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Abstract: Accurate and expressive representation of human emotions in 3D models remains a major challenge in various
industries, including gaming, film, healthcare, virtual reality and robotics. This work aims to address this
challenge by utilizing a new dataset and a set of baseline methods within an open-source framework developed
to improve realism and emotional expressiveness in human 3D representations. At the center of this work is the
use of a novel and diverse dataset consisting of short video clips showing people mimicking specific emotions:
anger, happiness, surprise, disgust, sadness, and fear. The dataset was further processed using state-of-the-
art parametric body models that accurately reproduce these emotions. The resulting 3D meshes were then
integrated into a generative pose generation model capable of producing similar emotions.

1 INTRODUCTION

This work addresses the challenge of enhancing the
emotional expressiveness of 3D human models by
proposing a novel framework. The goal is to gen-
erate 3D representations of human bodies that accu-
rately mimic the emotional expression of real life. To
achieve this, we first needed to identify a dataset that
is expressive enough to allow the extraction of 3D
meshes in different poses corresponding to different
emotions.
Dataset. While there are several datasets available
online, they either do not capture the whole body, as
in datasets such as (Sun et al., 2021), (Mollahosseini
et al., 2017) and (Zadeh et al., 2018a), or they focus
on actions rather than emotions, such as clapping in
the (Zadeh et al., 2018b) dataset.

• We have developed a unique dataset that captures
the full body posture of people expressing six spe-
cific emotions in real time, including the transi-
tions between a normal (relaxed) posture and each
of these postures. This dataset overcomes the lim-
itations of existing datasets by capturing the full
expression cycle and allowing for natural emo-
tional expressions.

• Adapted several of the state-of-the-art methods
that process poses and meshes in both 2D and 3D
space and assembled them into a pipeline process.

• Proposed a new generative process that starts from
any body mesh (even outside the dataset) of a per-
son and generates one of the six emotions our
models are trained on: anger, happiness, surprise,
disgust, sadness and fear.

• The methods, dataset, and experiments are pub-
lished as open source on https://github.com/
unibuc-cs/3DHumanEmotionsGenerator for fur-
ther research in academia and industry.

2 RELATED WORK

The representation of human emotions in the digital
realm has advanced significantly in recent decades.
Early efforts, such as those in (Vrajitoru, 2006),
explored digital chatterbots and NPCs capable of
human-like interactions. With the advent of technolo-
gies like deep learning and generative AI, research
has expanded, as shown in (Li et al., 2023) and (Park
et al., 2023), which trained AI models inspired by
neuroscience and simulated interactive bot environ-
ments. Current research emphasizes large language
models (LLMs), which excel at complex tasks and
conversational agent simulations.

Efforts to replicate human 3D representations
have also evolved. Early works (Pons-Moll et al.,
2015), (Kolotouros et al., 2019), (Anguelov et al.,
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2005) laid the foundation, with SCAPE (Anguelov
et al., 2005) offering a detailed model for represent-
ing human bodies in 3D. SCAPE combines shape-
and posture-dependent deformations, utilizing prin-
cipal component analysis (PCA) for efficiency. Ex-
tensions like Blend-SCAPE (Hirshberg et al., 2012)
introduced smoother transitions, paving the way for
models like SMPL (Loper et al., 2015) and SMPLify
(Bogo et al., 2016), which simplify and improve 3D
human modeling.

Alternative approaches, such as diffusion-based
models, emerged in parallel. ScoreHMR (Stathopou-
los et al., 2024) leverages diffusion models and score-
based learning to overcome optimization challenges,
enhancing 3D mesh recovery. It refines noisy esti-
mates of 3D meshes through iterative denoising, in-
corporating multi-view refinement and motion data
for dynamic scenes, achieving high accuracy.

Pose estimation, a critical challenge in 3D hu-
man modeling, is addressed by OpenPose (Cao et al.,
2019), (Zhao et al., 2024). Its two-stage architecture
combines CNN-generated confidence maps and part
affinity fields (PAFs) to connect keypoints into skele-
tons, supporting multi-person scenarios and hand and
facial point recognition.

