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Abstract: The extensive presence of sensors in multiple domains has led to the generation of enormous amounts of mul-
tivariate time series data, presenting significant challenges for efficient classification. Although contemporary
artificial intelligence methods show promising performance in addressing such data, they often struggle to
capture both long-range dependencies and intricate local patterns within the sequences. This paper introduces
CNN-Trans, an innovative deep learning model designed specifically for multivariate time series classification
to address the mentioned challenge. CNN-Trans combines the strengths of transformers and convolutional
neural networks (CNN). The proposed model uses a parallel strategy with both a transformer encoder and a
CNN encoder working simultaneously on the time series data. The transformer captures global relationships
through self-attention, while the CNN extracts localized spatial features tailored to each variable. We evaluate
CNN-Trans on various benchmark datasets encompassing diverse sensor applications. The results show that
our model is robust and highly effective for complex data. CNN-Trans outperforms others with 93.33% on
NATOPS and 98.37% on PenDigits, excelling in high-dimensional datasets like Kitchen (95.74%) and HAR
(87.41%). Additionally, CNN-Trans exhibits robustness and generalizability across different input features,
showcasing its practical utility in real-world scenarios.

1 INTRODUCTION

Time series data, capturing the dynamic evolution
of phenomena across time, pervades countless do-
mains. From human activity recognition to med-
ical diagnoses and financial forecasting, analyzing
these sequences empowers critical decisions in real-
world applications. Notably, multivariate time series
(MTS), where data are collected across multiple vari-
ables simultaneously, pose distinct challenges due to
their inherent complexity. Deep learning approaches
like convolutional neural networks (CNN) have es-
tablished themselves as valuable tools for tackling
multivariate time series classification (MTSC) (Is-
mail Fawaz et al., 2019). Their capability to extract
localized temporal and spatial correlations has led to
significant advancements in various tasks. However,
traditional CNNs encounter limitations in capturing
long-range dependencies, which often hold crucial in-
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formation for accurate classification. Additionally,
their focus on local data interactions neglects the
global context within the entire sequence. Seeking to
address these limitations, recent research has explored
the potential of recurrent neural networks (RNNs)
like LSTMs (Karim et al., 2019). While capable
of modeling long-range dependencies, their compu-
tational complexity and limited capacity hinder their
widespread adoption (Vaswani, 2017). In contrast, at-
tention models offer intriguing capabilities to capture
long-range interactions efficiently. Their broader re-
ceptive fields allow for rich contextual information,
enhancing the overall learning capacity of models.
Not surprisingly, the success of attention models in
natural language processing (Vaswani, 2017; Devlin
et al., 2019) has spurred their adaptation to other do-
mains like computer vision and, increasingly, time
series analysis (Zerveas et al., 2021). At the heart
of this revolution lies the transformer, a deep learn-
ing architecture that leverages powerful self-attention
mechanisms (Vaswani, 2017). This mechanism ex-
cels at modeling relationships within the input time
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series, uncovering intricate dependencies that influ-
ence classification outcomes. However, self-attention
inherently neglects the crucial ordering information
embedded within sequential data like time series. Ad-
dressing this poses a critical challenge, as the lack of
explicit positional encoding can hinder the model’s
ability to fully understand the data’s temporal dynam-
ics. This issue is especially amplified in time se-
ries data, where context is often weaker compared
to domains like text or image data. To overcome
the limitations of existing methods and capitalize on
the strengths of both transformers and CNNs, this pa-
per introduces CNN-Trans, a novel deep learning ar-
chitecture specifically designed for multivariate time
series classification. CNN-Trans operates in paral-
lel, employing a transformer encoder to capture long-
range dependencies and a CNN encoder to extract lo-
calized features from each variable. This synergis-
tic approach leads to a comprehensive representation
that combines global and local contexts, enabling su-
perior classification performance. Extensive evalua-
tions on public and private datasets demonstrate that
CNN-Trans consistently outperforms state-of-the-art
approaches, highlighting its robustness and general-
izability, particularly when handling complex, high-
dimensional data.

Our study offers the following key contributions:

• Novel architecture: We propose CNN-Trans, the
first architecture to combine transformers and
CNNs for parallel processing of multivariate time
series data.

