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Abstract: The development of high-throughput sequencing technologies has generated vast amounts of multi-layered 

molecular data from human tumours, but effectively visualizing and analysing these complex datasets remains 

a significant challenge for researchers. We introduce GenomeCruzer, a software designed to enable real-time, 

interactive visualization and analysis of large, multi-layer genomic and clinical data. GenomeCruzer uses 

graphical metaphors to represent continuous variables like gene expression, DNA methylation, and copy 

number alterations (CNA) through 3D objects with varying colour, size, and transparency, while discrete 

variables are represented by highlighting or blinking. We applied GenomeCruzer to DNA methylation and 

DNA/RNA sequencing data from colorectal cancer (CRC) samples from The Cancer Genome Atlas (TCGA) 

and CRC Patient-Derived Xenografts (PDXs). The software successfully generated 3D landscapes, allowing 

intuitive exploration of associations between omic profiles and clinical features. GenomeCruzer demonstrates 

its utility in highlighting subgroup differences, selecting representative cases, annotating samples, and 

identifying relationships between sample groups and gene signatures. Its intuitive interface and ability to 

visualize complex data make it a valuable tool for biomedical research. 

1 INTRODUCTION 

The implementation of Next Generation Sequencing 

(NGS) technologies in cancer research and clinical 

practice has advanced significantly over recent 

decades, leading to the generation of increasingly 

complex omics data (Dunn Jr et al., 2017). While 

these data are rich in information, they remain only 

partially explored due to their inherent complexity, 

posing challenges for non-specialist users, such as 

clinicians and biologists, who might otherwise utilize 

them for treatment decision-making or hypothesis 

generation (He et al., 2017). This complexity arises 

not only from the sheer volume of data but also from 

the intricate interactions across various layers of cell 
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Figure 1: GenomeCruzer workflow. 
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biology. Consequently, novel integrative approaches 

are needed to effectively link genes with samples, 

phenotypes, and other gene groups (Subramanian et 

al., 2020). The visualization of genomic data has 

emerged as a key discipline to enhance understanding 

and facilitate biological interpretation (Gao et al., 

2013). A range of dedicated tools has been developed, 

employing diverse visualization methods from simple 

bar plots to sophisticated diagrams (Jia, 2011). 

However, each of these tools addresses specific 

challenges, which limits their ability to 

comprehensively characterize and interpret the data 

under investigation. For example, while widely 

utilized in various research fields, phylogenetic 

information (Partridge, 2018; West et al., 2006), 

clustered heatmaps (Eisen et al., 1998), and 

hierarchical or fuzzy clustering methods (Fu & 

Medico, 2007; McConnell et al., 2002) lack the 

capacity to integrate or simultaneously analyse 

multiple data types. Recently, more advanced tools 

such as cBioPortal (Gao et al., 2013; West et al., 

2006), Complex Heatmaps (Gu et al., 2016), 

Integrative Genome Viewer (IGV) (Thorvaldsdóttir 

et al., 2013), the UCSC Xena platform (Goldman et 

al., 2020), Circos and its derivatives (Cui et al., 2020; 

Krzywinski et al., 2009), have been developed to 

enable enhanced visualization of omics data and to 

derive insights into specific cases (West et al., 2006). 

However, these methods often either focus on 

visualizing limited relationships across many 

samples, thereby reducing feature complexity, or 

provide detailed analyses of only one or a few 

samples at a time.  

In this work, we investigate the potential of 

capturing multidimensional data, introducing 

GenomeCruzer, a software platform that provides a 

multidimensional 3D environment for the 

visualization of large-scale datasets using graphical 

metaphors.  To clarify the workflow of the proposed 

method, we provide a flowchart (Figure 1), which 

illustrates the data flow within the GenomeCruzer 

software.  The flowchart enables a clearer 

understanding of the integration and visualization 

process, offering readers a comprehensive overview 

of the steps involved in using the platform effectively. 

Conceptually, multiple variables associated with a 

single entity can be encoded as specific properties of 

a 3D object. For instance, continuous variables such 

as gene expression and copy number levels can be 

visualized simultaneously as colour and height, 

respectively, on a 3D parallelepiped representing the 

gene (Figure 2a). To derive meaningful insights from 

complex multidimensional data, metaphor encoding 

should be optimized to enable the effective 

representation of objects, their variables, and 

associations within the 3D environment, while 

accommodating large cohorts of genes and samples 

without sacrificing resolution.  

