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Abstract: Temporal action localization is a classic computer vision problem in video understanding with a wide range of
applications. In the context of sports videos, it is integrated into most of the current solutions used by coaches,
broadcasters and game specialists to assist in performance analysis, strategy development, and enhancing
the viewing experience. This work presents an application study on temporal action localization for tennis
broadcast videos. We study and evaluate a foundational video understanding model for identifying tennis
actions in match footage. We explore its architecture, specifically the state space model, from video input to the
prediction of temporal segments and classification labels. Our experiments provide findings and interpretations
of the model’s performance on tennis data. We achieved an average mean Average Precision (mAP) of 66.14%
over all thresholds on the TenniSet dataset, surpassing the other methods, and 96.16% on our private French
Open dataset.

1 INTRODUCTION

The use of video analysis in tennis has revolution-
ized player development, allowing for a deeper un-
derstanding of technique, strategy, and overall perfor-
mance (Jiang and He, 2021; Peng and Tang, 2022).
For example, court positioning can significantly im-
pact a player’s ability to execute shots and cover the
court effectively against technical opponents. By de-
tecting these positions from videos and with advanced
data visualisation, players can identify their strengths
and weaknesses, understand their opponents’ tactics,
and develop appropriate tactical plans.

Tennis is a fast racket sport that presents chal-
lenges when training a model to localize events over
time. For example, in the case of a return from an out-
of-bounds serve or a double fault, the model must be
able to classify this event as a non-game rather than an
exchange. The idea is to be able to localize each fine-
grained action in a given input sequence from a tennis
match. By doing this, we can extract detailed insights
into the game’s progress and players’ strategies.

Temporal Action Localization (TAL) aims to iden-
tify the start and end timestamps of actions in a video
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stream (Wang et al., 2024). Real-world applications
of TAL remain challenging in computer vision. In this
context, several large public datasets that present var-
ious challenges, such as fine-grained event detection
including actions of varying lengths captured from
different viewpoints has been proposed (Idrees et al.,
2017; Caba Heilbron et al., 2015; Liu et al., 2022;
Damen et al., 2018; Zhao et al., 2019; Grauman et al.,
2022).

In this paper, we present a temporal tennis action
localization model based on State Space Models. We
are interested in localizing Service, Exchange, and
Non-Game phases. This model was evaluated on two
datasets: TenniSet (Faulkner and Dick, 2017) and a
private French Open dataset. Our main contributions
could be summarized as follows:

1. A deep understanding of a State Space Model
(Chen et al., 2024) and its application to tempo-
ral tennis actions localization.

2. Obtained results on TenniSet outperforms the
SOTA on a tennis temporal actions localization.

3. A private French Open dataset with three main ac-
tion phases annotation: Service, Exchange, and
Non-Game.
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2 RELATED WORK

To the best of our knowledge, TenniSet is the only
study that has introduced a comprehensive dataset
specifically designed for TAL in broadcast tennis
videos, along with proposing models and evaluation
frameworks. TAL has evolved significantly with ad-
vancements in deep learning and computer vision
(Shou et al., 2016; Paul et al., 2018; Nguyen et al.,
2019; Shi et al., 2020; Liu et al., 2021b; He et al.,
2022; Rizve et al., 2023; Zhang et al., 2022). This
section reviews related works in TAL, focusing on
early methods and presenting a taxonomy of recently
proposed works. Preliminary attempts (Shou et al.,
2016; Zelnik-Manor and Irani, 2001; Gorelick et al.,
2007; Escorcia et al., 2016) relied on the sliding
window approach, where fixed-length windows slide
across the video timeline to propose potential action
segments. Z. Shou et al. (Shou et al., 2016) uti-
lize these sliding windows to segment videos, creating
simple yet effective action proposals. Despite their
simplicity, these methods often face inefficiencies due
to fixed window lengths and high computational costs
from processing numerous overlapping segments.