• Enhanced long-range dependency modeling:
Through the transformer encoder, we effectively
capture long-range relationships within the time
series, overcoming a limitation of traditional
CNNs.

• Robust feature extraction: The CNN encoder ex-
tracts fine-grained features from each individual
variable, providing valuable localized information
for accurate classification.

• Improved performance: We demonstrate that
CNN-Trans achieves competitive performance on
various benchmark datasets across diverse do-
mains, and its performance excels as dataset size
increases, especially with high-dimensional data.

The remainder of this paper is structured as fol-
lows: Section 2 provides a comprehensive review of
related research, highlighting previous approaches to
MTSC and situating our work within the existing lit-
erature. Section 3 begins by introducing the basic
concepts and properties of univariate and multivariate
time series data and provides a mathematical formu-
lation of the MTSC problem. Section 4 details our

proposed method, including the architectural design
of the model, the specific innovations introduced to
handle MTS data effectively, and the integration of
these components into a unified framework. Section 5
presents the experiments we conducted and discusses
the findings. Finally, Section 6 concludes the paper
while suggesting directions for future research.

2 RELATED WORK

2.1 CNN Based Models

The success of CNNs in various domains, includ-
ing computer vision, speech recognition, and natu-
ral language processing, has led to their adoption
in time series classification (TSC) tasks. Since the
breakthrough of AlexNet in 2012 (Krizhevsky et al.,
2012), CNN architectures have undergone signifi-
cant improvements, such as the use of deeper net-
works, smaller and more efficient convolutional fil-
ters, and batch normalization to enhance training sta-
bility (Gu et al., 2018). These advancements have en-
abled CNNs to achieve state-of-the-art performance
in numerous applications (Gu et al., 2018; Foumani
and Nickabadi, 2019), and have paved the way for
their application to TSC problems. For instance, the
authors in (Wang et al., 2017) proposed a robust base-
line model for TSC based on a Fully Convolutional
Network (FCN). This approach operates end-to-end,
involving training CNNs from scratch while requir-
ing minimal preprocessing of raw data. Additionally,
this approach utilizes Class Activation Maps to high-
light significant regions in the data related to specific
labels. Another significant contribution in the field
of TSC is the InceptionTime (Ismail Fawaz et al.,
2020). Inspired by Inception networks used in com-
puter vision, InceptionTime is an ensemble of deep
CNN models designed specifically for TSC. The au-
thors showed that InceptionTime not only matches but
often surpasses the accuracy of the HIVE-COTE algo-
rithm, which was previously considered the state-of-
the-art in TSC, while addressing its high training time
complexity.

Although CNNs are designed to capture local pat-
terns in data, they may struggle with long-range de-
pendencies, especially when the dependencies span
across many time steps. This can affect their perfor-
mance in TSC where the temporal relationships are
crucial.
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2.2 Attention Based Models

Attention-based models have shown promise in ad-
dressing some of the limitations of CNNs in TSC.
Attention mechanisms allow models to dynamically
weigh the importance of different time steps in the
input sequence, which enables the models to focus
on critical moments that contribute significantly to
the classification task. Models like the Attention
LSTM Fully Convolutional Network (MALSTM-
FCN) (Karim et al., 2019) and TapNet (Zhang et al.,
2020) have been specifically designed to leverage
attention mechanisms in the context of multivariate
time series classification. MALSTM-FCN is an ex-
tension of the ALSTM-FCN (Karim et al., 2017)
model, proposed to deal with multivariate time series
data. It integrates attention within the LSTM frame-
work, allowing it to capture long-range dependencies
while simultaneously focusing on the most pertinent
time steps (Karim et al., 2019). This results in im-
proved accuracy and robustness in classifying com-
plex time series data. Similarly, TapNet (Zhang et al.,
2020) employs an attention mechanism to enhance
feature extraction from multivariate inputs, ensuring
that the model can adaptively learn which variables
and time steps are most influential for the classifica-
tion outcome. By focusing on the most relevant fea-
tures, the attention mechanism of TapNet helps im-
prove the model’s ability to distinguish between dif-
ferent classes, especially in scenarios where labeled
data is limited.

