
Towards Personal Assistants for Energy Processes Based on Locally
Deployed LLMs

Maximilian Orlowski a, Emilia Knauff and Florian Marquardt
Research Group for Cloud Computing, University of Applied Science Brandenburg,

Magdeburger Straße 51, Brandenburg an der Havel, Germany
fl

Keywords: GenAI, LLM, RAG, Embedding, Network-Operator, Business-Process, Assistant, Onboarding Coaching.

Abstract: This paper presents a coaching assistant for network operator processes based on a Retrieval-Augmented Gen-
eration (RAG) system leveraging open-source Large Language Models (LLMs) as well as Embedding Models.
The system addresses challenges in employee onboarding and training, particularly in the context of increased
customer contact due to more complex and extensive processes. Our approach incorporates domain-specific
knowledge bases to generate precise, context-aware recommendations while mitigating LLM hallucination.
We introduce our systems architecture to run all components on-premise in an our own datacenter, ensuring
data security and process knowledge control. We also describe requirements for underlying knowledge doc-
uments and their impact on assistant answer quality. Our system aims to improve onboarding accuracy and
speed while reducing senior employee workload.
The results of our study show that realizing a coaching assistant for German network operators is reasonable,
when addressing performance, correctness, integration and locality. However current results regarding accu-
racy do not yet meet the requirements for productive use.

1 INTRODUCTION

The rapid advancement of generative artificial intel-
ligence (GenAI) technologies, such as LLMs have
gained a lot of attention lately. This increased focus is
justified, as these innovative systems have had a pro-
found impact across nearly all industries, including
the realm of customer service operations. Notably en-
terprises providing customer services as part of their
own value chain or as outsourcing providers are often
characterized by relatively high employee turnover
rates, leading to significant challenges in maintaining
consistent quality and productivity throughout their
operations. Therefore, fast and precise on-boarding
along with effective coaching of new employees is
crucial to deliver high quality customer service op-
eration. Focusing specifically on customer service
operation within German network operators the mas-
sive increase in private PV feed-in led to massively
increased customer contact volumes in recent years.
Network operators have traditionally relied on man-
ual training processes, such as classroom sessions,
new employees shadowing experienced colleagues,
and providing extensive documentation. While foun-

a https://orcid.org/0009-0001-2223-9376

dational, these approaches are often time-consuming,
resource-intensive, and struggle to keep pace with
fast changing operational landscapes and technolog-
ical advancements. Digital learning management sys-
tems (LMS) and knowledge bases have been intro-
duced in recent years to streamline the training pro-
cess (Turnbull et al., 2019).

However, these systems often lack the flexibility
to quickly provide context-specific information, their
effectiveness is heavily dependent on regular manual
updates and maintenance and there is a need to reg-
ularly schedule and command instruct training ses-
sions. Some organizations have started experiment-
ing with AI-powered chat bots for employee support
and customer service (Rakovac Bekeš and Galzina,
2023). While the knowledge bases of these initial
AI implementations are vast, they often lack speci-
ficity. This results in a tendency to provide generic
responses that may not address the specific needs of
network operators. Moreover, in case LLMs are used,
these systems tend to hallucinate, especially when the
requested knowledge is sparsely represented in their
training data. This poses significant risks in contexts
where accuracy is crucial.

Many current AI solutions also face challenges in
terms of integration with existing systems and work-

Orlowski, M., Knauff, E. and Marquardt, F.
Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs.
DOI: 10.5220/0013175600003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 695-706
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

695



flows, limiting their practical utility in day-to-day op-
erations. Furthermore, cloud-based AI solutions raise
concerns about data security and privacy, particularly
when dealing with sensitive customer and process in-
formation (Pakmehr et al., 2023). These limitations
highlight the need for a more advanced, secure, and
context-aware solution that can provide accurate and
timely support while being safe and secure in terms
of privacy and seamlessly integrates with existing op-
erational processes.

