
Forge: Extending Anvil for Visual Evaluation of Rendering Pipelines

Kevin Napoli a, Keith Bugeja b and Sandro Spina c

CGVG, Department of Computer Science, Faculty of ICT, University of Malta, Msida, Malta
{kevin.napoli.10, keith.bugeja, sandro.spina}@um.edu.mt

Keywords: Distributed Rendering Evaluation, Anvil, Graphical Applications, Rendering Pipeline Visualisation.

Abstract: This paper introduces Forge, an extension of Anvil, aimed at enhancing evaluation processes in computer
graphics pipelines. Forge addresses critical challenges in rendering systems, such as ensuring consistent con-
figurations, minimising human error, and increasing reproducibility of experimental results. By decoupling
evaluation logic from rendering engines, Forge facilitates seamless comparisons across different systems with-
out manual configuration. The framework’s architecture supports decentralised evaluations, enabling opera-
tions across diverse environments and platforms. This flexibility allows for both local and remote evaluations,
making Forge adaptable for a broad range of research applications, from small-scale experiments to compre-
hensive distributed rendering evaluations. Through case studies, this paper demonstrates Forge’s effectiveness
in verifying rendering techniques, comparing performance, and aiding development of new algorithms, thereby
providing a robust solution for accurate and reliable comparative studies in the field of computer graphics.

1 INTRODUCTION

Software evaluation is crucial for assessing the qual-
ity of computer graphics (CG) software, especially
in rendering systems. Unlike basic software evalua-
tions, where metrics can be measured in direct terms,
graphics software evaluation is far more complex. It
often involves subjective factors like image quality,
visual fidelity, and rendering realism, which are chal-
lenging to quantify. In Monte Carlo rendering, for in-
stance, both image quality and rendering performance
are key aspects of evaluation, with metrics such as
Structural Similarity Index (SSIM) frequently used to
assess how accurately a renderer simulates real-world
lighting, textures, and shading.

A major challenge is maintaining consistent con-
figurations across rendering systems. Small differ-
ences in scene setup, camera positioning, or lighting
can lead to invalid comparisons, especially when gen-
erating reference images for evaluation. Standard-
isation is crucial for reliable, reproducible results.
Manual configuration is susceptible to human error
through incorrect settings or misinterpretation. The
problem is worsened by evaluation logic being tightly
coupled with rendering engines, making it difficult to
separate evaluation from the tools themselves.

a https://orcid.org/0000-0001-9749-0509
b https://orcid.org/0000-0002-3111-1251
c https://orcid.org/0000-0001-7197-410X

To address these challenges, we introduce Forge,
an extension of Anvil, originally designed for
visual debugging of physically based rendering
(PBR) (Napoli et al., 2022). Anvil operates on higher-
level abstractions, working with structured data types
such as atoms and molecules that represent common
3D elements like vectors and rays. In this paper,
we broaden Anvil’s scope to evaluate CG pipelines,
offering a solution that automates, standardises, and
streamlines the evaluation process.

Forge builds on Anvil’s modular architecture, pro-
viding a centralised framework that decouples evalu-
ation logic from rendering engines. This allows re-
searchers to compare and measure rendering algo-
rithms across different systems without manual con-
figuration or tool-specific constraints. Forge also in-
troduces a WebSocket System for decentralised, dis-
tributed evaluations, allowing systems to run locally
or remotely across various languages and platforms.
This approach enhances scalability and flexibility,
making it suitable for diverse research and develop-
ment scenarios, from small-scale experiments to dis-
tributed render farms. By addressing common issues
in graphics software evaluation such as human error,
configuration mismatches, and fragmentation across
tools, Forge improves the reproducibility of results.

The case studies presented demonstrate Forge’s
capabilities in verifying rendering techniques, com-
paring their performance, and enabling new algorithm

Napoli, K., Bugeja, K. and Spina, S.
Forge: Extending Anvil for Visual Evaluation of Rendering Pipelines.
DOI: 10.5220/0013172200003912
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 1: GRAPP, HUCAPP
and IVAPP, pages 259-266
ISBN: 978-989-758-728-3; ISSN: 2184-4321
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

259



development. By integrating evaluation workflows,
we provide a tool for research and development in
CG, streamlining the process of testing and validat-
ing rendering software across applications.