 

 

(a) Genomic variables are encoded as attributes of 3D objects: 

height, colour, and size for continuous variables (e.g. gene 

expression, copy number alteration, methylation levels), and 

highlights, blinks or group membership for discrete variables (e.g. 

gene mutation, sample/gene groups).  

(b) Representation of the View Mode of multidimensional data in 

GenomeCruzer. The 3D space is divided into a floor and a wall. On 

the floor are represented the multi-omics data, with the values of 

their variables encoded as described in (a). Omics data can be 

hierarchically clustered into gene groups on rows and sample 

groups on columns.  

Figure 2: GenomeCruzer concept for the visualisation of 

multidimensional genomic data with graphical metaphors.  

This can be achieved by organizing 3D objects 

representing different entities in distinct spaces, such 

as the floor and walls of a virtual room (Figure 2b). 

GenomeCruzer allows users to perform intuitive, 

interactive analyses of diverse genomic data types 

and delivers real-time results as visual 3D landscapes. 

These features make GenomeCruzer a user-friendly 

interface for individuals with limited bioinformatics 

expertise, enabling them to explore and interpret 

extensive genomic datasets while gaining valuable 

insights for basic, translational, and clinical research. 

2 RESULTS 

2.1 Implementation of 3D Graphical 
Metaphors 

GenomeCruzer is a software tool designed for the 

simultaneous visualization and analysis of multiple 

genomic datasets within a 3D interactive 

environment. By employing diverse graphical 
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metaphors, various genomic data types are 

represented as 3D objects. Continuous variables are 

visualized through attributes such as colour, height, 

and size, while discrete variables are represented 

through grouping, blinking, or highlighting.  

This innovative visualization approach facilitates the 

identification of significant correspondences between 

genomic data types via a user-friendly interface 

(“View mode,” Figure 2b). Here, we present two 

demo datasets that allow users to explore the 

GenomeCruzer’s key features: (i) 570 colorectal 

cancer (CRC) samples from the TCGA-CRC dataset 

(Supplementary Table 1) (Muzny et al., 2012) and (ii) 

an in-house dataset comprising 53 CRC patient-

derived xenograft (PDX) samples from the EuroPDX 

project (Supplementary Table 2)  (Dudová et al., 

2022). Users can reproduce results by connecting to 

the databases stored in the “GenomeCruzer_DBs” 

subfolder within the GenomeCruzer Public Data 

Archive folder and selecting the corresponding 

scenes. Detailed instructions for recreating these 

databases are provided in the supplementary material, 

located in the “Source_data” subfolder.  

2.2 The View Mode: From Complexity 
to Clarity 

GenomeCruzer’s 3D environment enables the 

simultaneous, interactive visualization of multiple 

layers of genomic data across large cohorts of 

samples. This feature allows users to intuitively 

explore potential correlations between different 

genomic layers, such as gene copy number alterations 

(CNA) and expression levels. By providing a 

comprehensive genomic landscape, the software 

allows users to investigate the relationships between 

various measurements of each gene within and across 

samples (see also Supplementary Video 1). To 

illustrate the innovative features of the View Mode, 

two representative use cases are presented: 

1. A genome-wide landscape showcasing gene 

expression and CNA profiles for 570 colorectal 

cancer (CRC) samples obtained from The Cancer 

Genome Atlas (TCGA) 

(https://www.cancer.gov/tcga), organized by 

microsatellite instability (MSI) status, a well-

established molecular marker in CRC (Pawlik et 

al., 2004). 

2. A kinome-wide landscape displaying gene 

expression and CNA profiles for 53 CRC patient-

derived xenograft (PDX) models, categorized by 

mutations in the RAS pathway and their in vivo 

response to epidermal growth factor receptor 

(EGFR) blockade. 

These examples highlight the versatility of 

GenomeCruzer’s View Mode in enabling researchers 

to uncover meaningful relationships and patterns 

across diverse genomic datasets, facilitating deeper 

insights into complex biological phenomena. 