Our aim is to provide a ChatGPT-like user ex-
perience for new and existing employees, assisting
them in navigating new knowledge during their work.
Therefore, we need to ensure suitable performance,
correct and helpful answers, seamless UI integration,
safe and secure management of both special process
knowledge as well as input user data.

We argue that four dimensions performance, cor-
rectness, integration and locality are crucial when
building an AI-based assistants in compliance sensi-
tive markets like the German energy sector.

To address these challenges, we propose an on-
premise deployed Retrieval-Augmented Generation
(RAG) system based on open-source Large Language
Models, designed as a coaching assistant for network
operator processes. We contribute a detailed descrip-
tion of the needed infrastructure, systems and data
and evaluation measure outcomes. Implementing the
introduced approach can substantially enhance accu-
racy and speed of onboarding while simultaneously
reducing workload of seasoned employees.

2 UNDERLYING
TECHNOLOGIES

In the context of this paper two types of models are
relevant: Large Language Models as well as Embed-
ding Models.
An LLM is a type of neural network that uses the
transformer architecture (decoder-only transformer,
to be precise) with self-attention heads(Yenduri et al.,
2023). This is also reflected in the GPT abbrevia-
tion which stands for Generative Pretrained Trans-
former. It takes a natural language text input of ar-
bitrary length and, in turn, generates natural language
text output. Because of its stochastical nature, the out-
put with the highest probability for the given input
is returned. The models are trained on large corpora
of texts, such as the entirety of digitalized books of
the world, the complete content of Wikipedia or huge
amounts of scraped web content.

Since the first release of pretrained language mod-
els like GPT-1 by OpenAI(Radford et al., 2018), nu-

merous models have been developed, ranging from
proprietary to open-source implementations. These
models often differ in the datasets (corpora) they
were trained on, their size (which is determined
by the number of parameters in the networks),
the network architecture they use (encoder-decoder,
decoder-only)(Fu et al., 2023) and the licenses they
are released under.

All of these models suffer from certain problems,
the most prominent of which is called hallucina-
tion(Brown et al., 2020), (Joshi et al., 2021). Hal-
lucination describes the problem, where a model pro-
duces an output that is factual or logical incorrect for
the given input, even though it might still be the most
probable output the model could generate for that spe-
cific input, given its training data. To mitigate this
problem, different techniques have been developed
over time.

Firstly, looking at an LLM as a black box there
are two parts that can be adjusted to cope with hal-
lucinations. The model itself as well as the prompt.
Tonmoy et al. describe these possibilities as Devel-
oping Models and Prompt Engineering respectively
(Tonmoy et al., 2024). Developing the model could
mean one of two things. One option is to train an
entire model from scratch on a dataset derived from
the respective domain. However this kind of pretrain-
ing comes with the burden of requiring massive com-
putational ressources which is rarely feasible outside
big tech companies. The second option is model fine-
tuning, which also relies on a domain specific data set.
However, unlike pretraining, fine-tuning only adjusts
a significant smaller fraction of the models parame-
ters, usually the last layer of the neural network. This
reduces computation costs significantly and makes it
possible to fine-tune models even on consumer hard-
ware (like a NVIDIA GTX 4090) for small models
(e.g., up to 7 billion parameters). Also the amount
of data needed for fine-tuning is significant smaller in
comparison with a pretraining.

Prompt Engineering, the second approach to mit-
igate hallucinations, aims to adjust the prompt (text
input) in a way that reduces the likelihood of halluci-
nations. One commonly used tactic is to add text to
the input, that tells the LLM not to produce an answer
if that answer is not based on actual data and instead
tell the user that a factual answer cannot be generated
from the (pretrained) data.

In RAG Systems, in addition to this method, the
LLM is provided with a prompt that already contains
all the facts that are required to answer the question
correctly. From this fact-enriched prompt the LLM
only needs to generate a well formulated answer con-
taining the provided facts.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

696



In contrast to LLMs Embedding Models are mod-
els that are used to produce numeric vector represen-
tations of text (although other types of information,
such as images, can be embedded too, we focus on
textual representation). Although each LLM contains
an embedding layer, standalone embedding models
are usually used in RAG systems for the first step,
known as retrieval. Initially all facts or chunks of
knowledge are handed over to the embedding model
which generates embedding vectors (in short embed-
dings) of them.