The novelty of this research lies in integrating and
adapting these techniques to develop a comprehensive
system for realistic whole-body human emotion rep-
resentation using a new dataset, addressing gaps not
tackled by existing models.

3 THEORETICAL
FOUNDATIONS

3.1 Representation of the Human Body

The SMPL (Loper et al., 2015) model represents the
human body as a 3D mesh consisting of about 6,890
vertices, which corresponds to about 20,670 floats de-
scribing the entire body. The goal of SMPL is to de-
fine a function M(β̄, θ̄), where β stands for the shape
parameters and θ for the pose parameters. The func-
tion learns to map the input parameters to human 3D
body meshes (as mentioned above) to ensure that the
output represents valid, realistic body configurations.
This ability stems from the model’s ability to capture
variations in shape and pose, which enables the pa-
rameters. And this is the final formula for the SMPL

model:

M(θ̄, β̄) =W

 TP(β̄, θ̄)︸ ︷︷ ︸
Deformed template mesh

,

J(θ̄)︸︷︷︸
Joints

, W︸︷︷︸
Skinning weights

, θ̄

 (1)

where

TP(β̄, θ̄) = T̄ + BS(β̄)︸ ︷︷ ︸
Shape deformation

+ BP(θ̄)︸ ︷︷ ︸
Pose deformation

• T̄ - the average template mesh;

• J(θ̄) - the 3D positions of the skeletal joints that
control posture, based on the pose parameters θ̄;

• W - parameters learned from data (training was
performed on 1786 3D scans of humans in differ-
ent poses)

• W - Linear Blend Skinning (LBS) function used
to deform the mesh (the 3D human body) based
on joint rotations and skinning weights.

To improve the usability of the SMPL model, an
important task is to extract 3D meshes from images
without additional inputs such as camera parameters
or pose data. The method used in our work is based
on SMPLify (Bogo et al., 2016), which combines
2D joint detections (2D pose) obtained with methods
such as OpenPose (Cao et al., 2019) with the output
of SMPL. The goal is to match the 3D joints gener-
ated by the SMPL model with the 2D pose estimates
by minimizing an objective function. One of the
challenges is self-penetration, where body parts over-
lap. SMPLify addresses this problem by introducing
a penalty for self-intersection that prevents unrealis-
tic overlaps. Another challenge, depth ambiguity, is
solved using pose priors from the SMPL training data
that penalize implausible poses to improve the accu-
racy of the estimation. An example from our appli-
cation is shown in Figure 2. Further details on the
implementation can be found in (Bogo et al., 2016).

The next tool used is SMPL-X (Pavlakos et al.,
2019), which not only models the entire human body
in 3D, but also facial expressions and hand move-
ments. These two areas are crucial for human com-
munication, and SMPL-X increases realism by in-
cluding detailed expressions for both. To capture the
details of the face and hand, the authors used special-
ized datasets and models:

• a model to represent head meshes. It uses FLAME
(Bolkart and Wuhrer, 2021), which is based on
3,800 head scans.
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• a model to represent the hand. The model MANO
(Romero et al., 2017) is used, which is based on
1,500 hand scans.

Similar to SMPL, principal component analysis
(PCA) was applied to the above datasets to extract
the principal components. Additionally, the num-
ber of joints in the model was increased from 23 to
54 to account for the added complexity of the head
and hand networks. SMPL-X distinguishes between
male, female and, where necessary, gender-neutral
body shapes.

SMPLify-X (Pavlakos et al., 2019) introduces sev-
eral improvements, including VPoser (a variational
autoencoder that learns a distribution over likely hu-
man poses), a refined interpenetration penalty, an im-
proved gender detector, and an overall faster imple-
mentation.