Attention-based models represent a significant ad-
vancement in the field of time series classification,
as they not only improve classification performance
but also enhance interpretability. As mentioned in
(Hsu et al., 2019), the attention weights offer valu-
able insights into the model’s decision-making pro-
cess, highlighting which time steps and features are
considered significant for specific classifications.

2.3 Transformers for MTS
Classification

Transformers are a more recent development in
attention-based models (Zerveas et al., 2021; Devlin
et al., 2019; Liu et al., 2021; Zhang et al., 2023).
Unlike previous attention mechanisms that were of-
ten paired with RNNs (such as ALSTM-FCN), Trans-
formers rely entirely on self-attention mechanisms.
The self-attention mechanism is a variant of the at-
tention mechanism which allows the model to weigh
the significance of different parts of the input rel-
ative to a specific position (Vaswani, 2017). This
mechanism enables the model to process all ele-

ments in a sequence simultaneously, which is cru-
cial for understanding context and semantics (Zhang
et al., 2023). This architecture allows Transform-
ers to capture long-range dependencies and global
context more effectively than CNNs or traditional
attention-augmented models. In the context of MTS
classification, the authors in (Liu et al., 2021) pro-
posed a transformer-based approach named ”Gated
Transformer Networks (GTN)”. This approach com-
bines the strengths of Transformer Networks with gat-
ing mechanism which merges two towers of Trans-
former networks and captures both channel-wise and
step-wise correlations in multivariate time series data
(Liu et al., 2021). Other transformer-based models
have been proposed in the context of MTS classifi-
cation such as (Zerveas et al., 2021) which proposed
a transformer-based framework for unsupervised rep-
resentation learning of multivariate time series and
(Yang et al., 2024) which proposes a transformer-
based dynamic architecture with a hierarchical pool-
ing layer to decompose time series into subsequences
representing different frequency components to fa-
cilitate time series classification. Although these
transformer-based architectures are effective, they are
complex and require large amounts of data for train-
ing. In addition, they involve an unsupervised learn-
ing phase to achieve optimal performance.

3 PROBLEM FORMULATION

In time series analysis, understanding the structure
and characteristics of the data is crucial before
tackling the problem of classification. Below, we
first define univariate and multivariate time series,
followed by a detailed explanation of the multivariate
time series classification problem.

A Univariate Time Series: is a sequence of ob-
servations collected over time from a single variable
or feature. Mathematically, it can be represented as
a one-dimensional vector x = (x1,x2, . . . ,xT ) ∈ RT ,
where T denotes the sequence length (i.e., the num-
ber of time steps). Each value xt corresponds to the
observation at time step t ∈ 1,2, . . . ,T .

A multivariate time series (MTS), on the other
hand, consists of multiple variables or features
recorded simultaneously over time. Each sample in an
MTS dataset is structured as a two-dimensional vector
with a shape of (n f ,T ), where n f denotes the number
of features (variables), and T indicates the sequence
length (time step). A data sample can be represented
as X = (x1,x2, . . . ,xn f ) ∈ Rn f×T , where each feature
vector xi = (xi,1,xi,2, . . . ,xi,T ) represents the sequence
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Figure 1: Representation of multivariate time series sample and multivariate time series Dataset.

of observations for the ith feature over T time steps
(see Figure 1 (left)).

In the context of multivariate time series data, the
model’s input consists of two-dimensional samples.
Each sample, represented as X = (x1,x2, . . . ,xn f ) ∈
Rn f×T , is an ordered sequence with T time steps and
n f features. Each sample X is associated with a class
label y ∈ Ω, where Ω is a predefined set of possible
labels.
Given a collection of N multivariate time series
samples (see Figure 1 (b)), represented as X =
(X1,X2, . . . ,XN) ∈ RN×n f×T , along with their corre-
sponding true labels Y = (y1,y2, . . . ,yN) ∈ ΩN , our
goal is to classify each input sample Xi into one of
the classes in Ω. The task of multivariate time se-
ries classification (MTSC) is thus to predict the label
y for a given MTS data sample X . Figure 1 (right)
illustrates a MTS dataset, consisting of N samples
along with their labels. In this study, we employ our
proposed CNN-Trans model to learn the mapping be-
tween the input data X and the target labels Y .

