to existing methods, our approach neither requires an
additional dataset, fine-tuning an L(V)LM nor cost-
intensive L(V)LM prompting for claim verification
(see Tab. 1).

2.2 Meta Classification

In classical machine learning, meta classification
refers to the problem of how to best combine predic-
tions from an ensemble of classifiers (Lin and Haupt-
mann, 2003). In terms of deep learning, this con-
cept has been transferred to the classification whether
a prediction is true or false based on uncertainty
features (Hendrycks and Gimpel, 2017). Several
works have applied this idea to natural language pro-
cessing (Vasudevan et al., 2019; Liu et al., 2022;
Gui et al., 2024), image classification (Chen et al.,
2019), semantic segmentation (Rottmann et al., 2020;
Rottmann and Schubert, 2019; Maag et al., 2020;
Fieback et al., 2023), video instance segmentation
(Maag et al., 2021) and object detection (Schubert
et al., 2021; Kowol et al., 2020). We are the first
to transfer the idea of meta classification to the prob-
lem of hallucination detection for LVLMs. Based on
a statistical analysis of key factors of hallucinations
in LVLMs, we identify input features outperforming
classical uncertainty-based statistics.

2.3 Hallucination Evaluation

Since different studies (Rohrbach et al., 2018;
Dai et al., 2023b) have shown that standard im-
age captioning metrics like BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007), CIDEr
(Vedantam et al., 2015) and SPICE (Anderson et al.,
2016) are not capable of measuring hallucinations
properly, a common hallucination evaluation method
is the Caption Hallucination Assessment with Image
Relevance (CHAIR) metric (Rohrbach et al., 2018).
The CHAIR metric measures the proportion of hal-
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lucinated objects in an image caption by matching
the objects in the generated text against the ground
truth annotations (Lin et al., 2014). Further datasets
and evaluation methods have been proposed to evalu-
ate the performance of LVLMs across multiple multi-
modal tasks (Fu et al., 2023; Gunjal et al., 2023;
Lovenia et al., 2024; Liu et al., 2023). While some
of the proposed evaluation methods ask LL.Ms to out-
put quality-related scores (Liu et al., 2025; Liu et al.,
2024a; Yu et al., 2024) or measure the image-text sim-
ilarity (Hessel et al., 2021), other methods (Li et al.,
2023b; Fu et al., 2023; Wang et al., 2024) use a
prompt template to query hallucination-related ques-
tions and force the model to answer either ’yes’ or
’no’. However, the results in (Li et al., 2023b) and
(Fu et al., 2023) have shown that LVLMs tend to an-
swer ’yes’, which results in a low recall for halluci-
nated objects. Moreover, the LLM- and similarity-
based scores (Liu et al., 2025; Liu et al., 2024a; Yu
et al., 2024; Hessel et al., 2021) evaluate the entire
image caption in terms of continuous scores instead
of providing a binary label for each generated object.
Thus, we rely on the CHAIR metric to evaluate hallu-
cinations.

3 METHOD

The aim of our method is to detect hallucinations
in the text output of LVLMs leveraging the idea of
meta classification. To this end, we build input fea-
tures based on the model output that have been shown
to correlate with hallucinations. These features are
used to train a lightweight binary meta model to clas-
sify between hallucinated and true objects. At infer-
ence time, we can detect hallucinations by computing
the proposed features and applying the trained meta
model afterwards (see Fig. 1). A formal definition of
meta classification is provided in Sec. 3.3.

3.1 Notation

Typically, LVLMs generate language output in an
auto-regressive manner by predicting the probability
distribution of the next token over the entire vocabu-
lary 4V given the input image x, the provided prompt
q as well as the already generated tokens. For this
purpose, the image x as well as the prompt g are to-
kenized into u -+ 1 image tokens ty;,... %, and v+1
prompt tokens t,...,1,,, respectively.

We denote the sequence of generated output to-
kens by s = (fo,...,7x) with sequence length K + 1.
Moreover, let s; = (f9,...,#) denote the generated
output sequence at generation step i. The probabil-
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ity of generating token ;41 € V' at generation step
i+ 1 given the input image x, the provided prompt g
and the already generated tokens s; can be formulated
as p(tit1|x,q,s;). For a shorter notation, we define
Pir1 = p(tit1]x,q,s;). Furthermore, let p;; denote
the probability distribution at generation step i+ 1
over the dictionary % and | V| the cardinality of V.