3.2 Generative Model

The purpose of this model is to move values in the va-
riety of open inputs to generate diverse and high qual-
ity postures. In this sense, VPoser (Pavlakos et al.,
2019) compresses body poses into a low-dimensional
latent space and reconstructs valid poses from this
space, ensuring alignment between the joints of the
3D model and the 2D joints recognized by OpenPose.
This is achieved by minimizing an objective function
that relates the two sets of joints and optimizes the
pose accuracy of the model.

VPoser is a deep learning-based body pose prior
designed to model and regularize human 3D poses for
various applications such as animation, virtual reality,
robotics and medicine. Based on a variational autoen-
coder (VAE), VPoser learns a latent space represen-
tation of human postures that enables both pose syn-
thesis and probabilistic inference. The latent space
encodes the most important features of body move-
ments and postures and ensures that the generated or
reconstructed poses are realistic and correspond to the
natural movement constraints of humans. One of the
main advantages of VPoser is its ability to provide
smooth and consistent prioritization for pose gener-
ation, making it particularly effective at minimizing
physically implausible poses.

VPoser is trained using an extensive dataset of hu-
man poses that includes various sources of motion
capture data to ensure diversity and coverage of a
wide range of human movements. In particular, the
training data includes motion capture poses from pub-
licly available datasets, including the CMU motion
capture database Human3.6M (Ionescu et al., 2014)
and the PosePrior dataset (Akhter and Black, 2015).
These datasets are processed using MoSh (Motion

and Shape capture ) (Loper et al., 2014), a technique
that extracts pose parameters in SMPL model format
to ensure compatibility with 3D body shape models.
The resulting pose parameters are then represented in
the form of rotation matrices, which are commonly
used in computer graphics and machine learning for
accurate and smooth rotational transformations. The
VPoser model was trained on approximately one mil-
lion pose samples, with a separate test set of 65,000
poses used to evaluate generalization performance.
These poses are represented in the form of rotation
matrices to ensure consistency with the SMPL body
model.

4 METHODS

This section first describes the process of creating the
dataset. It then presents the pipeline used to extract
each frame of the movie, understand it from a skeletal
perspective, and apply body meshes to capture each
person. Finally, details are presented on the genera-
tive model that can be used to create a full 3D body
expression starting from any given human mesh ob-
ject.

4.1 Data Collection

A novel dataset was collected with the help of stu-
dents and professionals at University of Bucharest.
Each participant had to record the expression of dif-
ferent emotions in a place of their choice. The dataset
consists of short videos (about 8 seconds each) in
which the participants express one of six primary
emotions: anger, happiness, surprise, disgust, sad-
ness, and fear. Each video captures the progression of
the emotion, starting from a neutral state, through the
full expression of the emotion, to the return to neu-
trality, providing a comprehensive representation of
the emotional dynamics. For each person and each
emotion, 10 videos were recorded showing the entire
body. To ensure optimal mesh extraction for generat-
ing human-like behaviors for agents, the videos had to
meet several technical requirements. These included a
minimum resolution of FullHD and a simple, prefer-
ably monochrome background (e.g. white). These
conditions were set to avoid complications such as
blurred images or unclear contours that could affect
the accuracy of the shape extraction.

A key advantage of this dataset is that it focuses
on capturing a wide range of emotional expressions
directly from real-life videos. By allowing people to
express their emotions in their own unique way, the
dataset provides a rich diversity of emotional behav-
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Figure 1: Snapshots of people and reactions from our data
set. In order of emotions shown such as happy, surprised,
neutral and scared.

ior, which results in the embedding later being highly
expressive and representative of real human reactions.
This diversity is essential for creating realistic 3D
poses and helps ensure that the dataset captures a wide
range of human emotions, which is crucial for appli-
cations in games, animations and virtual reality envi-
ronments.

By extracting SMPL-X objects from video
frames, the dataset provides a variety of poses that
accurately represent the corresponding emotional ex-
pression. This variety is critical for future applica-
tions, especially in production environments such as
the Unreal Engine, where the ability to recreate realis-
tic, human-like behavior for 3D characters is critical
to simulation realism and user perception. By link-
ing different poses - from neutral expressions to emo-
tional state to return to neutrality - this dataset facil-
itates the development of dynamic, believable char-
acter animations that can mimic real-life emotional
responses, significantly improving immersion and en-
gagement.