4 CNN-TRANS FOR
MULTIVARIATE TIME SERIES
CLASSIFICATION

This paper presents a novel architectural design that
utilizes the strengths of both convolutional neural net-
works and transformers. Figure 2 illustrates the pro-
posed model architecture for MTS classification. The

design consists of a two-branch model in a parallel
configuration, with 1) a CNN-based branch dedicated
to extracting local features and 2) a Transformer-
based branch focused on capturing temporal depen-
dencies. The outputs of the two branches are then
concatenated and passed into a classification head.

The transformer encoder plays a vital role in the
proposed model for classifying multivariate time se-
ries data, as it captures correlations between variables
using an attention mechanism. This mechanism en-
ables the model to selectively focus on relevant parts
of the input sequence and assigns different weights to
different variables based on their importance. By in-
corporating the transformer, the model can effectively
interpret relationships between variables and capture
intricate dependencies within the data.

In our proposed model, the CNN is utilized to au-
tomatically learn and capture important local features
from the input data. This helps in identifying key
patterns that are essential for distinguishing between
different classes. Time series data often exhibit local
patterns, such as peaks, troughs, or recurring shapes,
which are important for classification. CNNs use con-
volutional filters to capture these local dependencies
and patterns across time steps, allowing the model to
focus on the most relevant parts of the data.

The combination of a CNN branch and a Trans-
former encoder branch in the proposed architecture
enables simultaneous analysis of temporal features
and correlation between variables, thereby effectively
overcoming a key limitation in existing classification
models.
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Figure 2: Overview of the CNN-Trans Architecture. CNN-Trans consists of a two-branch model in a parallel configuration: a
CNN-based branch and a Transformer encoder-based branch.

4.1 Network Input

Our proposed model utilizes two distinct processing
branches to handle multivariate time series data: a
CNN-based branch, and a Transformer-based branch.
The CNN branch directly processes the data in its
original format, where it expects a specific number
of time steps T with a certain number of distinct
variables n f per step (we consider these variables as
channels). On the other hand, the Transformer-based
branch requires the data to be reshaped into a 3D
tensor. This tensor organizes the data into dimen-
sions [B,T,n f ], where B represents the batch size,
T represents the number of time steps, and n f rep-
resents the number of features per step. This restruc-
turing is aligned with the strengths of the Transformer
model, enabling it to effectively capture intricate rela-
tionships between features across different time steps
within each sequence in the batch.

4.2 CNN-Based Branch

The CNN component of the proposed architecture is
inspired by the work (Karim et al., 2019). It consists
of a sequence of three stacked temporal convolutional
blocks. These blocks progressively extract character-
istics from the input data using filters with varying
sizes (128, 256, 128). Each block employs a tempo-
ral convolutional layer to capture temporal dependen-
cies, followed by batch normalization for enhanced

training stability and a ReLU activation function to
introduce non-linearity. To improve feature represen-
tation, the first two convolutional blocks incorporate
Squeeze-and-Excitation (SE) blocks (Hu et al., 2019).
These SE blocks capture dependencies between chan-
nels within the feature maps and dynamically recal-
ibrate the importance of each channel, which may
highlight more relevant features. Finally, a global av-
erage pooling layer is applied after the final convo-
lutional block to decrease the number of parameters
before passing the data to the subsequent layers for
classification.

4.3 Transformer-Based Branch

Since Multivariate time series classification focuses
on identifying patterns within sequences of numer-
ical data, we utilize a Transformer encoder, which
excels at capturing long-range dependencies within
sequences, making it well-suited for this task. Our
Transformer-based branch begins with a linear in-
put layer that transforms the raw feature space into
a higher-dimensional representation. To account for
sequence order, positional encoding is added to the in-
put. The core of the encoder consists of a stack of two
layers, each containing a multi-head attention mech-
anism with four heads and a subsequent feedforward
neural network. The multi-head attention layer cap-
tures dependencies across different positions in the
sequence, while the feedforward network enhances
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the model’s ability to discern intricate patterns within
the data.