2 RELATED WORK

Anvil (Napoli et al., 2022) is a visual debugging tool
for PBR applications that simplifies the identification
of rendering issues. Unlike traditional low-level de-
buggers, Anvil visualises and analyses higher-level
data structures called atoms and molecules, which
represent fundamental 3D graphics components like
vectors and rays, mapped to user data through reflec-
tion. By monitoring these structures, Anvil provides
insights into the rendering process through visuali-
sations and analysis tools (systems), allowing users
to identify anomalies and set breakpoints to pinpoint
problems during runtime. Built on Entity Compo-
nent System (ECS), Anvil’s modular design enables
users to create and share debugging tools for their
needs. ECS is an architectural pattern widely used
in game development (Unity Technologies, 2024) and
performance-critical software systems. ECS sepa-
rates data (components) from behaviour (systems),
using entities as unique identifiers. Evolving from
component-based architectures (Martin, 2007; Bi-
las, 2002), it offers improved performance through
cache-friendly data organisation and enhanced code
reusability. Its data-oriented design principles make
it well-suited for scenarios with large numbers of ob-
jects, leading to its adoption in modern game engines
and software frameworks. Although Forge builds
upon Anvil, its architectural design is focused on eval-
uation workflows rather than serving solely as a de-
bugging framework.

RealXtend (Alatalo, 2011) introduced a modular
approach to virtual world architectures based on the
Entity-Component-Attribute model. It emphasised
flexibility and network synchronisation, combining
ECS architecture with efficient real-time communica-
tion. It allowed for dynamic component addition and
real-time updates, facilitating the creation of interac-
tive and extensible virtual environments. Dahl et al.
(Dahl et al., 2013) extended this work, using Web-
Socket – a protocol enabling full-duplex communi-
cation over a single TCP connection widely adopted
across major web browsers and servers (Wang et al.,
2013) – to communicate with web-based clients, il-
lustrating the potential of ECS-based systems for dis-
tributed environments. While realXtend focuses on
flexible and extensible virtual world architectures, its
goals differ from those of Forge, which is primarily

designed to standardise and streamline the evaluation
of rendering systems rather than supporting virtual
world simulations.

Elements (Papagiannakis et al., 2023) provides
another example of an ECS-based framework, but
with a focus on education. It is a lightweight, open-
source Python tool designed to teach CG concepts
by implementing an ECS architecture within a scene
graph. Elements allows students to explore modern
CG pipelines, bridging theory and practice. While it
shares a similar architectural foundation with Forge,
its primary focus is pedagogical, whereas Forge aims
to evaluate, debug and standardise rendering tech-
niques, with support for distributed computation and
performance assessments.

NVIDIA’s Falcor (Kallweit et al., 2022) provides a
platform for real-time rendering research by offering
a high-level abstraction over modern graphics APIs
like DirectX 12 and Vulkan. Falcor enables rapid
prototyping of advanced rendering techniques, featur-
ing a flexible render graph system, built-in profiling
tools, and support for shader hot reloading. However,
while Falcor accelerates research through quick com-
position of rendering pipelines, it does not address
the need for standardised evaluations across different
rendering engines and lacks built-in network capabil-
ities, limiting its ability to facilitate distributed or re-
mote evaluations. Furthermore, it only provides ac-
cess to FLIP (Andersson et al., 2021; Andersson et al.,
2020), which specialises in detecting perceptual dif-
ferences in rendered images and Mean Squared Error
(MSE), which measures pixel-level differences be-
tween images.

More broadly, there has been a growing focus on
replicability and reproducibility. Bonneel et al. (Bon-
neel et al., 2020) emphasise the importance of making
research code available to ensure that results can be
replicated. Despite these efforts, most available re-
search code remains specific to individual studies or
tools, rather than forming part of a reusable, modu-
lar framework. While current initiatives focus on im-
proving replicability within specific projects, they do
not provide a generalised, system-agnostic platform
for evaluating and comparing rendering techniques
across different engines and configurations.