4.2 Extracting Meshes

Once the samples have been collected, the first goal
is to extract the 3D meshes representing the different
poses. We chose SMPLify-X (Pavlakos et al., 2019)
as the primary framework because of its ability to cap-
ture body, face and hand expressions. More specifi-

cally, the implementation of SMPLpix and SMPLify-
X (Prokudin et al., 2021) was reused and adapted
it for our dataset. A concrete representation of this
pipeline can be found in Figure 2. In this pipeline, af-
ter experimentation, we created a middle step to rec-
ognize the skeleton from the image frame using the
OpenPose (Cao et al., 2019) (Simon et al., 2017) (Cao
et al., 2017) (Wei et al., 2016) solution, as it was able
to capture not only the skeleton but also the intricate
details of the hands and face that we further required
for our goals. In addition to the image sequence from
the video, the input for this pipeline optionally in-
cludes the gender specification. Once the process is
complete, three key files are output:

• an augmented image showing the mesh and skele-
ton.

• the 3D mesh structure, an .obj file.

• additional mesh data for further analysis and pro-
cessing, a file archived in a disk file.

4.3 Generation of New Poses

When creating realistic, human-like 3D mesh repre-
sentations, one of the final steps is to generate poses
and then condition them on a specific body and adapt
them to certain categories and parameters, Figure
3. To achieve this goal, a Variational Autoencoder
(VAE) based method proved to be the most suitable
approach from the evaluation.

Initially, the experiments started with training a
VAE from scratch. However, the lack of sufficient
training data was a major obstacle to generating high
quality results. Extracting a single 3D mesh is very
computationally intensive, making it impractical to
generate a large enough dataset to train the model ef-
fectively. Given these limitations, we experimented
with transfer learning of VPoser (Pavlakos et al.,
2019), a VAE specifically designed for the SMPL
model and already trained on a large amount of data.
We reused the basic ideas of the VPoser method to
input pre-generated 3D meshes into the VAE and cre-
ate similar mesh variants. The original mesh was en-
coded into the latent space of the VAE, where trans-
formations were applied to the latent vectors. In par-
ticular, small perturbations were added. The mod-
ified latent vectors were then decoded to generate
new similar meshes. By controlling these transforma-
tions, variations of the original mesh were generated
while preserving its main structural properties. How-
ever, we adapted the original implementation to rep-
resent a Gaussian model for the difference between
two consecutive poses based on the frame and the
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Figure 2: Example for the application of the pipeline to the data set: OpenPose - SMPLify-X. From left to right, OpenPose
is first applied to each image extracted from each video in the dataset. The resulting image in the center contains the person
with the 3D skeleton on top. With SMPLify-X, we get the full 3D body skeleton in the right part.

previous pose. This model was trained with the pro-
posed dataset. A pseudocode of our modified version
of this process is shown in Listing 1. The function
getRandomPoseDi f f (t) extracts from the Gaussian
model mentioned above, constrained by the previous
frame and the time of the sequence.

Listing 1: Sample Python Code.
def g e n e r a t e p o s e ( i n i t i a l p o s e ,

num frames ) :
# t h e n o i s e s c a l e
ns = 0 . 5
Pose {0} = i n i t i a l p o s e
f o r t in 1 . . num frames :

Pa = getRandomPoseDif f ( t , Poset−1 )
Poset = Poset−1 + ns * Pa

In Listing 1, the noise scale represents the degree
of variation introduced into the system and controls
the extent to which the output deviates from the origi-
nal. In particular, it indicates the extent of the change
after the decoding process. In combination with the
original posture parameters, this variation results in
the generation of a modified version of the mesh rep-
resented by the associated parameters. This process
allows the controlled exploration of different mesh
configurations while maintaining a relationship to the
original pose.