Given the language output s, we extract all ob-
jects contained in the generated text. We denote
the set of objects contained in the sequence s by
Os = {00,...,0;}. Since the generated string of an
object might consist of several tokens, we define for
every object 0; € O, the start token lo;, at position
0<ojs; <K as well as the end token 7,,, at position
0<o0j.<K.

3.2 Input Features

Recent works (Rohrbach et al., 2018; Wang et al.,
2023) have investigated influencing factors of object
hallucinations. First, the results in (Wang et al., 2023)
indicate that LVLMs often generate true segments
at the beginning while the risk of hallucinations in-
creases at the later part of the generated responses.
Thus, we take account of the relative position (Eq. (1))
of a generated object and the absolute occurrence
(Eq. (2)) of the object in the generated text. Second, to
account for the over-reliance of LVLMs on language
priors during the generation process (Rohrbach et al.,
2018; Wang et al., 2023), we consider the mean ab-
solute attention on the image tokens (Eq. (3)). Fi-
nally, we regard the model uncertainty through dif-
ferent dispersion measures (Eq. (4)-(11)) which have
been shown to correlate with model errors in different
fields (Rottmann and Schubert, 2019; Schubert et al.,
2021; Vasudevan et al., 2019) including the sequence
score! calculated during the LVLM generation pro-
cess. For a generated object o; € Oy from the output
sequence s = (tg, ...,k ), we define

* the relative position

P()jzoj,.y/(K+1)7 (1)
* the absolute occurrence of object 0 in s
z
Noj- = Z 1{0[:0‘,'}7 (2)
1=0

 for every attention head g = 0,...,G — 1, the
mean absolute attention of the start token 7,
on the image tokens fy, .. .,

u

1 & )
Agj = ,226 |Attent10nluj_x (2], 3)

Ihttps://huggingface.co/docs/transformers/main/en/mai
n_classes/text_generation\#transformers.GenerationMixin.
compute_transition_scores

where Attention,, () denotes the attention of the
generated token #; at generation step i on the input
token 1,

¢ the log probability
o j.e

Ly, = Y, logpi, )

i:0j K

¢ the cumulated log probability

%je
Co; = Y logpi, )
i=0
* the sequence score with length_penalty parameter
lp
So; = —— 3 log pi, ©6)
T (0 & l
* the variance
1
Vo, = Ty L. (log oy, (1) -w* M
4

with = ‘Tl/‘ Yievlogpo,, (t),
* the entropy (Shannon, 1948)

1
E, =——— (1)1 - (1), 8
0; ]Og |‘V| t;;/po_]‘.v( ) ngo_],.c( ) ( )
e the variation ratio
ROj =1- Po,-,s (tmax)a Imax = I;Té?-;(poj-,x (t)> (9)

¢ the probability margin

M, =R,,+ max
/ / t€V\{tmax }

* the probability difference

Po;,(t), and,  (10)

Dol- = logpo,‘s (tmax) - logﬁom- (11

Finally, for an object 0; € Oy, we define the total
set of input features as

0 G-1
M}j = {P()j7N()jaA()j7 o 7A()j 7L()j7
C()jaS()jaV()j7E()j7R()jaM()j7D0j}
with cardinality |M,,;| = 10+ G.

12)

3.3 Hallucination Detection Using
Meta Classification

Let M denote a set of input features with cardinality
|M|. The idea of meta classification consists of train-
ing a lightweight binary meta model based on the in-
put features M to classify between true and false pre-
dictions, i.e., to detect true and hallucinated objects in
the generated output s. To this end, let

f£:RM = 40,1} (13)
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Table 2: BDD100K Synonyms. A list of synonyms for the BDD100K object categories (Yu et al., 2020).