2.2.1 View Mode, Use Case 1: 
GenomeCruzer Highlights 
Chromosomal Domains with 
Recurrent and Concordant Differences 
in Gene Expression and CNA Between 
MSI and MSS CRCs 

This use case demonstrates GenomeCruzer’s ability 

to highlight chromosomal domains with recurrent and 

concordant differences in gene expression and copy 

number alterations (CNA) between microsatellite 

instability (MSI) and microsatellite-stable (MSS) 

CRCs. Users can reproduce this analysis by 

connecting GenomeCruzer to the 

‘TCGA_CRC_gep_cna.db’ database and selecting 

the scene titled 

‘TCGA_CRC:MSI_MSS_GenLandscape_Custom_g

enesets’. In this scene, the View Mode floor (Figure 

3a) represents 570 TCGA CRC samples as columns, 

partitioned into four subgroups based on MSI status: 

MSI-high (MSI-H, n=77), MSI-low (MSI-L, n=91), 

microsatellite stable (MSS, n=397), and unclassified 

(NC, n=5) (Supplementary Table 1a). Genes are 

arranged as rows and hierarchically clustered by their 

genomic locations at five levels of increasing 

resolution (Supplementary Figure 1): chromosome, 

chromosomal arm, chromosomal band, and 

chromosomal sub-band, where each gene is 

represented as a single object. Gene expression and 

CNA profiles are displayed using graphical 

metaphors. Gene expression is represented by object 

colour: green for underexpression and red for 

overexpression (scaled as a log2 ratio relative to the 

mean). CNA profiles are visualized as object heights: 

positive heights represent copy number gains, while 

negative heights correspond to copy number losses. 

Users can adjust the "Scale Factor" to modulate object 

height, ranging from 1 (no height) to 100 (maximum 

height) (Figure 3b). Further customization includes 

the “Absolute Value” option, which converts all 

heights to positive values directed above the floor 

(Figure 3b). When disabled, negative CNA values 

appear as objects extending below the floor (Figure 

3c). The “Flip” option allows users to invert the 

orientation of positive and negative heights (Figure  

 

GenomeCruzer, a 3D Interactive Environment for Genomic Data Visualization and Analysis

471



 

(a) A square matrix representing the topological organization of the 

floor, where rows correspond to genes clustered by chromosomal 

location, and columns represent samples clustered by molecular or 

clinical attributes (e.g., MSI status: MSI-H, MSI-L, MSS, NC). 

Each matrix cell corresponds to a single gene in a single sample. 

(b) Screenshot of the floor displaying 570 TCGA CRC samples, 

with gene expression represented as colors (red for overexpression, 

green for underexpression relative to the mean) and CNA values as 

heights (with the “Absolute Value” setting enabled). Recurrent 

chromosomal arm alterations in chr20q, chr18q, chr13q, and chr8q 

are marked with black arrows. 

(c-d) When “Absolute Value” is disabled, negative CNA values are 

represented as heights below the floor. Using the “Flip” option, the 

floor can separately display objects with positive CNA values (c) 

or negative CNA values (d). Notably, positive CNA values are 

strongly associated with red (overexpression), while negative CNA 

values correlate with green (underexpression). 

Figure 3: GenomeCruzer View Mode: the floor. 

3d). At any resolution, the color and height of each 

object reflect the average gene expression and CAN 

values of its constituent genes. Users can select their 

desired resolution using the “Row Cluster Level” 

settings, ranging from chromosomes (low resolution) 

to individual genes (high resolution). Similarly, sample 

clustering can be adjusted with the “Column Cluster 

Level” settings, from broad classifications to more 

granular subdivisions of the samples. This genomic 

landscape visualization is particularly effective for 

assessing alterations across chromosomal domains 

while maintaining resolution at the sample level. Users 

can quickly identify chromosomal domains with 

concordant differential gene expression and CNA 

profiles between MSI-H and (MSI-L+MSS) samples 

(Figure 3b-d). For instance, the 3D object heights 

clearly indicate a lower CNA burden in the MSI-H 

subgroup compared to the (MSI-L+MSS) subgroups 

(Figure 3b-d). Recurrent chromosomal alterations, 

such as gains and losses in regions like chr20q, chr18q, 

chr13q, and chr1q, can be visualized without 

compromising sample-specific details. Additionally, 

this mode allows for the simultaneous evaluation of 

gene expression and CNA levels in these regions 

(Figure 3b). 