4.4 Classification Head

The classification head takes as input the concate-
nated output from the two branches. It consists of
a Dense layer, of size equal to the number of classes,
with softmax as the activation function to produce a
probability distribution across the classes. We use the
categorical cross-entropy as the loss function, and we
train the network by minimizing this loss between the
predicted class probabilities ŷ and the true labels y, as
expressed in the following:

L =−
n

∑
i=1

yi log(ŷi)

with n is the number of classes.

5 EXPERIMENTS

In this section, we describe our experiments designed
to evaluate the performance of CNN-Trans in terms
of its accuracy in multivariate time series classifica-
tion. We first describe the datasets used in our ex-
periments. We then summarize the implementation
details. Finally, we present the obtained results and
provide a comparison of our proposed method with
state-of-the-art ones.

5.1 Datasets

We evaluate the proposed method using 7 datasets
from the latest multivariate time series classification
archive (Bagnall et al., 2018) (the first 7 rows in Ta-
ble 1). This archive features real-world multivariate
time series data from diverse applications, including
Human Activity Recognition, Motion Classification,
and ECG/EEG Signal Classification. The datasets
vary in dimensionality from 2 dimensions in trajec-
tory classification to 28 dimensions in EEG classifi-
cation. The time series lengths range from 8 to 144,
and the dataset sizes span from 80 to 10,992 samples.

Additionally, we tested our method on the Human
Activity Recognition dataset (HAR dataset) from the
UCI repository (Lichman, 2013). This dataset con-
sists of recordings from 30 subjects performing var-
ious activities of daily living while carrying a waist-
mounted smartphone equipped with inertial sensors.
The subjects, aged between 19 and 48, performed
six activities (Walking,Walking-Upstairs, Walking-
Downstairs, Sitting, Standing, and Laying) while
wearing a Samsung Galaxy S II on their waist.

Finally, since Transformer-based architectures re-
quire large amounts of data for effective training, we
consider two private datasets (the last 2 rows in Ta-
ble 1) to ensure sufficient data availability, thereby
demonstrating the potential of the proposed CNN-
Trans model for the MTSC task compared to other
methods when there is sufficient training data. These
two datasets are collected in two different contexts
(one in a Kitchen and the other in a Meeting room),
and for two different tasks: Action recognition and
Activity recognition, respectively. They are collected
from 8 ambient sensors, leading to 93 and 85 fea-
tures, respectively for the Kitchen and the Meet-
ingRoom datasets. For the Kitchen dataset, there
are 3 classes, while there are 4 classes for the Meet-
ingRoom dataset.

All datasets are split into training and testing sets
as described in Table 1. For the purpose of ensuring
comparability with previous studies, we retained the
original training and testing splits provided in each
MTS dataset. Each dataset is normalized to have zero
mean and unit standard deviation, and the time series
are padded with zeros to ensure that each time series
has the same length as the longest series in the train-
ing set.

5.2 Implementation Details

All our experiments were implemented using Pytorch
and run on a single Tesla T4 GPU (16GB). The CNN-
Trans model is trained using the Adam optimizer with
a learning rate of 0.00001 and a dropout rate of 0.1.
We use the categorical cross-entropy loss function and
implement a learning rate schedule that adjusts for
plateaus, as recommended by (Ismail Fawaz et al.,
2019). The training processes a batch size of 64. We
assess the model’s performance on both the training
and validation sets at regular intervals, recording the
best test results along with their corresponding hyper-
parameters. To ensure a fair comparison, we report
the test accuracy of the model that achieves the low-
est training loss, following the approach outlined by
(Ismail Fawaz et al., 2019).

We evaluate the proposed method using accuracy
(ACC) on the test set as the metric. ACC is calculated
by the following formula:

ACC =
Correct predictions

All predictions

We also provide the confusion matrices of the pro-
posed CNN-Trans method for each dataset to offer
a detailed view of its performance across different
classes and highlight areas where misclassifications
occur.
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Table 1: Properties of all datasets considered in this work. HAR: Humain Activity Recognition. EEG: ECG/EEG Signal
Classification. AR: Activity Recognition.