BDD Object Synonyms

person human, man, woman, driver, people, someone, somebody, citizen, human being, walker, pedestrian
rider cyclist, bicyclist, bike rider, biker, motorcyclist, motor biker, motorbike user, motorcycle user

car automobile, vehicle, auto, suv, motorcar, ride, roadster, taxi

bus coach, minibus, shuttle, omnibus, motorbus, passenger vehicle, trolleybus, school bus, tour bus
truck lorry, pickup, van, semi-truck, rig, dump truck, cargo truck, delivery truck, garbage truck

bike bicycle, cycle, pedal bike, road bike, mountain bike, velocipede

motor motorcycle, scooter

traffic light  stoplight, signal light, traffic signal, red light, green light, traffic control signal, road signal,

semaphore, stop light
traffic sign
train metro, tram

direction sign, railroad crossing sign, road sign, signpost, traffic marker, stop sign

denote the binary classifier. We denote the set of train-
ing captions by S"¥" and the corresponding set of
generated objects by

OStrain == U Os- (14)

s€ 5(rain
For every generated 0; € Ogmin We build an input

vector m,; € R‘M’/ | representing the feature set M,j
(Eq. (12)) and define the label y,; € {0,1} according
to the CHAIR evaluation (see Sec. 4.2). After stan-
dardizing the inputs, we use the set

{(moj,yoj) | jZO,...,|OSI)'ai)1|_1} (15)

to train the classifier f.
Given a generated caption s at inference time, we

calculate the input vector m,; € Rl for every ob-
ject oj € Oy and apply the trained binary meta clas-
sifier f to detect hallucinated objects. Note that the
input vector my; can be calculated in an automated
manner based on the model output only, without any
knowledge of the ground truth data.

4 EXPERIMENTAL SETTINGS

4.1 Datasets

We evaluate our method on the MSCOCO and
BDDI100K datasets. The MSCOCO dataset (Lin
et al.,, 2014) is a large-scale dataset for object de-
tection, segmentation, and image captioning compris-
ing more than 200K labeled images. The BDD100K
dataset (Yu et al.,, 2020) consists of 100K labeled
street scene images including labels for object detec-
tion, semantic segmentation and instance segmenta-
tion. We randomly sample 5,000 images from the
validation sets and produce image captions s for four
SOTA LVLMs. We use 80% of the generated cap-
tions as training set Ogwin and validate our method
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on the remaining 20% denoted as Ogva. In our ex-
periments, we average our results over ten randomly
sampled training-validation splits. The corresponding
standard deviations are given in parentheses.

4.2 Hallucination Evaluation

The CHAIR metric (Rohrbach et al., 2018) is an au-
tomated hallucination evaluation method which has
been introduced to measure hallucinations for the
MSCOCO dataset (Lin et al., 2014). By matching
the generated text s against the ground truth objects,
CHAIR provides a binary label for every generated
object category and a wide range of corresponding
synonyms (Lu et al., 2018) indicating whether the ob-
jecto; € Oyis true, i.e., contained in the image, or hal-
lucinated. We follow the same methodology to evalu-
ate hallucinations on the BDD100K dataset (Yu et al.,
2020). For every BDD100OK object category, we cre-
ate a comprehensive list of synonyms (see Tab. 2) and
match the LVLM output against the ground truth la-
bels of the BDD100K object detection dataset where
true objects are encoded as 0 and hallucinated objects
are encoded as 1. Finally, the proportion of halluci-
nated objects in an image caption is defined as

|{hallucinated objects}|
|{all objects mentioned}|’

CHAIR; = (16)

4.3 Large Vision Language Models

We evaluate our approach on four SOTA open-source
LVLMs, i.e., InstructBLIP (Vicuna-7B) (Dai et al.,
2023a), mPLUG-Ow1 (LLaMA-7B) (Ye et al., 2023),
MiniGPT-4 (Vicuna-7B) (Zhu et al., 2023), and
LLaVa 1.5 (Vicuna-7B) (Huang et al., 2023), all of
them using G = 32 attention heads. We use nucleus
sampling (Holtzman et al., 2020) and the prompt

"Describe all objects in the image."
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Table 3: LVLM Performance. Evaluation results of SOTA
LVLMs with respect to the average number of generated
objects per image (#obj.) and CHAIR; (in %). The best
results in each block are highlighted.