5 EVALUATION

In this section, we evaluate our work from dif-
ferent perspectives, to which we have mainly con-
tributed. We start with the obtained dataset, eval-
uate the pipeline with the mesh extraction and then
the generative model. Finally, we present an ablation
study from our experiments with other models, dis-
cuss the limitations, observed artifacts and the gen-
eral applicability of our work. The computational re-
sources required for training and inference are also
discussed.

Figure 3: A generative process in action in our framework.
Left: the initial mesh; center: the intermediate result mesh.
Right: the final generated pose.

5.1 Dataset: Metrics and Challenges

The Table 1 contains general data about how the
dataset is organized and structured.

Table 1: Dataset overview.

value
participants 28

female participants 6
male participants 22

expressions 6
videos per expression 9 - 10
total number of videos 1677

seconds per video 6 - 10

One of the biggest challenges in creating a new
dataset is the manual work that needs to be done af-
ter the initial recordings. In our case, people have
mimicked emotions that look more like different la-
bels than the ones we were originally looking for, e.g.
anxiety. We decided to isolate these to ensure that
we only considered good quality data. In addition,
there were subjective interpretations of emotion ex-
pressions, such as people expressing fear instead of
scared, which raised questions about the subtle differ-
ences between these two emotions (fear is an endur-
ing emotion, while anxiety is often a more immediate
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reaction). Some videos also had technical limitations,
such as poor quality or problematic viewing angles
that could make it difficult to extract meshes. Despite
these issues, most of the submitted videos were re-
tained and provide a solid basis for creating expres-
sive 3D models from real expressions of emotion.

5.2 Evaluation of the Mesh Extraction

Our experiments have shown that the pipeline dis-
cussed in Section 4 accurately captures the overall
body shape as well as detailed poses for the body, face
and hands (with the hand being particularly well cap-
tured, as shown in 2).

Table 2: Quantitative comparison of the average perfor-
mance of SMPLify-X on different subsets of the dataset and
on the whole dataset. V2V (vertex-to-vertex) error refers to
the error metric used to evaluate how well the estimated hu-
man 3D shape matches the ground truth.

Dataset avg v2v error
anger samples 53.2

happiness samples 54.1
surprise samples 51.4
disgust samples 53.4
sadness samples 52.3

fear samples 50.9
female models 52.9
male models 52.5

Overall 52.6

The results obtained above in 2 confirm that
the proposed dataset and framework have success-
fully achieved their goal of extracting expressive 3D
meshes from custom videos. These extracted meshes
can subsequently be used to generate similar poses
and used for practical applications such as NPC train-
ing or virtual human representations in real-world
scenarios.

5.3 Generative Model Evaluation

Based on our experiments, the generative model
demonstrated the ability to generate high-quality out-
puts with valid and realistic poses. When evaluated
using the vertex-to-vertex (V2V) error metric, the
generated poses showed a strong correspondence to
the original input meshes, indicating minimal devi-
ation in vertex positions. This quantitative assess-
ment confirms that the outputs produced by genera-
tive model are not only plausible in terms of pose but
also sufficiently close to the original meshes, validat-
ing the model’s performance in generating accurate
and reliable results.

Figure 4 illustrates the relationship between

Figure 4: V2V similarity decreases as noise levels increase,
indicating greater divergence between the generated and
original meshes due to larger deviations in vertex positions.

vertex-to-vertex similarity (V2V) and increasing
noise applied to the generated mesh. As the noise
level that perturbs the vertex positions increases, the
V2V similarity metric decreases significantly. This is
because higher noise leads to larger deviations from
the original mesh, which in turn leads to larger Eu-
clidean distances between the corresponding vertices
of the two meshes. Consequently, as the noise in-
creases, the generated mesh deviates more and more
from the original, leading to a progressive reduction
in overall similarity. The spikes (either up or down)
are caused by the randomness that occurs when new
deviations are generated. In this way, it can be shown
that the generative model was able to produce mean-
ingful poses, which could then be linked to specific
emotional categories or other criteria such as posture
or movement.