To overcome these limitations, researchers have
explored classification-based approaches that focus
on identifying actions by analyzing individual frames
and subsequently linking these classifications to form
continuous action sequences. These models oper-
ate by independently classifying each frame and then
associating the individual classifications to construct
comprehensive action instances. Initially, they han-
dle spatial information by classifying each frame in-
dependently and then capture temporal evolution us-
ing predefined rules. For instance, certain methods
apply a threshold to the classification score of each
frame, treating consecutive frames that surpass this
threshold as an action instance (Shou et al., 2017),
(Piergiovanni and Ryoo, 2019). Additionally, a cou-
ple of studies (Lin et al., 2018) , (Zhao et al., 2020)
assess the likelihood of start and end moments for
each frame and associate potential start and end mo-
ments to form action instances. While frame classi-
fication can achieve accurate action boundaries, they
may struggle with background noise and require mul-
tiple separated preprocessing (Wang et al., 2024).

Another approach involves proposal-based mod-
els, which generate action proposals and subsequently
classify each proposal to identify specific actions. To
generate proposals, early methods used sliding win-
dow strategies as specified in (Shou et al., 2016) (Es-
corcia et al., 2016) to find the proposals. Alterna-
tive methodologies have also been developed, such
as temporal action grouping (Zhao et al., 2017; Zhou

et al., 2021), where frames or video segments that
likely contain specific actions are grouped together.
Another approach is the dense enumeration strategy
(Liu et al., 2021a; Lin et al., 2019), which system-
atically generates a large number of potential action
proposals throughout the video, without initially dis-
criminating based on the probability of containing ac-
tionable content. Regarding the problem of classifi-
cation, early explorations (Shou et al., 2016; Escor-
cia et al., 2016) independently performed classifica-
tion and regression for each proposal, while more re-
cent approaches (Chao et al., 2018; Zeng et al., 2022)
leverage relationships among multiple proposals us-
ing graph convolutional networks to enhance detec-
tion performance. These models achieve high recall
rates and reduce background errors, which are false
identifications of actions where none exist. However,
they encounter significant computational challenges
due to the large number of proposals they generate
(Wang et al., 2024).

To address sliding window and frame classifica-
tion limits, anchor-based methods were introduced.
An anchor is a predefined moment in a sequence
that serves as a reference point for detecting actions
within a video. Gao et al. (Gao et al., 2017) pro-
pose an anchor mechanism in their framework to in-
crease the flexibility of proposals and facilitate action
detection through regression using default anchors.
This approach employs Cascaded Boundary Regres-
sion (CBR) to iteratively refine temporal boundaries.
The methodology was advanced by TAL-Net (Chao
et al., 2018), which enhanced the two-stage anchor-
based framework by extending receptive fields and
incorporating multi-stream feature fusion. The an-
chor mechanism ensures more accurate initial propos-
als for action segments. Given the impressive per-
formance of Graph Convolutional Networks (GCNs)
(Kipf and Welling, 2016) on numerous vision and
spatiotemporal tasks (Myung et al., 2024; Cheng
et al., 2024), AGCN-P-3DCNNs (Li et al., 2020) uses
intra-attention mechanisms to capture long-range de-
pendencies within each action proposal, subsequently
updating the node matrix of the Intra Attention-based
GCN. Additionally, inter-attention mechanisms are
employed to learn dependencies between different ac-
tion proposals, forming the adjacency matrix of the
Inter Attention-based GCN. The intra and inter at-
tentions are then fused to simultaneously model both
intra long-range dependencies and inter dependen-
cies, enhancing the overall action proposal modeling
process. Recent advancements have explored action
boundary regression, which bypass the need for pre-
defined anchors (Lin et al., 2021; Tang et al., 2019; Li
et al., 2019). Instead, these methods directly predict
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action boundaries without relying on reference tem-
poral points for refining output offsets. Lin et al. (Lin
et al., 2021) propose to refine initial action propos-
als, generated by temporal pyramid features, through
a saliency-based module, which adjusts boundaries,
class scores, and quality scores, all within a fully end-
to-end framework without the need for preprocessing.
Anchor-free methods have shown to be both robust
and straightforward in design, but they can struggle
with accurately determining the center of action seg-
ments, leading to inaccurate localization (Wang et al.,
2024).