MSCOCO BDD100K
Model | #obj. CHAIR, | | #obj. CHAIR, |
InstructBLIP | 5.6 104 5.8 22.07
mPLUG-Owl | 6.9 30.2 5.8 33.44
MiniGPT-4 4.4 13.6 3.7 29.12
LLaVa 7.3 18.7 7.1 29.72
Table 4: Classifier Configurations. The con-
figurations applied in our experiments for the
sklearn.linear_model.LogisticRegression (LR) and

sklearn.ensemble.GradientBoostingClassifier (GB) classi-
fier.

scikit-learn random_state solver max_iter tol
LR 1.3.2 0 saga 1000 1le—3
GB 1.3.2 0 - - -

for all image caption generations. The performance
of the LVLMs considered with respect to the average
number of generated objects per image as well as the
hallucination rate in terms of CHAIR; (Eq. (16)) is
summarized in Tab. 3.

4.4 Evaluation Metrics and
Meta Models

We evaluate our method based on the accuracy ACC,
the area under receiver operator characteristic curve
AUROC (Davis and Goadrich, 2006) and the area un-
der precision recall curve AUPRC (Davis and Goad-
rich, 2006). The receiver operator characteristic curve
illustrates the performance of a binary classifier by
plotting the true positive rate against the false positive
rate at various decision thresholds indicating the abil-
ity to distinguish between both classes. The precision
recall curve plots precision values against the recall at
various decision thresholds accounting for imbalance
in the underlying dataset. Since we observe imbal-
anced data with respect to object instance hallucina-
tions (see Tab. 3), the main focus in our evaluation is
on the AUROC and AU PRC value. We compare two
binary meta models, i.e., a classifier based on a logis-
tic regression (LR) and a gradient boosting (GB) meta
model (see Tab. 4 for the configuration details).

4.5 Baseline

We use the reference-free token-level algebraic confi-
dence TLC-A (Petryk et al., 2023) as our baseline. We
consider the log probability-based token-level confi-
dence L (see Eq. (4)) and the entropy-based confi-
dence E (see Eq. (8)). For both confidence measures,

Table 5: Computational Time. The average time for fea-
ture calculation per image (feature), classifier training using
4,000 image captions (train) and inference on 1,000 image
captions (predict).

train (sec.)
0.47187
54.00010

feature (sec.)
LR 0.07174
GB 0.07174

predict (sec.)
0.00198
0.00385

Table 6: Expected Calibration Error. The ECE for the LR
and GB MetaToken classifier.

ECE (in %) |

Model \ LR ‘ GB
InstructBLIP | 0.810%32¢-2) | ] 29(+#6e-2)
mPLUG-Owl | 1.36(+13¢=1) | 2 ] (+6:9¢-2)

MiniGPT-4 | 1.35(+93-2) | ] 43(+88e-2)

LLaVa 1.05(£2:0e=2) | | 3g(+8.1e=2)

we train a baseline classifier (LR and GB) in the one-
dimensional space, i.e.,

fbaseline : R — {0, 1} (17)

with training set {(Lo;,Yo;)|j = 0,...,|Oguain| — 1}
and {(E,;,¥0,)[j =0,...,|Ogmin| — 1}, respectively.

Note that a direct comparison of our approach to
the detection methods listed in Tab. 1 is not possible.
While our method tackles the problem of token-level
object hallucination, the listed methods either evalu-
ate hallucinations on a sentence- or subsentence-level
on their own human-labeled dataset (Gunjal et al.,
2023; Wang et al., 2023) or based on atomic facts ex-
tracted from the image captions using LLMs, which
are then labeled using LVLMs (Wu et al., 2024; Yin
et al.,, 2023; Jing et al., 2023; Chen et al., 2024).
Thus, the proposed methods (Gunjal et al., 2023) and
(Wang et al., 2023) do not provide any information on
which specific word of the respective sentence or sub-
sentence is hallucinated. Similarly, (Wu et al., 2024;
Yin et al., 2023; Jing et al., 2023; Chen et al., 2024)
are based on LLM-generated atomic facts which nei-
ther allow for a token-level evaluation nor are re-
producible. Moreover, the analysis in (Jing et al.,
2023) shows that the LLM-based atomic fact extrac-
tion already induces errors propagating through the
detection and evaluation pipeline. To overcome these
issues, we rely on the automated and reproducible
CHAIR evaluation method (see Sec. 4.2).