To the best of our knowledge, no existing tool
fully addresses the niche that Forge aims to fill: a
standardised, modular framework for evaluating ren-
dering techniques across diverse pipelines. This may
be because most graphics engines are typically eval-
uated using custom-built tools tailored to specific en-
gines and rarely shared publicly. This fragmentation
has led to a lack of standardised tools for cross-engine
comparisons, which motivates Forge’s development.

GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications

260



3 FORGE: AN ANVIL
EVALUATION FRAMEWORK

Anvil is a C++ library to which applications can
link, allowing them to submit entities along with their
relevant components. These components, termed
molecules, consist of atoms such as position and di-
rection, and are well-defined and documented. For
instance, a path debug entity requires a path com-
ponent, and systems become active when all neces-
sary components are present. Forge1 extends Anvil’s
functionality while preserving its core design princi-
ples, providing powerful analytical tools with min-
imal setup and disruption. These tools are imple-
mented as systems within the ECS design pattern
since Anvil supports extensibility through the addi-
tion of systems which can be registered as plugins.
While Anvil’s library-based approach is effective for
debugging, Forge operates as a standalone application
to better facilitate rendering pipeline evaluation. This
architectural shift enables centralised control and per-
mits the implementation of standardised evaluation
workflows, requiring renderers to expose compatible
interfaces with Forge systems.

3.1 Design

Forge is an application framework that incorporates
all of Anvil’s functionality but manages execution in-
ternally. It maintains its own component repository,
system registry, and entities. The tick method, which
executes systems sequentially in their order of regis-
tration, is responsible for system execution by passing
entities as parameters. Throughout this paper, sequen-
tial tick calls are denoted as tick0, tick1, etc. Be-
fore evaluation begins, Forge requires a startup con-
figuration. Figure 1 demonstrates a general configu-
ration file that specifies an evaluation and loads the
Evaluation System, with optional configuration pa-
rameters available for each evaluation.

{
"evaluations": [{

"name": "EvaluationSystem",
"config": { "key": "value" }

}]
}

Figure 1: JSON configuration for a general evaluation sys-
tem.

Figure 2 illustrates the evaluation process which is
typically divided into three phases. Following startup

1https://gitlab.com/cgvg/feanor/forge

Figure 2: General process diagram for one evaluation. (+)
is add, (-) is remove.

configuration, the initialisation phase (tick0) loads
and initialises required systems. The evaluation sys-
tem typically adds necessary entities and components
during tick0 or tick1. Between tick1 and tickn−1,
in the evaluation phase, systems perform their eval-
uation tasks where results are iteratively collected
and processed - for instance, retrieving rendering im-
ages and then computing similarity scores. At tickn,
in the finalisation phase, where the evaluation result
is presented and where cleanup occurs: the evalua-
tion system removes all systems added during tick0
and any entities with their components created dur-
ing evaluation. If specified in the startup configu-
ration, additional evaluations may follow. Evalua-
tion systems are thus responsible for system configu-
ration, bootstrapping, and data collection throughout
this process.

3.1.1 Synchronisation

In Forge, systems execute sequentially within each
tick. However, systems without data dependen-
cies (those not accessing the same component types)
can run in parallel to improve throughput. To main-
tain component consistency across multiple Forge in-
stances, Forge provides a synchronisation specifica-
tion. Any Synchronisation System implementing this
specification acts as a fence, ensuring all preceding
dependent systems complete their execution before

Forge: Extending Anvil for Visual Evaluation of Rendering Pipelines

261



Figure 3: Multiple Forge instances communicating through the synchronisation specification. The synchronisation block
(dashed rectangle) depicts the synchronisation process; the synchronisation systems are implicitly represented between Sys-
tem sets A and B, and encompassed in System set C.

proceeding.
Figure 3 shows Forge in a multi-process setup.

The main instance contains: System set A (pre-
synchronisation), the Synchronisation System, and
System set B (post-synchronisation). System set
C runs in a separate process with its own memory
space. The synchronisation system, enhanced for de-
centralised operation across multiple machines, en-
sures System set A completes before exchanging data
with System set C on its separate Forge instance. Af-
ter synchronisation completes, System set B proceeds
with execution.