3 TAL4Tennis ARCHITECTURE

TAL4Tennis is a one-stage anchor-based model
whose core element, the Decomposed Bidirection-
ally Mamba block (DBM), is built upon a state space
model (SSM) (Chen et al., 2024). Traditionally,
SSMs have been employed to represent the evolu-
tion of dynamic systems through state variables. Re-
cent approaches (Gu and Dao, 2024; Gu et al., 2021)
have demonstrated that by utilizing SSMs with care-
fully designed state matrices A, it is possible to effec-
tively manage long-range dependencies without in-
curring prohibitive computational costs. In their re-
search (Voelker and Eliasmith, 2018), Voelker and
Eliasmith investigated how the brain encodes tempo-
ral information, identifying SSMs as highly effective
tools for modeling the ”time cells” located in regions
such as the hippocampus and cortex. Building upon
their neuroscience findings, they were pioneers in ap-
plying SSMs to the field of deep learning, thereby
establishing a novel intersection between these disci-
plines.

As shown in Figure 1, input video undergoes fea-
ture extraction via a large Vision Transformer (ViT)
(Alexey, 2020) model, pretrained on a hybrid dataset
and fine-tuned on the Kinetics-710 dataset, and then
through a DBM block. The features are further re-
fined by applying normalization without additional
transformations. During the forward pass, the gen-
erator processes the input feature maps, retrieves cor-
responding buffered points, and returns a list of points
for each Feature Pyramid Network (FPN) level. Dur-
ing training, the model uses ground truth segments
and classes to label anchors, creating ground truth off-
sets and labels. This process involves concatenating
points and calculating the distance of each point to
segment boundaries. Points within action segments
are identified using a center sampling strategy, and the
regression range is limited for each location. If mul-
tiple actions overlap, the shortest duration segment is

selected. The final classification and regression tar-
gets are normalized and used to update the model.
During inference, offsets are applied to the points to
finalize action localization in the videos. For the clas-
sification task, we implement the Sigmoid Focal Loss
(Lin et al., 2017), as described by the authors, which
modifies the standard binary cross-entropy loss to ad-
dress class imbalance. The loss is formulated as:

Lfocal(pt) =−αt · (1− pt)
γ · log(pt), (1)

where pt is the model’s estimated probability for
the true class, γ indicates a focusing parameter used
to balance easy and hard examples, αt represents a
weighting factor defined as:

αt = α · y+(1−α) · (1− y). (2)

For the regression task, we employ the Centered
Generalized Intersection over Union (GIoU) Loss
(Rezatofighi et al., 2019), specifically adapted for
1D event localization. Given the predicted offsets
o = (o1,o2) and ground truth offsets ogt = (ogt

1 ,o
gt
2 ),

the GIoU loss is defined as:

LGIoU = 1− min(o1,o
gt
1 )+min(o2,o

gt
2 )

(o1+o2)+(ogt
1 +ogt

2 )−min(o1,o
gt
1 )−min(o2,o

gt
2 )

.

(3)
This loss ensures better alignment between pre-
dicted and ground truth offsets by penalizing non-
overlapping regions and encouraging tighter bound-
ing around the target events.