S RESULTS

5.1 Hallucination Detection

In this section, we discuss the performance of our pro-
posed method on four SOTA LVLMs. Tab. 5 summa-
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Table 7: Experimental Results. Hallucination detection results on four SOTA LVLMs. Ours refers to the feature set M. The

best results in each block are highlighted.

MSCOCO (Lin et al., 2014)

ACC (in %) 1
LR GB

AUROC (in %) 1 AUPRC (in %) 1
LR GB LR GB

L 89_46(il,4671) 89_46(il,3671) 73.51(i&7e71) 73.16(i9A0371) 27.07(:&2.1670) 25.6(i2,5670)

InstructBLIP E 89'49(il,6671) 89'48(il.6671) 65.49(i13670) 66.23(i15670) 15.38(i5.7efl) 17‘68(:(:7.06*])
Ours 91.34(:&1.7671) 91.49(11.80—1) 89.93(18.9&:71) 89.93(:k7.3cfl) 56.07(i1.2870) 56.71(:&7.6070)

L 72.42(:&43671) 72_48(i4.6e71) 71 .75(i9A4efl) 71 .86(i9.3671) 51.21 (£1.2e—-0) 50.65(i1.1670)

mPLUG-Owl E 70'06(i4,9e71) 70'77(i2,9efl) 66.01(i63671) 68.33(i6A1671) 40.09(i8.267l) 45.54(i1.2670)
Ours 82.90(il.9671) 83.26(i2.66—l) 88'41(i3,9671) 88.90(i2.86—l) 75‘94(i6.2&:71) 77.04(i5.86—1)

L 86_91(i3.6671) 86_85(i3.9e71) 67'26(i2.1670) 67'01(i2.le70) 26.25(i1.7670) 25.41(:&1.2670)

MiniGPT-4 E 86_84(i3,6671) 86_82(i3,6671) 60.78(i1A8670) 63. lg(ilAZef()) 15.77(i6.7efl) 18.98(i1.3670)
Ours | 88.92(+33-1)  8927(34%1) | gg 16(+1:5c-0)  8974(+13¢-0) | 54 90(£6.5e-0)  57,5(5.7¢-0)

L 81_57(il.4671) 81_49(il.6671) 70'53(i8,7e71) 70'73(i6,6671) 37.53(:&2.0670) 36.59(i1.7670)

LLaVa E 81 _28(i2,8671) 81 _26(i2,9e71) 62.73(i90671) 64.63(i77671) 23.85(i6.3671) 27.52(:&4.6671)
Ours | 87.25(F20-1)  g7,78(+30e=1) | 90, 05(+40e=1) g7 01(+43e=1) | 70,15(+10e-0) 7 5g(1.3e-0)

ACC (in %) 1

BDD100K (Yu et al., 2020)

AUROC (in %) 1 AUPRC (in %) 1

LR GB
L | 77.54F33e=1) 77 73(F43e=10)
InstructBLIP E 77.86(F3.6e=1) 77 g¢(£3.7e—1)

Ours | 84.07(F20-1)  84.40(31e-D)

LR GB LR GB
63.30(F8:2e—1) @3 g3(F1.1e=0) | 31 gp(El.1e=0) 31.94(i1.2370)
54'32(:&5,8671) 56'71(i6,3671) 23.28(i7.6671) 26.06(i8.9871)
87.75(%2.8¢e—1) 88.78(i3.3efl) 66.04(£1 .6e—0) 69'55(i2,0670)

66.25(+5-3e—1)
66.39(i5.4671)

L 66.52(F44e—1)
mPLUG-Owl  E 66.42(+4.8e—1)

63.34(*6.7e1)
57'83(i4,8371)

43.86(F7-5e—1)
40.82(£6.9e=1)

44.44(:(:1.1870)
37.20(54eD)