5.4 Artifacts

Overall, the extracted meshes are even if the images
are of good quality, there are some poses that can pro-
duce unwanted artifacts.

In Figure 5, where OpenPose successfully ex-
tracted the hand position in front of the face, we ob-
serve a discrepancy in the application of the frame-
work: the resulting mesh seems to place the hand be-
hind the head. To our understanding, this kind of mis-
alignment is probably due to the function responsible
for aligning the pose generated by the Variational Au-
toencoder (VPoser) with the pose extracted by Open-
Pose. The misalignment could potentially be fixed
by retraining the entire model on the dataset used to
ensure better synchronization between the generated
and extracted poses. However, retraining the compo-
nents of the pipeline from scratch instead of doing
transfer learning would require a significant amount
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Figure 5: Artifact in the pipeline: the mesh (right) seems to place the hand behind the head, in contrast to the real image on
the left, where the hands are in front of the head. The skeleton detection phase (center) is correct.

of computational resources.

5.5 Comparison with Other Models

For comparison, we also explored mesh extraction
with ScoreHMR by implementing the code provided
by the authors in (Stathopoulos et al., 2024). In
our initial observations, we noticed a significant im-
provement in the speed of mesh extraction from
images compared to SMPLify-X. In particular, in
tests with demo images containing multiple subjects,
ScoreHMR processed the images much faster (about
5x faster for an image with multiple subjects). This
increase in speed is due to the use of diffusion mod-
els that analyze the entire image at once, as op-
posed to classical optimization methods that extract
meshes sequentially. However, a notable drawback of
ScoreHMR is that it sometimes fails to generate the
correct pose (as in Figure 6). Also, it currently only
supports the SMPL model, meaning it cannot extract
face or hand poses, which limits its overall versatility.

Figure 6: 3D mesh, extracted with ScoreHMR. Although
the mesh was extracted in less time compared to SMPLify-
X, it cannot reproduce the facial and hand expressions and
still outputs the position of the hands incorrectly.

5.6 Discussion of Applicability

In our experiments, the computational performance of
the proposed pipeline and our generative model was
evaluated to estimate the time required for mesh ex-
traction and pose generation. With an A100 GPU,
the pipeline processes a single frame in about 52 sec-
onds. For a short video of 10 seconds duration and 30
frames per second, the extraction of the correspond-
ing meshes would therefore take about 4 hours and 20
minutes. Given the size of our dataset, the total time
to process all frames is estimated to be about 7267
GPU hours (or 302 days and 19 hours for a single
GPU), based on 1. However, the processing scales al-
most optimally with the number of GPUs used. Fur-
thermore, the generative model generates meshes at a
rate of 2 seconds, which means that creating N frames
of an animation would take approximately Nx2 sec-
onds. A concrete example: Creating a new animation
of 10 seconds at a rate of 30 frames per second re-
quires ∼ 10 minutes.

Offline creation of emotion animations is impor-
tant for the industry as it eliminates real-time over-
head and is equivalent to manually created anima-
tions. For example, a game developer can use the
proposed model to create and save animations, which
significantly reduces costs and simplifies asset man-
agement and editing. In addition, the full 3D mesh on
each frame provides the necessary detail for the inte-
gration of skin, shaders and clothing, resulting in fully
renderable characters.

6 CONCLUSIONS

This research deals with the creation of 3D anima-
tions that represent human emotions, which are es-
sential in areas such as games, film, healthcare, virtual
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reality and robotics. An open-source dataset of vari-
ous emotional expressions was developed and a pro-
cessing pipeline was implemented to analyze skele-
tal and 3D body representations. A generative model
based on Variational Autoencoders (VAEs), in partic-
ular VPoser, was used to generate new 3D poses that
retain emotional nuances. Future work includes inte-
grating these poses into NPC animation pipelines, ex-
tending the dataset for better visualization, and evalu-
ating the impact on user experience in real-world ap-
plications.
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