3.1 State Space Models

To better understand the application of SSMs in our
study, we present its continuous representation as a
linear time invariant system expressed by the follow-
ing equations:

ẋ(t) = A(t)x(t)+B(t)u(t), (4)

y(t) = C(t)x(t)+D(t)u(t), (5)
where u(t) represents the input vector, which is the
sequence of features extracted and preprocessed by
the backbone network from the input video data.
These features act as external stimuli driving changes
in the system’s internal state. The state vector x(t)
captures the internal dynamics of the system at time
t. The state transition matrix A(t) determines how the
current state evolves over time, while the input matrix
B(t) modulates the influence of the input features on
the state vector. An important aspect of the SSM im-
plementation is the discretization of these continuous
equations. This enables the transition from the contin-
uous formulation of SSMs to their recursive and con-
volutive representations. By doing this we can handle
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Figure 1: Overview of the TAL4Tennis architecture.

the temporal dynamics in discrete time steps, which
align with the sequential nature of video data, and up-
date the state vector x. The direct transmission matrix
D allows for any immediate influence of the input fea-
tures u on the output y. In deep learning SSMs, D is
often set to zero to simplify the model without affect-
ing performance. The final output y represents the
processed features that are subsequently fed into the
FPN neck for further refinement and action localiza-
tion.

3.2 Classification Logits and Regression
Offsets

Classification logits and regression offsets are com-
puted for each feature map at different stages of
the FPN. The feature maps are processed through a
series of one-dimensional convolutional layers, fol-
lowed by an activation function and a normalization
layer. For classification, the model produces logits for
each point in the feature map through a sequence of
1D convolutional layers. The output tensor is three-
dimensional: the first dimension is the batch size, the
second is the length of the temporal sequence in the
feature map, and the third is the number of classes.

Similar to classification, regression is performed
by shared 1D convolutional heads with a stride of
1. In the forward pass, FPN features and masks
are passed to generate output offsets with shape
[B,2,Tmax], where B is the batch size, 2 represents the
start and end offsets for each action, and Tmax is the

maximum number of actions per batch, with padding
applied as needed. The final convolutional layer re-
duces the feature dimension to two values for each
point.

4 EXPERIMENTAL RESULTS

4.1 Datasets

The TenniSet Dataset

It consists of five singles matches from the 2012 Lon-
don Olympics, all played on grass courts (Faulkner
and Dick, 2017). These matches were sourced from
YouTube, with each video having a resolution of 1280
× 720 and a frame rate of 25 fps. The matches are
annotated with sequences related to specific tennis
events, each belonging to a distinct event type. Eleven
temporal event categories are introduced. Each frame
in a match is assigned a label corresponding to one
of the eleven distinct classes as shown in Figure 2.
Frames labeled as ”other” correspond to non-game
footage, including instances such as replays, crowd
shots, pauses, and other similar content. The terms
”far” and ”near” describe the player’s distance from
the camera, indicating whether they are far away or
close. The label ”in” denotes that the ball has landed
within the boundaries of the court, whereas ”fault” in-
dicates that the ball has landed outside. The term ”let”
is used when the ball makes contact with the net dur-
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Figure 2: Overview of all of the eleven classes (Faulkner, 2024).

ing a serve but remains in play. ”Left” and ”right”
are used to specify the side of the court where the
player hits the ball, according to the camera’s perspec-
tive and the side of the player’s body that makes con-
tact with the ball. These terms are chosen instead of
”forehand” and ”backhand” to equally apply to both
left- and right-handed players.

Original Split. The authors divided the five videos
into training, validation, and test sets. We notice that
some classes have very low occurrences. This imbal-
anced split poses problems in class-wise evaluation.
In the validation set, we have only one sample for the
SFL and SNL categories comparing to the 160 sam-
ples for the OTH class. The imbalanced nature of
the dataset poses substantial challenges for class-wise
evaluation and overall model performance. Specifi-
cally, the model may develop a bias towards the ma-
jority class, resulting in poor performance on minority
classes, as it struggles to effectively learn their pat-
terns.

Games-Based Split. We propose a different split
that includes only training and validation sets, as pre-
sented in Table 1. Each match video is segmented
into tennis games, and randomly assigned to either
the training set or the validation set. By doing this, we
ensure that the model will process full actions which
were previously cut before its end, therefore maintain-
ing the continuity of spatiotemporal information.