63.40(F04e=1)
60'54(i2,9671)

Ours | 78.63(£64c-1) 79 .85(x63e-1) | g5 6(£62e-1)  87.36(+0.7e-1) | 69 43(+1.6e-0)  7479(+21e-0)

L 70.92(13.30—]) 71.08(12.&—]) 63.76(13.40—1) 63.44(14.40—1) 37.47(:t5.2c—|) 37.18(12.10—0)

MiniGPT-4 E 71.30(i2.7671) 71.20(i2.7671) 64.04(i5,4671) 63.47(i5,9671) 38.03(i5'0871) 37‘51(:&3.0871)
Ours 85.83(i2.1571) 86.05(i4‘9571) 9075(i5 le—1) 92'12(i4.267l) 79‘57(i1.1570) 84'01(i1,3e70)

L 69.92(i2.4e—]) 70.02(i3.06—]) 61.25(i9.4e—1) 61.23(i7'26_1) 37.29(i1.2e—0) 37‘03(i1.]e—0)

LLaVa E 70.05(i2.8671) 70.03(i2.8671) 56.57(i4,5671) 57.88(i6.2671) 32‘58“:7'2871) 34‘65(i7'6871)
Ours 80'93(i4A6571) 82.39(i343efl) 87.46(i3A8671) 89'56(i2.1671) 70.39(i1.5370) 76'59(i8.0e71)

rizes the computational time for calculating the input
features (Sec. 3.2), training the meta model and the
prediction (hallucination detection) time for the LR
and GB meta model. As shown in Tab. 6, both models
provide a calibrated classification between true and
hallucinated objects reflected by a small expected cal-
ibration error (ECE) (Pakdaman Naeini et al., 2015).
Tab. 7 summarizes our detection results. We achieve
an ACC of up to 91.49%, AUROC values of up to
92.12%, and AU PRC values of up to 84.01% which
clearly outperforms the TLC-A baselines L and E
(Petryk et al., 2023) due to the additional informa-
tion obtained from our features. More precisely, we
outperform the TLC-A baseline by 14.85pp in terms
of ACC, 28.65pp in terms of AUROC and 46.50pp in
terms of AUPRC. A detailed analysis of our features
including the TLC-A baselines L and E is provided in
Sec. 5.2. While the GB classifier outperforms the lin-
ear model for our method in all experiments, this re-
sult does not hold for the one-dimensional baselines L
and E. Especially for the log probability-based token-
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level confidence L, the linear model is superior to the
GB classifier in most of the experiments.

Moreover, we observe better detection results with
respect to AUPRC on the BDD100K dataset than on
the MSCOCO data. This behavior is expected since
the MSCOCO dataset is widely used as an instruction
tuning dataset for pre-trained LVLMs leading to lower
hallucination rates on MSCOCO (see Tab. 3). Thus,
the LVLMs induce less positive (hallucinated) train-
ing samples when generating image captions, which
makes the problem of learning the lightweight classi-
fier f more challenging. Simultaneously, we achieve
higher ACC values on the MSCOCO dataset indicat-
ing the insufficiency of the ACC as an evaluation met-
ric for imbalanced datasets. While we state the per-
formance of our method with respect to ACC for the
sake of completeness, we emphasize the superior in-
terpretability of the AUROC and AUPRC values for
imbalanced datasets (Davis and Goadrich, 2006).
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Figure 2: LASSO Path. LASSO path for M. A denotes the
maximum of the absolute values of all G weight coefficients
for the attention features A%,g =0,...,G—1.

Table 8: Feature Rank. The average rank of the features M
in the LASSO paths of four SOTA art LVLMs.

avg. rank feature feature name

1.375 N absolute occurrence (Eq. (2))
2.125 A mean absolute attention (Eq. (3))
3.625 C cumulated log probability (Eq. (5))
5.125 L log probability (Eq. (4))

6.875 R variation ratio (Eq. (9))

6.875 \%4 variance (Eq. (7))