2.2.2 View Mode, Use Case 2: Kinome 
Visualisation in Genomecruzer Reveals 
Concomitant Amplifications and  
Over-Expressions of Therapeutic 
Target Kinases in PDX Models 

This use case demonstrates the potential of 

GenomeCruzer to identify actionable therapeutic 

targets by simultaneously visualizing mRNA 

expression and copy number alteration (CNA) 

profiles across large cohorts of patient-derived 

xenograft (PDX) models.  

Users can replicate this analysis by connecting 

GenomeCruzer to the ‘PDX_CRC_gep_cna.db’ 

database and selecting the 

‘RAS_Kinome_families_Custom_genesets’ scene. 

The clinical translation of genomic assays and the 

development of targeted therapies for cancer treatment 

rely heavily on identifying actionable target genes. 

This requires an in-depth investigation into molecular 

alterations that could be under selective pressure at 

both genomic and transcriptional levels, potentially 

leading to the discovery of novel druggable targets 

(Jeon et al., 2014; Tran & Pham, 2021).  

This specific scene illustrates how GenomeCruzer 

facilitates the identification of such targets by 

enabling users to explore their mRNA expression and 

CNA profiles. To highlight this functionality, we 

focused on kinase gene families, which are 

particularly promising candidates for 

pharmacological inhibition in cancer due to their 

central roles in cell signaling pathways. These 

families often exhibit sparse, outlier genomic 

alterations within specific subgroups of samples 

(Medico et al., 2015).  

The dataset used in this analysis consists of 53 

PDXs annotated for their response to cetuximab, an 

anti-EGFR monoclonal antibody and a key 

therapeutic option for CRC (Bertotti et al., 2011). 
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Given that cetuximab efficacy is compromised by 

mutations in downstream effectors of EGFR, only 

RAS/RAF wildtype cases are eligible for cetuximab 

treatment. Accordingly, the 53 PDXs were annotated 

for hotspot mutations in KRAS, NRAS, and BRAF, 

which are downstream kinases of EGFR. 

The PDXs were hierarchically classified into three 

groups: RAS wildtype cetuximab-sensitive (n=6), 

RAS wildtype cetuximab-resistant (n=19), and RAS 

mutant (n=28) (Supplementary Table 2a).  

 

 

(a) Front view of the kinome floor, with rows representing kinases 

hierarchically clustered by family and columns depicting 53 PDX 

samples grouped by cetuximab sensitivity and RAS mutational 

status. Each cell indicates gene expression (color) and CNA value 

(height, absolute value). Yellow ovals highlight specific kinases 

with notable expression and CNA values.  

(b) Side view of the kinome floor, showing positive CNA values 

(upper side) and negative CNA values (lower side). The “hide 

subrange” function excludes genes with minor alterations, 

emphasizing kinases with the most substantial changes. 

Figure 4: GenomeCruzer View Mode visualizations of the 

kinome floor, showcasing “outlier” kinase expression and 

CNA in CRC PDXs.  

Kinase-encoding genes were similarly clustered 

by family, following the classification scheme 

provided by Kinhub (kinhub, 

http://www.kinhub.org/index.html, accessed 

15/04/2022). This classification includes ten families: 

(i) the Tyrosine Kinase (TK) and (ii) their Like (TKL) 

groups, (iii) the Serine/Threonine-protein kinases 

(ACG) group, (iv) the proline-directed 

Serine/Threonine (CMGC) kinase group, (v) the 

mitogen-activated and Serine/Threonine protein 

kinases (STE) group, (vi) the Ca2+ calmodulin-

dependent kinases (CAMK) group, (vii) the Casein 

Kinase 1 (CK1) group, (viii) the Receptor Guanylate 

Cyclase kinase (RCG) group, in addition to two other 

orphan groups that were annotated as atypical or 

other. GenomeCruzer's visualizations effectively 

highlight genomic alterations relevant to therapeutic 

strategies. For example, ERBB2 (HER2) emerged as 

a highly expressed outlier in the RAS wildtype, 

cetuximab-resistant subgroup. This observation 

aligns with prior studies identifying ERBB2 as a 

mechanism of resistance to cetuximab and a 

promising therapeutic target currently under 

evaluation in phase II clinical trials for CRC 

treatment (Sartore-Bianchi et al., 2020).  