3.1.2 WebSocket Synchronisation

The WebSocket System implements the synchroni-
sation specification to enable interprocess or remote
system integration. Forge can operate across differ-
ent language runtimes like Python, using their native
libraries. WebSockets provide broad language com-
patibility and browser support, enabling rapid devel-
opment of web-based evaluation systems.

The WebSocket System works in two modes:
server and client. In server mode, it captures snap-
shots of all entities at a given moment and broadcasts
them to connected client systems. In client mode, it
encapsulates systems requiring external data, operat-
ing in an isolated context that depends solely on entity
state from its corresponding instance.

Whenever tick runs, the server sends entities to
connected clients. Client systems can modify these
entities as needed, and after all systems finish execu-
tion, the modified entities are sent back to the server.
The server then updates its original entities, creating
the effect that changes occurred locally. Entities with
reflection components (Napoli et al., 2022) are read-
only - any attempts to modify them are silently ig-
nored.

3.2 Usage

A Forge system requires the implemention of two
methods: execute() and required components().
execute() runs automatically when Forge calls
tick. While optional, required components()
should return a list of components needed by the sys-
tem, allowing Forge to build a dependency graph for
concurrent system execution.

A Proxy System is needed when integrating com-
ponents or systems not natively supported by Forge
that run in separate processes. This includes exter-
nal tools, custom library components, and third-party
systems outside of Forge’s built-in capabilities. For
instance, integrating an external renderer with Forge
for evaluation would require the following approach:

1. Proxy System Development: An Anvil system
should be developed to function as an intermedi-

GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications

262



ary between Forge and the renderer.

2. Interface Requirement: The renderer must ex-
pose an interface that the Proxy System can utilise
for configuration purposes.

3. Configuration Handling: The Proxy System
should be designed to accept standard renderer
configuration molecules, which it will use to prop-
erly initialise the renderer.

4. Result Collection: The Proxy System should also
collect the output from the renderer and organise
it into molecules that Anvil/Forge can process.

5. Direct Molecule Option: When working with
renderers previously integrated with Anvil for de-
bugging, the Proxy System can be simplified.
These renderers can be modified to output result
molecules in a Forge-compatible format directly,
streamlining the integration process.

When a required Evaluation System is not avail-
able, users must implement a custom one follow-
ing the three stages described in Section 3.1. An
Evaluation System operates as a state machine, with
each stage triggered by tick events and synchronised
across all systems. This multi-stage approach is a
consequence of the ECS pattern, ensuring that all sys-
tems perform the necessary work and remain synchro-
nised at each stage of the evaluation.

Finally, after implementation is complete, Forge
instances are initialised using a configuration format
like that shown in Figure 1. For multiprocess or dis-
tributed setups, each Forge instance requires its own
separate JSON configuration file.

4 USE CASES

Forge was evaluated using two CG test cases: com-
paring outputs between two different rendering algo-
rithms on the same scene, and assessing spectral de-
noising with pre-computed coefficients in animation.
In addition to being typical tasks in CG evaluation
workflows, such as rendering buffers and comparing
raw versus denoised images, the use cases also high-
light Forge’s reusability and synchronisation features.

4.1 Light and Path Tracing Verification

Verification is a critical aspect of CG, particularly for
ensuring the accuracy of rendering algorithms. When
comparing different techniques, such as light tracing
and path tracing, verification is essential to confirm
the correctness of their implementations and the con-
sistency of their outputs. Both results must be either

Table 1: Cornell Box Shiny comparing light and path traced
scores. TM = ACES tone mapping.

Metric Score Score TM
FLIP 4.53e-02 8.12e-03

HDRVDP3 9.90 8.84
MSE 9.38e-05 1.77e-05
PSNR 69.94 47.53
SSIM 1.00 0.99

Figure 4: Light and path tracing flow diagram.

identical or closely aligned within acceptable error
margins, determined using image similarity metrics.
This comparison confirms the theoretical equivalence
of the algorithms, validates their implementations,
and helps identify discrepancies that may arise from
numerical precision, sampling strategies, or other im-
plementation details.