Retrieval Augmentation Generation (RAG) is a
technique to enhance the performance of large lan-
guage models (LLMs)(Lewis et al., 2021),(Guu et al.,
2020). It allows the incorporation of domain-specific
knowledge bases to generate more accurate and
context-aware responses by an LLM. This approach
is particularly beneficial when the LLM’s pre-trained
knowledge may be outdated, incomplete, or lacks spe-
cialized information. In our cases we can include the
domain specific knowledge of distinct processes of
the German energy industry that way.

The first step in setting up a RAG system is re-
trieval, which involves preprocessing a variety of doc-
uments in varying formats such as html, pdf, and oth-
ers which can be referred to as the external knowl-
edge base. They are preprocessed by the embed-
ding model extracting relevant information and trans-
forming them to embeddings which are stored in
a local vector database. In our experiments, we
used the chromadb vector database (Chroma, 2023)
for the implementation. There are a number of
other implementations and providers of online vector
databases(Langchain, 2024). We chose chromadb for
our experiments as it is easily deployable locally, well
documented and does not require to register with any
online service.

Through semantic similarity calculations on the
query embeddings and the embeddings stored in the
vector database, relevant document chunks can then
be retrieved from the external knowledge base.

In the augmentation phase the retrieved document
chunks are integrated into the prompt. This aug-
mented prompt combines the original user query with
the additional contextual information from the ex-
ternal knowledge, ensuring the model’s response is
grounded in domain-specific data.

Finally, the generation phase refers to the creation
of a response based on the augmented prompt. The
LLM now uses not only its internal knowledge but
also the retrieved domain specific knowledge.

Retrieval Augmented Generation is categorized
as a prompt engineering technique(Tonmoy et al.,
2024). As RAGs require to insert all available knowl-

edge into the prompt, the utilized LLM must have a
prompting window, also known as context length, of
suitable size.

Similarity Matching describes the process of com-
puting a similarity score of two pieces of text to
determine how semantically similar those pieces of
text are to each other. To achieve this, the texts are
first handed over to an embedding model (see above)
which computes numerical vector representations of
them and then a distance metric (euclidian distance,
cosine, dot product) is calculated for those vectors
(embeddings). The value this metric yields is tanta-
mount to the semantical similarity of the correspond-
ing texts(Tunstall et al., 2022).

Chunking is a necessary pre-processing step in
RAG systems during which documents get partitioned
into smaller segments, that are called chunks or splits.
These chunks are later embedded by an embedding
model which means that this model generates numeri-
cal vector representations for the documents’ chunks.
The generated vectors, called embeddings, are then
used for semantic similarity matching in high di-
mensional vectorspaces. The concept is, that those
vectors whose corresponding textchunks are semanti-
cally similar to each other, are located closely to each
other in a given vectorspace. The similarity of the
textchunks is measured by applying one of serveral
different distance measures to the embeddings in the
vectorspace. The distance measure used for this can
be the cosine of the angle between two vectors, the eu-
clidian distance between the vectors or the dot product
of the two vectors(Levy et al., 2024).

3 INFRASTRUCTURE / SYSTEM
ENVIRONMENT

The decisions regarding the infrastructure address the
dimension performance as well as locality. For our
system environment, the most critical constraint was
to ensure data confidentiality. No classified data (cus-
tomer data, internal company data) was allowed to
leave the local datacenter. Hence, we had to host our
models (LLMs, Embedding Models) on-premise and
make sure that no data was sent to any external API,
such as OpenAI, Google or others. This meant we
could not make any remote calls to, e.g., the OpenAI
API and could not use strong third party models or
rely on their computational power either.