Among the RAS wildtype cetuximab-resistant 

samples, the CRC0112 sample, documented in this 

study (Supplementary Table 2a), had been previously 

treated successfully with pertuzumab and lapatinib 

(Bertotti et al., 2011). Other notable outliers included 

LCK, a member of the SRC family implicated in 

receptor tyrosine kinase signaling and a target of 

Dasatinib (Lombardo et al., 2004) , and PTK7, an 

atypical kinase whose alterations are associated with 

poor CRC prognosis (Tian et al., 2016).  

In RAS mutant samples (Supplementary Table 

2a), FLT1 and FGFR1 were identified as outlier 

receptor tyrosine kinases associated with tumor 

progression across multiple cancer types (Bae et al., 

2019; Minev, 2011; Miyake et al., 2016; Slattery et 

al., 2014). These kinases represent promising 

therapeutic targets for patients not responding 

optimally to anti-EGFR therapies.  

Additional targets include DYRK4, a less 

characterized kinase whose outlier overexpression 

and CNA levels suggest potential utility in 

combination treatments with cetuximab. Another 

example is MAP2K3, which exhibited substantial 

gene depletion and significantly reduced RNA 

expression levels in the RAS wildtype cetuximab-

sensitive subgroup. Located on chromosome 17, 

MAP2K3 has been implicated in stage II colon cancer 

as a candidate driver of focal chromosomal 

aberrations (Brosens et al., 2010). Notably, MAP2K3 

functions as a tumor suppressor in some cancers, such 

as breast cancer, but exhibits oncogenic roles in CRC 

(Piastra et al., 2022).  

GenomeCruzer's “hide subrange” feature further 

enhances data interpretation by allowing users to 

filter out genes with minor alterations, highlighting 

kinases with the most pronounced changes in CNA 

and expression. For instance, this functionality 

pinpointed ERBB2, PTK7, and MAP2K3 as 

candidates with significant alterations, supporting 

their consideration as potential therapeutic targets.  

Collectively, these results underscore 

GenomeCruzer's effectiveness in identifying putative 

therapeutic targets by integrating and visualizing 
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complex genomic datasets. Additionally, researchers 

can expand the analysis to other gene groups, such as 

transcription factors, splicing factors, or microRNAs, 

demonstrating the platform's versatility. 

Supplementary Video 2 provides a comprehensive 

demonstration of this use case. 

3 DISCUSSION 

Over the last two decades, large-scale application of 

NGS has generated vast amounts of genomic data, 

enabling patient stratification and diagnostic 

advancements (Das et al., 2020; Duan et al., 2021; 

Zhu et al., 2016), opening a new horizon in clinical 

diagnosis (Cantini et al., 2021). While NGS-based 

assays are increasingly used in cancer diagnosis and 

treatment (Mordente et al., 2015), integrating 

multiple omics with clinical data remains a major 

challenge (Gomez-Cabrero et al., 2014). Multi-omics 

research is expected to uncover interactions among 

molecular entities and improve disease outcome 

predictions (Berger & Mardis, 2018; Subramanian et 

al., 2020). However, integrating these datasets often 

requires complex data mining and machine learning, 

making tools accessible only to bioinformatics 

experts. GenomeCruzer addresses these challenges 

by providing an intuitive, 3D environment for 

multidimensional omics data integration and real-

time analysis. It enables users to explore large-scale 

datasets, such as those from the EuroPDX 

Consortium (Dudová et al., 2022), and public 

repositories like TCGA and cBioPortal (Gao et al., 

2013; West et al., 2006), without requiring 

bioinformatics skills. Of note, cBioPortal offers the 

opportunity to explore very large sample cohorts, but 

only for a limited number of genes. Beyond a certain 

number of genes/features, the 2d nature of the display 

does not provide sufficient resolution. Conversely, a 

key feature of GenomeCruzer is its Genomic 

Landscape, which enables wide-scale exploration of 

genomic data, from the whole genome down to single 

genes. This approach surpasses common tools like 

Integrative Genome Viewer (Robinson et al., 2011; 

Thorvaldsdóttir et al., 2013), cBioPortal (Gao et al., 

2013; West et al., 2006), Circos (Cui et al., 2020; 