In this experiment, we use our in-house renderer,
Candela, which operates via JSON configuration files
through the command line. To integrate Candela with
Forge, we developed a Proxy System using one of
two approaches: exposing Candela as a shared li-
brary (risking new bugs), or writing a Proxy System
that launches Candela as a separate process. While
both methods require sufficient renderer configurabil-
ity, we chose the latter approach and implemented it
in Python, as simplicity was prioritised over perfor-
mance.

When encountering an Entity with a

Forge: Extending Anvil for Visual Evaluation of Rendering Pipelines

263



RenderConfig molecule, this System initiates a
Candela renderer process using a generated JSON
configuration that specifies the rendering technique
(light tracer or path tracer) and scene setup. After the
frame is processed, Candela saves the output buffers
to the file system. The System then creates a Buffer
molecule containing the radiance buffer data and
metadata, including buffer type, pixel format, and
image characteristics (reference or noisy).

The image comparison is managed by a sepa-
rate Forge instance running a dedicated Python Sys-
tem. This System processes entities with Buffer
molecules, comparing noisy buffers against reference
images or other noisy buffers. After executing the
comparison using five different metrics, it attaches the
results to the entity as a new Metrics molecule.

The Renderer Evaluation system orchestrates the
entire evaluation process. At startup, it loads
its configuration and, during tick0, creates a
RenderConfig molecule containing settings for eval-
uating both path tracing and light tracing algorithms
on a modified Cornell Box scene. The WebSocket
System runs in server mode, awaiting connections
from both the Candela and Metric systems. The Ren-
derer Evaluation System monitors for the appearance
of the Metrics molecule, which indicates the com-
pletion of the evaluation. Once detected, it records
the results and performs cleanup operations.

In the other processes, the WebSocket System op-
erates in client mode and wraps both the Candela
and Metric systems. During tick1, the Candela Sys-
tem processes the received RenderConfig molecule
to generate both path tracing and light tracing buffers,
which it attaches to the Entity. Subsequently, the Met-
ric System analyses these buffers and adds compari-
son results via a Metrics molecule to the same Entity.
The WebSocket System manages entity state synchro-
nisation and transfer between all processes. The com-
plete workflow, including all processes and data flow,
is illustrated in Figure 4.

4.2 Spectral Denoising

Spectral denoising (Napoli et al., 2024) involves de-
composing images typically into a frequency-related
domain where noise can be more easily distinguished
from the true signal. A multi-dimensional threshold-
ing function is applied in this domain, followed by
an inverse transformation to produce a denoised im-
age. A search algorithm identifies effective threshold-
ing coefficients, which we evaluate for their ability to
reduce noise in animated caustics.

The image denoising is performed by a Python
application called Spectral Image Denoising (SID),

which applies thresholding coefficients and config-
uration properties. A corresponding Proxy Sys-
tem was developed in Python to integrate SID
with Forge, allowing direct import of the denois-
ing logic. The system activates when an Entity
contains both a CoefficientConfig molecule and
a Buffer molecule (containing noisy and reference
caustic buffers). Upon detection, denoising is per-
formed and the denoised caustics buffer is added to
the Buffer molecule.

The Spectral Evaluation System conducts evalu-
ations using configuration data that includes coeffi-
cient values and renderer settings for a 16-frame an-
imation. Figure 5 shows the data flow between sys-
tems, the component repository, and the System’s op-
erations at each tick. Configuration data for both
Candela and SID systems is initially attached to a new
Entity. Similar to the Renderer Evaluation System in
Section 4.1, the WebSocket System operates in server
mode, while Candela and SID systems run as separate
processes in client mode through the WebSocket Sys-
tem.

During tick1, the Evaluation System waits for
results. The Candela System (reused) renders the
scene using the RenderConfig molecule, produc-
ing frame buffers with a noisy image (16 spp) and
a reference image (65,536 spp). The SID System
then denoises the 16 spp image using parameters
from the CoefficientConfig molecule. The Met-
ric System compares the noisy, reference, and de-
noised buffers, generating five metrics for both Noisy-
Ref and Denoised-Ref comparisons in the Metrics
molecule. This process repeats for all frames, with
the SID System collecting metric results at each sub-
sequent tick.