Table 1: Label counts in the modified TenniSet.

Train Validation

# % # %

Games 82 69.5 36 30.5

E
ve

nt
s

OTH 2094 71.0 856 29.0
SFI 269 70.4 113 29.6
SFF 93 75.0 31 25.0
SFL 20 76.9 6 23.1
SNF 97 75.8 31 24.2
SNL 10 83.3 2 16.7
HFL 443 73.8 157 26.2
HFR 438 66.8 218 33.2
HNL 456 68.1 214 31.9
HNR 452 72.3 173 27.7

French Open Dataset

It consists of 19 games from French Open broadcast
matches with high resolution delivered by the french
federation of tennis, which were semi-automatically
annotated using our pre-trained model, followed by
a manual correction of false predictions. The dataset
contains 161 instances of Service (34.11%), 136 in-
stances of Exchange (28.81%), and 175 instances of
Other (37.08%). This dataset will be used exclusively
for the test phase to evaluate the proposed model’s
ability to generalize to clay courts.

4.2 Experiments Details

In our experiments, we analyzed the influence of
different optimizers and hyper-parameter settings on
model performance, including the maximum se-
quence length per video, the training batch size, as
well as the type and feature stride of the backbone
network. All details and results are presented in Table
2. ’Max Seq Len’ refers to the maximum number of
feature vectors (frames) the model processes in a sin-
gle pass. For videos exceeding this length, the data
loader divides them into manageable chunks, each
processed independently. This approach enables the
model to efficiently handle long videos without ex-
ceeding memory or computational constraints. Tem-
poral Intersection over Union (tIoU) is a metric com-
monly used to evaluate the accuracy of temporal ac-
tion localization. It is defined as the ratio of the
intersection duration (overlap) of the predicted and
ground truth intervals to their union duration. The
fine-tuned model used in our study was initially pre-
trained on the Thumos dataset (Idrees et al., 2017),
with all layers frozen except the classification and
regression heads. For the optimizer, AdamW’s de-
coupled weight decay improves generalization perfor-
mance of the model (Loshchilov and Hutter, 2017).
Additionally, we found that reducing the feature stride
from 4 to 2 slightly increases the average mAP. Fig-
ure 4 shows the evolution of average mAP during
validation for 3 different backbones. We found that
Mamba proves to be more effective than ConvTrans-
former and convolution-based backbones in capturing
and modeling visual features throughout the training
epochs.
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Table 2: mAP results of TAL4Tennis with different backbones and hyper-parameters on TenniSet-Games-based split dataset.

Finetune Backbone Feature
Stride

Max Seq
Len Batch Opt tIoU

0.3 0.4 0.5 0.6 0.7 Avg

✓ Mamba 4 4608 2 AdamW 59.00 54.15 42.92 28.94 13.17 39.64
× Mamba 4 4608 2 AdamW 80.73 80.46 79.95 77.92 72.25 78.36
× Mamba 4 4608 2 SGD 40.78 37.87 31.58 21.51 10.28 28.40
× Mamba 4 9216 2 AdamW 81.28 80.92 80.43 78.52 72.52 78.68
× Mamba 2 9216 2 AdamW 80.78 80.61 80.26 78.45 74.51 78.93
× Mamba 2 9216 1 AdamW 81.76 81.50 81.15 79.00 74.51 79.26
× Convolution 2 9216 1 AdamW 75.04 74.89 74.59 72.74 65.81 72.62
× ConvTransformer 2 9216 1 AdamW 76.99 76.75 76.47 74.23 66.29 74.15

4.3 Performance Comparison

Table 3 reports The results with 11 classes on the
original split, including comparative evaluation with
results from TenniSet’s original paper and Action-
Former (Zhang et al., 2022), a transformer based
model for TAL. the data used for training valida-
tion and test are the same. TAL4Tennis achieves
a higher average mAP of 66% across various tIoU
thresholds, compared to 62% for the Bi-Directionnal
RNN model with window of size wrnn = 40 and 61%
for ActionFormer. At lower thresholds, we notice that
TAL4Tennis performs slightly below the referenced
model. However, at much more challenging thresh-
olds, it maintains better temporal precision. At tIoU
thresholds of 0.7 and 0.9, a decrease in the precision
of the other models is observed, as these thresholds
require a higher degree of overlap and impose stricter
constraints on the boundaries for positive localization.