Krzywinski et al., 2009) and Xena (Goldman et al., 

2020), by allowing the concurrent visualization of 

two omics layers. Circos and Complex Heatmaps, on 

the other hand, are highly effective for identifying 

patterns and relationships within circular or grid-

based visualizations, but they lack the interactive and 

exploratory features of GenomeCruzer. The fixed 

nature of these representations makes them less suited 

for dynamic hypothesis generation compared to 

GenomeCruzer’s real-time data interaction 

capabilities. This is not possible with IGV or similar 

tools, which show only a portion of a genomic region, 

across a limited number of samples. This limit is not 

a choice, it is rather a consequence of the 

visualization environment. This feature facilitates the 

identification of genomic lesions, recurrent 

chromosomal alterations, and the relationship 

between different genomic data layers. It is also more 

effective than conventional tools like GISTIC 

(Mermel et al., 2011) in detecting differential gene 

expression/CNA/methylation across sample groups. 

By running GenomeCruzer on TCGA colon and 

breast cancer datasets, we identified known 

chromosomal alterations, demonstrating its power in 

complex cancer analyses. In summary, 

GenomeCruzer offers an innovative tool for multi-

omics data analysis, simplifying complex cancer 

biology exploration without requiring specialized 

computational expertise. Its unique capabilities could 

enhance both research and clinical applications of 

genomic data. 

4 CONCLUSIONS 

GenomeCruzer provides a user-friendly, flexible, 

innovative, and powerful tool for 3D visualisation, 

integration, and interpretation of multi-dimensional 

genomic data. As the field of omics data continues to 

expand and more public omics datasets are available, 

GenomeCruzer will evolve as an integrated solution 

for deciphering underlying biological information. 

GenomeCruzer is currently distributed as shareware 

and can be freely used. 

5 SUPPLEMENTARY 

INFORMATION 

5.1 Availability of Data and Material 

All datasets analysed in this study including TCGA-

CRC and PDXs are available in the TCGA 

(https://www.cancer.gov/tcga) and the EuroPDX 

(https://www.europdx.eu/) data repositories, 

respectively. The showcase Genomic databases, and 

the raw data to build these databases can be found at 

GenomeCruzer Public Data Archive. All the 

Supplementary Materials are available from 

https://github.com/acassisa/BIOINFORMATICS202

5. 
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5.2 GenomeCruzer Software 

For the version of GenomeCruzer available at the 

time of this publication, please write to 

genomecruzer@kairos3d.it or use the following link: 

http://www.genomecruzer.com. 

Project name: GenomeCruzer 

Project home page: http://www.genomecruzer.com  

Operating system(s): Windows. GenomeCruzer is 

available now on Windows. On request, it can be 

made available also for Ubuntu and MacOS users. 

Programming language: C/C++ 

Other requirements: None 

Licence: Custom freeware licence 

Any restrictions to use by non-academics: None 

5.3 Preprocessing Intructions for 
cBioportal Data  

This manual outlines the steps to generate a 

comprehensive database using RNA and CNA 

datasets from cBioPortal, a widely used platform for 

cancer genomics data. The process involves selecting, 

formatting, and integrating the necessary files to 

ensure compatibility with subsequent analysis. 

 

Data Retrieval 

The process begins with collecting the required data 

from cBioPortal. After identifying the dataset of 

interest, download the following key files: 

1.data_mrna_seq.txt – Contains mRNA sequencing 

data. 2. data_cna.txt – Contains copy number 

alteration (CNA) data. 3. data_clinical_sample.txt – 

Contains clinical sample annotations. These files 

must be in the standard formats used by cBioPortal, 

as the subsequent steps rely on this consistency. 

 

Database Creation Workflow 

The database generation process involves six main 

steps: 1. Definition of the Sample Dataset Select and 

curate the sample-level data, ensuring alignment with 

the scope of the analysis. 2. Definition of the 

genomic annotation Database Define the set of 

genes to be included, based on the study objectives or 

predefined panels. 3. Definition of Molecular Data 

Process the mRNA and CNA data to ensure they are 

ready for integration. This may involve normalization 

or reformatting as needed. 4. Database Generation 

Integrate the sample, gene, and molecular data into a 

unified database. 5. Sample Cluster Annotation 

Perform clustering analysis on the samples and 

annotate the resulting groups to identify meaningful 

patterns. 6. Gene Cluster Annotation Conduct 

clustering analysis on the genes and provide 

annotations to highlight biological relevance or 

pathways of interest. 