Once all frames have been evaluated, tickn ini-
tiates finalisation, cleans up by removing the Entity
containing the attached molecules, and generates the
result plot shown in Figure 6. The graph shows how
Curvelet coefficients perform in denoising animations
using MSE on the same scene it was trained with, but
viewed from different angles. The Denoised-Ref line
consistently remains below the Noisy-Ref line, indi-
cating that the denoising process was successful for
this animation. Figure 7 displays the noisy and de-
noised buffers generated for Frame 8.

5 DISCUSSION

Anvil organises data into atoms and molecules -
uniquely labelled data structures with semantic mean-
ing. This ensures systems work with well-defined
data formats. For instance, a Metrics component au-

GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications

264



Figure 5: Spectral flow diagram.

tomatically provides five specific image quality met-
rics: MSE, SSIM, FLIP, PSNR, and HDRVDP3.
Anvil’s registry of components and systems enables
easy reuse of existing molecules when developing
new systems.

The effectiveness of Forge depends heavily on its
available components, systems, and evaluation sys-
tems. For example, the spectral denoising case study
in Section 4.2 benefited from existing Candela and
Metric systems, significantly reducing development
time. Forge’s plug-in architecture, built on Anvil,
makes it easy for developers to create and share new
systems. The platform’s extensibility is evident in
how the light and path tracing verification could be

Figure 6: Spectral animation MSE score (lower is better).

Figure 7: Frame 8. Left: noisy, right: denoised.

enhanced by adding other renderer systems that use
RenderConfig molecules. For instance, implement-
ing a Proxy System for Mitsuba would enable veri-
fication against this renderer by simply registering it
during Forge’s initialisation.

Forge enables renderer evaluation without modi-
fying the renderer’s source code, separating evalua-
tion from application logic. Any renderer that can
be configured via files or an API can interface with
Forge. The platform’s synchronisation features, like
the WebSocket System, allow systems to operate in
isolated processes, including remote execution. This
architecture supports scalability, making Forge suit-
able for large-scale evaluations such as those in render
farms.

Forge supports real-time evaluation, allowing
analysis of renderers as they respond to user input like
camera movements or material adjustments. Other
systems can process these frames to assess temporal
coherence, motion blur quality, or sampling strate-
gies. This immediate feedback helps artists and de-
velopers make informed decisions about scene com-
position, lighting, and algorithms during content cre-
ation. Real-time analysis can also reveal bugs that
appear under specific scene conditions, making Forge
valuable for both post-render analysis and interactive
development in CG pipelines.

Forge’s architectural design not only makes eval-
uation more efficient but also minimises the poten-
tial for human error and configuration inconsistencies,
which are frequent sources of inaccuracy in compara-
tive CG studies. While Forge was originally designed
for use in the context of CG, it can also be applied in
other domains that have similar workflow characteris-
tics.

Forge: Extending Anvil for Visual Evaluation of Rendering Pipelines

265



6 CONCLUSIONS

This paper presents Forge, which builds upon Anvil to
standardise evaluation processes in computer graphics
pipelines. The system addresses major challenges in
the field, including maintaining consistent configura-
tions across renderers, reducing human error, and im-
proving experimental reproducibility. Through these
features, Forge enables researchers and developers to
conduct reliable and accurate comparative studies of
rendering techniques.

Forge’s modular architecture offers flexibility and
adaptability for diverse evaluation needs, allowing
users to integrate new systems and tools without dis-
rupting existing workflows. Its synchronisation in-
terface supports decentralised operations across in-
stances, as demonstrated by its WebSocket System
for remote evaluations, coordinating systems in sep-
arate processes or machines. This design enhances
scalability and versatility, making Forge ideal for var-
ious research contexts, from simple experiments to
complex distributed rendering evaluations in environ-
ments like render farms.