Datasets Classes Variables length Train Test Type
BasicMotions 4 6 100 40 40 HAR
RacketSports 4 6 30 151 152 HAR

NATOPS 6 24 51 180 180 HAR
Libras 15 2 45 180 180 HAR

FingerMovements 2 28 50 316 100 EEG
ArticularyWordRecognition 25 9 144 275 300 Motion

PenDigits 10 2 8 7494 3498 Motion
HAR dataset 6 9 128 7352 2947 AR

Kitchen 3 93 50 2988 470 Action
MeetingRoom 4 85 50 8217 921 AR

5.3 Results

We evaluate the performance of the proposed model
CNN-Trans by comparing its classification accuracy
with state-of-the-art methods: FCN (Wang et al.,
2017), MLSTM-FCN (Karim et al., 2019), TapNet
(Zhang et al., 2020), and ResNet (Wang et al., 2017).

We provide in Table 2 a performance comparison
in terms of classification accuracy of the CNN-Trans
model compared with state-of-the-art methods on 10
datasets. We highlight the highest accuracy score
in red and the second-highest score in blue for each
dataset.

The obtained results show that the proposed CNN-
Trans method, based on a two-branch architecture
combining a CNN and a Transformer, demonstrates
competitive performance across various MTS datasets
compared to other models. CNN-Trans consistently
shows strong performance across most datasets. For
instance, it achieves high accuracy on datasets such
as RacketSports, Libra, FingerMovements, Kitchen,
and MeetingRoom, outperforming the other methods.
On NATOPS, PenDigits and ArticularyWordRecogni-
tion datasets, CNN-Trans is very close to the highest
scores among the compared methods.
On the HAR dataset, although the MLSTM-FCN
model achieved the highest accuracy of 96.71%
compared to all the models, the CNN-Trans model
remains competitive (achieving an accuracy of
87.41%), demonstrating its effectiveness across var-
ious time series classification tasks.

5.3.1 Performance Analysis Based on Dataset
Size

Here we analyze the performance of the CNN-Trans
model in relation to the size of the datasets, includ-
ing the number of variables, the sequence length, and
the amount of training data. This analysis offers ad-
ditional insights into its strengths and potential limi-
tations.

CNN-Trans exhibits strong scalability and effec-
tiveness, particularly as dataset size increases from
medium to large, making it well-suited for complex,
high-dimensional time series data. For instance, on
medium-sized datasets like NATOPS (180 training
samples) and Kitchen (2988 training samples), CNN-
Trans achieves high accuracy, outperforming other
models such as ResNet, and demonstrating its ability
to learn from a sufficient but not excessive amount of
data. The confusion matrices illustrated in Figure 3(a)
show that failure cases are related to the most confus-
ing activities, such as classes 1 (All clear) and 2 (Not
clear) in the NATOPS dataset.

On large datasets like PenDigits (7494 training
samples) and Meeting Room (8217 training samples),
CNN-Trans performs exceptionally well, with accura-
cies of 98.37% and 84.25%, respectively, showing its
capacity to handle extensive data and extract mean-
ingful patterns. Figure 4(b) shows that for the HAR
dataset, despite strong performance, there is notice-
able misclassification between adjacent classes (class
3:sitting and class 4:standing). This reflects difficul-
ties in distinguishing highly complex or overlapping
activity patterns.

However, on smaller datasets like BasicMotions
(40 training samples) and FingerMovements (316
training samples), while CNN-Trans remains compet-
itive, it occasionally falls short compared to simpler
models like FCN, which might be more efficient with
limited data. This suggests that while CNN-Trans is
highly effective in more complex scenarios, its per-
formance can vary depending on the dataset size, par-
ticularly when data is scarce (see Figure 5).

In summary, CNN-Trans is a flexible model that
performs well as the size of the dataset grows,
especially for handling intricate, high-dimensional
data. Its competitiveness on smaller datasets remains
strong, but it may not consistently outperform simpler
models that are more appropriate for limited data.
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Table 2: Performance comparison of the proposed model with state-of-the-art methods. For each dataset, the red result denotes
the model with the best performance and the blue result indicates the model with the second best accuracy. The symbol ’-’
means that the accuracy of the corresponding model is not available for the dataset.