7.250 E entropy (Eq. (8))

7.625 D probability difference (Eq. (11))
8.000 S score (Eq. (6))

8.375 M probability margin (Eq. (10))
8.750 P relative position (Eq. (1))

5.2 Feature Analysis

In this section, we investigate the information con-
tained in our proposed input features introduced in
Sec. 3.2. We make use of the least absolute shrink-
age and selection operator (LASSO) algorithm (Efron
et al., 2004; Tibshirani, 2018) to analyze the pre-
dictive power of the input features considered. The
LASSO method performs a variable selection for a
linear regression including the estimation of the cor-
responding coefficients ranking the most informative
features. For the attention features (Eq. (3)), we
use the maximum of the absolute values of all G
weight coefficients. Fig. 2 shows the LASSO path
for mPLUG-Owl. Our proposed attention features
A8,¢=0,...,G—1 (Eq. (3)) are selected first, closely
followed by the absolute occurrence N (Eq. (2)), the
log probability L (Eq. (4)) as well as the cumulated
log probability C (Eq. (5)). Moreover, the LASSO
path indicates a minor relevance of the sequence score
S (Eq. (6)) and the variance V (Eq. (7)) indicated by
vanishing coefficients. We obtain similar results in-
dependently from the underlying LVLM or dataset.
Tab. 8 lists the average rank of all features contained

0.8

e
o

AUPRC
o
U

0.41 —— InstructBLIP
—— mPLUG-OwI
0.3 MiniGPT-4
LLaVa

7173 3 a4 5 6 7 8 9 101
number of metrics

Figure 3: AUPRC as a Function of the Number of Features.

The classification performance of MetaToken in terms of

AU PRC as a function of the number of features for different

LVLMs. The features are selected along the LASSO path

of the respective LVLM.

in the feature set M (Eq. (12)) during the LASSO se-
lection with the TLC-A baselines L and E selected
at position 4 and 7, respectively. This analysis un-
derlines the improved information content from our
features compared to the TLC-A baseline. More-
over, while most of the features are selected during
the LASSO paths indicated through non-zero coef-
ficients, Fig. 3 shows that four features are usually
enough to achieve high AUPRC values. Further fea-
tures only add minor additional information to the
classifier.

Finally, we refer to Fig. 4 to emphasize the impor-
tance of our statistical analysis based on the LASSO
algorithm. While the relative position P (Eq. (1))
and probability margin M (Eq. (10)) might look like
proper features to classify between hallucinated and
true objects, our analysis shows that these features
only add minor information to the classifier reflected
by an average rank of 8.750 and 8.375, respectively
(see Tab. 8).

5.3 MetaToken and Revision of Image
Descriptions

In this section, we investigate MetaToken as a substi-
tute for the LURE detection on the MSCOCO dataset.
LURE (Zhou et al., 2023) serves as a hallucination
mitigation method using a MiniGPT-4-based revisor
to rectify image captions. To this end, LURE applies
thresholds on the log probability L (Eq. (4)) and the
relative position P (Eq. (1)) to detect possible object
hallucinations and replaces them by the I-don’t-know
string "[IDK]". The resulting image caption and the
input image are fed into the revisor afterwards to rec-
tify the detected tokens. In our experiments, we re-
place the threshold-based LURE detection with our

133



VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

o
R & N v N
o
o o o
A > g
0-0 © ~ Q‘_o
o 3 o
o S K%
> o
E RN 5 10 700 -0 0 & 8 6 -4 -2 0 © 00 05 | 0 0 2
c absolute occurence N 9" cumulated log probability C log probability L variation ratio R variance V
]
o ” s
) v N
v
v
2 K
N ~
~
~ o2
00 10 © Nl— 5 ° 05 1.0 © 10

0.5 0 2 4
entropy E probability difference D

Figure 4: Features. Visualization of a selection of our input features defined in Sec. 3.2 for [true and

proposed MetaToken method (see Sec. 3).