The paper’s case studies demonstrate Forge’s ef-
fectiveness across various applications, such as val-
idating rendering techniques by verifying algorithm
consistency and correctness, and measuring perfor-
mance and visual differences. The framework is a
valuable research tool, offering a standardised envi-
ronment to compare metrics like image quality, com-
putational efficiency, and noise reduction. By au-
tomating evaluation processes, Forge reduces config-
uration inconsistencies and human error, leading to
more reliable results.

A key limitation of Forge is its steep learning
curve for setup and usage, especially for new users.
Until wider adoption leads to more community-
contributed tools, users may struggle to integrate it
smoothly into their workflows and need to invest time
developing custom systems. Furthermore, the Web-
Socket System for remote evaluations, while enabling
distributed operations, may introduce network latency
that could affect timing-sensitive measurements. This
is particularly relevant for real-time rendering scenar-
ios where precise performance analysis is crucial.

Future development of Forge should prioritise
three key areas: improving accessibility through com-
prehensive documentation, tutorials, and example
projects to ease adoption; optimising the WebSocket
System for time-sensitive evaluations; and expand-
ing evaluation capabilities through new metrics and
machine learning-based analysis techniques. Active
community participation will be crucial for contribut-
ing additional evaluation systems and metrics, ulti-

mately enhancing the framework’s versatility across
different research applications. Furthermore, a com-
parative analysis should be performed to assess CG
workflows with and without the use of Forge, employ-
ing alternative tools for comparison.

REFERENCES

Alatalo, T. (2011). An entity-component model for ex-
tensible virtual worlds. IEEE Internet Computing,
15(5):30–37.

Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson,
M., Åström, K., and Fairchild, M. D. (2020). Flip:
A difference evaluator for alternating images. Proc.
ACM Comput. Graph. Interact. Tech., 3(2):15–1.

Andersson, P., Nilsson, J., Shirley, P., and Akenine-Möller,
T. (2021). Visualizing Errors in Rendered High Dy-
namic Range Images. In Theisel, H. and Wimmer,
M., editors, Eurographics 2021 - Short Papers. The
Eurographics Association.

Bilas, S. (2002). A data-driven game object system. In
Game Developers Conference Proceedings, volume 2.

Bonneel, N., Coeurjolly, D., Digne, J., and Mellado, N.
(2020). Code replicability in computer graphics. ACM
Trans. Graph., 39(4).

Dahl, T., Koskela, T., Hickey, S., and Vatjus-Anttila, J.
(2013). A virtual world web client utilizing an entity-
component model. In 2013 seventh international con-
ference on next generation mobile apps, services and
technologies, pages 7–12. IEEE.

Kallweit, S., Clarberg, P., Kolb, C., Davidovič, T., Yao,
K.-H., Foley, T., He, Y., Wu, L., Chen, L., Akenine-
Möller, T., Wyman, C., Crassin, C., and Benty, N.
(2022). The Falcor rendering framework.

Martin, A. (2007). Entity Systems are the future of MMOG
development.

Napoli, K., Bugeja, K., Spina, S., and Magro, M. (2024).
Spectral transforms for caustic denoising: A compar-
ative analysis for monte carlo rendering. In Advances
in Computer Graphics: Proceedings of the 41st Com-
puter Graphics International Conference, CGI 2024,
July 1–5, LNCS. Springer. In press.

Napoli, K., Bugeja, K., Spina, S., Magro, M., and De Barro,
A. (2022). Anvil: A tool for visual debugging of ren-
dering pipelines. In VISIGRAPP (1: GRAPP), pages
196–203.

Papagiannakis, G., Kamarianakis, M., Protopsaltis, A., An-
gelis, D., and Zikas, P. (2023). Project elements: A
computational entity-component-system in a scene-
graph pythonic framework, for a neural, geomet-
ric computer graphics curriculum. arXiv preprint
arXiv:2302.07691.

Unity Technologies (2024). Introduction to the data-
oriented technology stack for advanced unity devel-
opers.

Wang, V., Salim, F., and Moskovits, P. (2013). The Defini-
tive Guide to HTML5 WebSocket. Apress.

GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications

266