To run our own local Large Language Models, an
NVIDIA A100 80GB PCIe AI Accelerator(NVIDIA
Corporation, 2023b) was available. This hardware
was necessary due to the fact that it provides a suffi-
ciently large amount of VRAM (80GB), as we wanted

Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs

697



Table 1: System environment specification
Virtual Machine # vCPU-Cores RAM OS

VM1 28 252 GB Ubuntu 22.04.03 LTS
VM2 2 32 GB Ubuntu 22.04.03 LTS

to be able to run models with up to 70 billion pa-
rameters or multiple models (with up to 13 billion
Parameters) at the same time. The AI Accelerator
was made available to the VM via PCIe Passthrough.
NVIDIA allows for sharding of AI Accelerators (Am-
pere Arcitecture or newer) through its Multi-Instance-
GPU (MIG) Feature(Corporation, 2024), which we
used to run multiple models in parallel.

As the runtime environment for the LLMs we
chose FastChat(lm-sys, 2024) which supports run-
ning multiple models in parallel and offers an OpenAI
compatible API(OpenAI, 2024). It was released un-
der the Apache 2.0 license which allows commercial
use. We also tested Ollama(Ollama, 2024) as a run-
time environment alternative which proved especially
useful for tests on our local developer devices

Our system environment was composed of two
virtual machines. To achieve a clean architectural sep-
aration, the first VM hosted the LLM and its runtime
environment. Furthermore it had access to the un-
derlying AI Accelerator. This VM was provisioned
with CUDA in version 12.2.(NVIDIA Corporation,
2023a). The second virtual machine hosted all other
components, such as the applications’ backend and
frontend and communicated with the first VM via
HTTP using REST APIs. The most relevant hardware
specifications of our virtual machines can be found in
Table 1.

4 CRITERIA FOR CHOOSING
MODELS

The selection of models for our system was based on
the following criteria:

1. The model is published under a license that allows
modification as well as commercial use.

2. The model can be used locally in our system envi-
ronment, which constrains the number of param-
eters of the model to a maximum value of 70 bil-
lion (unquantized) to fit in the VRAM of our AI
Accelerator.

3. The model had to be pretrained, or at least fine-
tuned on German language.

4. The model’s context window is large enough to
fit in all the required text from the retrieved docu-
ments.

Figure 1: Processes of Ingestion and User Querying.

Another weak criterion is the number of parame-
ters of the Large Language Models. It is of impor-
tance as larger models (in terms of parameters) tend
to show better results in answer quality.

The same criteria and constraints applied for our
embedding model. We started our experiments with
standard models like all-MiniLM-L6-v2 but quickly
found that those English embedding models per-
formed poorly for the German texts in our knowledge
base and the German queries from our users. There-
fore we decided to use cross-en-de-roberta-sentence-
transformer an embedding model by T-Systems (T-
Systems, 2024) which is finetuned for german lan-
guage and performed reasonably well in our use
cases. Later in the project, we also used the mxbai-
embed-large-v1 by Mixedbread.AI (Mixedbread.AI,
2024) as that yielded even better results in our re-
trieval tests (see section 9).

Table 2 shows a comparison between the language
models we tested. We first experimented with Vicuna
in its 13B and 33B variants. While especially the 33B
variant yielded good results in terms of answer qual-
ity, we had to discard it since its license does not allow
for commercial use. We then switched to the Llama2
base models but those lacked in quality when it came
to generating answers. The one exception to this was
the 70B model. However, this variant was relatively
slow and made further tests with multiple AI Acceler-
ators running in parallel infeasible as it took up almost
100% of our VRAM.

In the end, we settled for the Llama-2-13B-chat-
german (by jphme(Harries, )) model which is a fine-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

698



Table 2: Comparison of candidates for utilized LLM.

Name base / finetuned Req. VRAM Context Size Licence speaks German
(8bit compr.)