 

Database File Format 

 

1. Definition of Samples’ Dataset: From the 

data_clinical_sample.txt file, the following 

columns are retained, and the samples list is 

created:  

 

 
 

2. Definition of the Genomic Annotation 

Database: The genomic annotation database 

is structured as a tab delimited csv file using 

UNIQUE_ID as entry. The database 

contains a numeric UNIQUE_ID and an 

associated GENE_ID, together with the 

chromosome location of the genes and their 

start position, end position, ARM_ID, 

BAND_ID and SUB BAND ID. A default 

genic database of 19603 genes is used based 

on HG19. 

 

3. Definition of the Molecular Data. RNA 

matrix: Duplicates removal is performed and 

the numerical entrez id should be the first 

column of the file.  In the same folder, the 

meta-data for this dataset is created as 

follows: “cancer_study_identifier” is the 

name of the study, “genetic_alteration_type” 

is set to mRNA_expression, “datatype” is set 

to continuous, “stable_id” is set to 

rna_seq_mrna_capture, 

“show_profile_in_analysis_tab” is set to 

true, “profile_name” is the mRNA 

expression (ILMN-Linear), 

“profile_description” is set to Expression 

levels (Log2, RNAseq) and “data_filename” 

to data_mrna.tsv.  

CNA matrix: The matrix is generated 

starting from segmentation data using the 

code_cna.R script. This code takes as an 

input the genic dataset and the segmentation 

data and after extracting unique genes and 

samples, CNA values are collected for the 

corresponding segments. Whereas multiple 

seguent are attributed to a gene in a sample, 

the CNA value is calucjulated as the average 

expression of such segment normalized on 

the length of the segment included in the 

geneomic region. The meta-data is created 
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for this dataset as well, as follows: 

“cancer_study_identifier” is the name of the 

study, “genetic_alteration_type” is set to 

COPY_NUMBER_ALTERATION, 

“datatype” is LOG2-VALUE, “stable_id” is 

set to log2CNA, 

“show_profile_in_analysis_tab” is set to 

true, “profile_name” is Log2 copy-number 

values, “profile_description” is the Copy-

number values for each gene (from shallow 

seq) and “data_filename” is cna_matrix.tsv. 

methylation matrix The matrix is generated 

starting from beta values data using the 

code_methylation.R script. This code takes 

as an input the RNA_matrix dataset and the 

meth_data, and after extracting unique genes 

and samples, b values values are attributed to 

genes selecting the locus with the highest 

absolute correlation for the gene expression 

values. collected for the segments, even in 

the case. The meta-data is created for this 

dataset as well, as follows: 

“cancer_study_identifier” is the name of the 

study, “genetic_alteration_type” is set to 

Methylation, “datatype” is LOG2RATIO, 

“stable_id” is set to “methylation_hm450”, 

“show_profile_in_analysis_tab” is set to 

true, “profile_name” is Log2 copy-number 

values, “profile_description” is the beta 

value for each gene and “meth_filename” is 

cna_matrix.tsv. 

 

 

4. Database Generation: The database is 

generated using a json file, containing the 

instructions and the paths to the files needed. 

A template is available for the creation of 

this file. Through the use of a prompt, the 

database is generated. Once in the folder 

where the database should be created, the 

following instructions are given to 

cBioImporter.exe program: 

...\Genome Cruzer\1.9.0\bin>cBioImporter.exe -

j nuovo_db\code\database_cBioImport.json --

out nuovo_db\Outputs\database.db 

 

5. Sample Cluster Annotation: After the 

database has been created, we could provide 

a sample clustering, given as column 

clustering onto DbManager.exe program. 

This clustering takes the form of a TAB 

delimited text file, containing all the samples 

in the database (samples do not present in 

the database should not be listed). An 

example for the heading of this file is shown 

below: 

 

 
 

6. Gene Cluster Annotation: Gene clustering is 

provided as row clustering onto 

DbManager.exe program. Some pre-defined 

files could be found in the clusterings folder, 

as an example. 
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