Datasets CNN-Trans FCN MLSTM-FCN TapNet ResNet
BasicMotions 90.00 100 95.00 100 100
RacketSports 84.86 82.23 - - 82.23

NATOPS 93.33 87.78 88.9 93.9 89.44
Libras 86.66 85.00 - - 83.89

FingerMovements 59.00 53.00 - - 54.00
ArticularyWordRecognition 98.33 98.00 97.30 98.70 98.00

PenDigits 98.37 98.57 97.80 98.00 97.71
HAR 87.41 84.45 96.71 - 87.11

Kitchen 95.74 66.17 94.25 81.7 53.19
MeetingRoom 84.25 63.95 70.14 82.23 68.08

(a) (b)

(c) (d)

Figure 3: Confusion matrices of the CNN-Trans method on NATOPS, Libra, FingerMovements, and ArticularyWordRecog-
nition datasets.
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(a) (b)

(c) (d)

Figure 4: Confusion matrices of the CNN-Trans method on PenDigits, HAR, MeetingRoom and Kitchen datasets.

5.3.2 Performance Analysis Based on Data Type

Here we analyze the behavior of the CNN-Trans
model in relation to the type of dataset. By group-
ing datasets based on their type, namely HAR,
EEG/ECG, motion-based tasks, and complex AR, we
highlight the strengths and challenges of CNN-Trans
model when dealing with diverse data characteristics.

Table 2 shows that CNN-Trans achieves consis-
tently high accuracy in HAR tasks, particularly on
NATOPS (93.33%) and BasicMotions (90%), indicat-
ing its effectiveness in capturing temporal and spa-
tial features for activity recognition. For more chal-
lenging datasets like RacketSports, the performance
is slightly lower (84.86%) but still competitive with
the highest accuracy across all tested methods.

On the FingerMovements dataset, that represents

EEG signals, the accuracy is relatively low across
all models, with CNN-Trans achieving the highest
(59%). This underscores the complexity of EEG
data, which requires sophisticated feature extrac-
tion and may benefit from preprocessing or domain-
specific adaptations. The confusion matrix, illustrated
in Figure 3, highlights the confusion between the
two classes, emphasizing the challenge of extracting
meaningful features from the EEG signal.

On the other hand, on motion data type, all models
perform well, with CNN-Trans achieving 98.33% and
98.37% on ArticularyWordRecognition and PenDig-
its datasets, respectively. This finding shows the
strength of CNN-Trans in tasks with structured, con-
tinuous motion data.

On datasets that are collected from ambient sen-
sors, Kitchen and MeetingRoom, CNN-Trans ex-
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(a) (b)

Figure 5: Confusion matrices of the CNN-Trans method on BasicMotions and RacketSports datasets.

cels, achieving 95.74% (Kitchen) and 84.25% (Meet-
ingRoom), significantly outperforming others. This
highlights its robustness and adaptability, particularly
in datasets with diverse and noisy features.

6 CONCLUSION AND FUTURE
WORK

In this paper, we introduced CNN-Trans, a novel
deep learning model designed specifically for multi-
variate time series classification. By integrating the
strengths of convolutional neural networks and trans-
formers, CNN-Trans effectively addresses the chal-
lenges posed by the extensive and complex nature
of multivariate time series data. The model’s par-
allel architecture allows for simultaneous process-
ing of local features through CNNs and global rela-
tionships through transformers, leading to enhanced
classification accuracy. Our extensive evaluations on
both benchmark and private datasets demonstrate that
CNN-Trans consistently outperforms state-of-the-art
approaches, showcasing its robustness and generaliz-
ability across diverse sensor applications. CNN-Trans
excels particularly when dealing with complex, noisy,
and high-dimensional data, confirming its adaptabil-
ity and potential for practical applications.

While CNN-Trans offers improvements in inter-
pretability through attention weights, further research
could delve into enhancing the explainability of the
model’s decisions. In future work, we aim to develop
methods to visualize and interpret the contributions of
different features and time steps, thereby enhancing
trust in the model’s predictions.

To further enhance CNN-Trans in future work, we
aim to integrate a self-supervised learning phase to
leverage vast unannotated datasets. This could in-
volve pre-training with unlabeled data, extracting fea-
tures through self-supervised methods. Such integra-
tion aims to improve model performance and adapt-
ability by utilizing both labeled and unlabeled data
more effectively.
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