Table 3: Comparisons for event detection on TenniSet-
Original split: mAP over different IoU thresholds α.

Model α

0.1 0.3 0.5 0.7 0.9 Avg

CNN+Pooling 0.89 0.86 0.78 0.52 0.04 0.62
Bi-D RNN (wrnn = 25) 0.89 0.87 0.79 0.52 0.03 0.62
Bi-D RNN (wrnn = 40) 0.90 0.88 0.81 0.48 0.02 0.62

ActionFormer 0.75 0.74 0.73 0.66 0.17 0.61
TAL4Tennis 0.80 0.79 0.76 0.71 0.22 0.66

4.4 Coarse-Grained Experiment

The results in Table 3 show that the model struggles
to accurately identify the 11 detailed classes, partic-
ularly those that are rare and have fewer examples in
the dataset. Thus, we decided to experiment with a
coarse-grained labeling strategy. We annotated the
videos into three main classes: ”Other”, ”Service”,
and ”Exchange” inspired by the logical flow of a ten-
nis match, as shown in Figure 3. If the serve is suc-
cessful and the ball lands within the court (labeled as
”in”), the match transitions to the exchange phase,

where the rally between players takes place. How-
ever, if the serve is unsuccessful (”fault”) or if the ball
goes out of bounds during an exchange, the match
shifts to a different phase, labeled as ”other.” This
phase represents non-play activities such as pauses,
replays, or transitions between points. Following this,
the sequence loops back to the service phase, signal-
ing the start of a new point or game.

Figure 3: Coarse-Grained classes.

We first trained the TAL4Tennis model on the
TenniSet (Games-based split) with three classes (Ser-
vice, Exchange, Other). Then, evaluation is carried
out on it on TenniSet (Games-based split) and French
Open dataset. The model had not been exposed to
sequences from clay courts during training, making
this evaluation particularly challenging as it tests the
model’s ability to generalize from grass to clay sur-
faces. Results are shown in Table 4.

5 CONCLUSION

In this work, we have presented a temporal tennis ac-
tion localization model based on SSMs. The model
predicts temporal segments with their respective la-
bels, and use the tIoU metric for evaluation. Exper-
iments carried on two splits of the TenniSet dataset
show that TAL4Tennis achieves competitive perfor-
mance compared to state-of-the-art approaches, out-
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Figure 4: Evolution of Average Validation mAP of TAL4Tennis over all tIoU Thresholds of different backbones.

Table 4: mAP for different court types using different IoU
thresholds α.

Class α

0.3 0.4 0.5 0.6 0.7

TenniSet -Games-based split Dataset

Other 0.991 0.989 0.983 0.976 0.976
Service 0.999 0.996 0.996 0.969 0.876

Exchange 0.981 0.970 0.959 0.929 0.863

French Open Dataset

Other 0.936 0.925 0.905 0.865 0.799
Service 0.991 0.991 0.988 0.977 0.900

Exchange 0.937 0.932 0.904 0.860 0.798

performing them at higher tIoU thresholds, as shown
in Table 3. Additionally, we introduce a new dataset
for Tennis Action Localization (TAL), derived from
French Open clay court footage. This dataset includes
annotations for three primary action phases: Serve,
Rally, and Non-Game. In our future work, we propose
to create action-tubes of each player in order to bet-
ter understand fine-grained events (Rajasegaran et al.,
2023). In fact, in tennis the main object leading the
change in events is the player.
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