First of all note that as in (Zhao et al., 2024), we
are not able to reproduce the results in (Zhou et al.,
2023) with respect to InstructBLIP. While we achieve
a hallucination rate of 10.4% for InstructBLIP cap-
tions (see Tab. 3), the rectified image captions by
LURE include 10.9% hallucinations, even increasing
the amount of hallucinated objects (see Tab. 9). We
believe that this observation results from the fact that
MiniGPT-4 has a higher hallucination rate than In-
structBLIP (see Tab. 3). Since the LURE detection
has a false positive rate (FPR) of 42.2% (see Tab. 9),
i.e., detects true objects as hallucinations, we guess
that the revisor based on MiniGPT-4 replaces true ob-
jects by hallucinated objects, even though the revisor
is fine-tuned to mitigate hallucinations. However, ap-
plying our detection method, we are able to mitigate
hallucinations achieving CHAIR; values of 9.8%. To
this end, note that we can control the precision-recall-
ratio in our method by varying the decision threshold
of our lightweight meta classifier. For a recall of 70%,
we observe a FPR of 9.4% only. Thus, we prevent
the revisor from including additional hallucinations
by replacing false positives, that is, true objects. The
results in Tab. 9 confirm our assumption on Instruct-
BLIP: The higher the FPR, the higher the number of
hallucinations induced by the revisor.

For mPLUG-Owl, LURE reduced the number of
hallucinations by 52.98%, i.e. from 30.2% to 14.2%
with a FPR of 46.4%. Since the revisor induces sub-
stantially less hallucinations than mPLUG-Ow], the
correction of true positives outweighs the potential
introduction of new hallucinations by replacing false
positives. In fact, we observe from Tab. 9 that higher
recall values, and thus, higher FPRs, lead to con-
sistently lower hallucination rates for mPLUG-Owl.
Note that the superior precision-recall-ratio from our
approach again outperforms the LURE results: For a
recall of 80% (which is closest to the LURE detection
of 78.6%), we reduce the proportion of hallucinations
by 56.62% to 13.1%, that is, 3.64% less hallucina-
tions compared to the LURE baseline.
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Table 9: Integration of MetaToken into LURE. Results
of MetaToken (Ours) plugged into the LURE mitigation
method (Zhou et al., 2023) in %. The superscripts denote
the hallucination recall values for the respective method. PR
and FPR denote the hallucination precision and false posi-
tive rate, respectively. The best results are highlighted, the
second best results are underlined.

Method CHAIR, | CHAIR,] PR{ FPR |
LURE™®S  10.9 294 175 422
Ours’® 9.8 282 465 94
InstructBLIP Q80 10.3 28.5 37.0 15.9
Ours” 10.6 303 263 29.5
Ours!% 11.6 294 105 100
LURE’®® 142 37.1 424 464
Ours’® 14.4 363 719 119
mPLUG-Owl Qurs8? 13.1 335  64.8 188
Ours” 122 311 551 316
Ours'® 12.1 302 303 100

6 LIMITATIONS

Due to the lack of automated and reproducible token-
level evaluation methods for attribute-level hallucina-
tions, MetaToken is currently restricted to the prob-
lem of object hallucination detection, while the de-
tection of attribute-level hallucinations remains an un-
solved problem we will tackle in future work. More-
over, while the automated CHAIR method (Rohrbach
et al., 2018) relies on ground truth labels, it still leads
to mismatches due to misinterpretations of the gener-
ated language output of LVLMs.

7 CONCLUSION

In this paper, we introduce MetaToken, a novel
lightweight hallucination detection technique for
LVLMs based on meta classification. Inspired by re-
cently discovered causes of hallucinations, we pro-
pose and analyze a broad set of potential factors for
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hallucinations in LVLMs. Based on a comprehensive
statistical analysis of these factors, we reveal key in-
dicators of hallucinations. We evaluate our method
on four SOTA LVLMs achieving AUROC values of
up to 92.12% and AU PRC values of up to 84.01%.
Moreover, we show that our lightweight classifier de-
tects hallucinations inducing an ECE between 0.81%
and 2.01%. Finally, we demonstrate that MetaTo-
ken can be easily integrated into the LURE mitiga-
tion method reducing the hallucination rate by up
to 56.62%, i.e., 3.64% less hallucinations than the
LURE baseline. As future work, we will tackle the
problem of attribute-level hallucination detection for
general visual question answering tasks.

DISCLAIMER

The results, opinions and conclusions expressed in
this publication are not necessarily those of Volkswa-
gen Aktiengesellschaft.
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