Vicuna 33B finetuned Llama2 48GB 4k Tokens Non-commercial license yes(well)
Llama2-13B base 26GB 4k Tokens Llama 2 license yes(poorly)

Llama2-13B-Chat-german fine-tuned 26GB 4k Tokens Llama 2 license yes(well)
Llama2-70B base 76GB 4k Tokens Llama 2 license yes(mediocre)
Llama3-8B base 13GB 8k Tokens Llama 3 license yes(mediocre)

Llama3-1-8B-Instruct base 15GB 8k Tokens Llama 3 license yes(well)
Llama-3-SauerkrautLM-8b-instruct fine-tuned 13GB 8k Tokens Llama 3 license yes(well)

tuned version of the corresponding 13B base model.
Like the base model it takes up approximately 26GB
of VRAM but at a much better ability to understand
and output German language.

At the time of writing this paper we have also al-
ready tested the new Llama3 model family (includ-
ing Llama3.1 but except the 405B versions, as they
were too resource intense for our hardware), which
was released by meta on April, 18th(Meta, 2024) and
July 23th 2024 respectively(Touvron et al., 2024) as
well as some of its German fine tuned derivatives
like the Llama-3-SauerkrautLM-8b-Instruct model by
Vago Solutions(VagoSolutions, 2024) which is pub-
lished under Metas’ Llama3 license(Meta, 2024).

5 SYSTEM ARCHITECTURE

From a process perspective, our RAG System can be
divided in two main parts. The first part is the in-
gestion process of the documents and the second part
is the user querying or inference (see Table 1). The
ingestion process consists of two sub-processes that
run in sequence. First, we preprocess the knowledge
documents. This is necessary because each docu-
ment contains a table of contents and a version his-
tory. Those components have to be removed as they
can potentially be retrieved by our retrieval system,
which feeds to the LLM, diminishing its answer qual-
ity.

After we clean up our documents, we chunk them.
Chunking of the documents is necessary. Using the
entire body of each document does not yield satisfac-
tory embeddings that accurately reflect their semantic
meaning. The larger the text that is to be embedded,
the worse the precision of retrieved texts (by simi-
larity matching the corresponding embeddings) be-
comes. This is because embedding models are trained
on sentences of comparativly small or average sizes.

For instance, 85.1% of the sentences in the
MultiNLI dataset (Williams et al., 2018), which was
used together with the SNLI dataset for training
SBERT, are at most 187 characters in length (1 To-
ken roughly equals 3-4 characters, depending on the

tokenizer used) as can be seen in (multiNLI, 2024).
For the user querying process we first embed the

query using the same embedding model that the docu-
ments text chunks were embedded with. The embed-
ded query is then used to perform a similarity match-
ing against the embeddings within our vector database
to determine which chunks of text are most similar
and therefore most relevant to the users query. A num-
ber of n chunks is then retrieved from the database.
Those retrieved chunks are comparatively small (max.
256 tokens) to keep the accuracy of the similarity
matching high (see section 2).

While those small chunks are likely to represent
information that is relevant to the querys’ answering,
it is also likely to be too little information to answer
it fully. We mitigate this problem by also retrieving a
number m of chunks before and after the chunk that
was matched, creating a context window for each rel-
evant chunk. This context window provides the LLM
with enough information to generate a meaningful an-
swer while preserving the relevancy of the informa-
tion.

After retrieving the relevant chunks and expand-
ing the context windows around them, enriched
chunks are concatenated with each other to form the
final context. This context is concatenated with the
users original query forming the prompt that is fed to
the LLM. The LLM is thereby provided with a prompt
containing the users query as well as the relevant in-
formation for answering it.

Our system was implemented using
Langchain(Chase, 2022) for the backend and stream-
lit for the frontend(Streamlit, 2022). Langchain is
known as a swiss army knife framework as it offers
extensive functionality for all kinds of use cases,
not limiting itself to only RAG. An alternative to
Langchain is llama-index(Liu, 2022). Llama-index
is more tailored to RAG systems as it specializes in
good retrieval of documents in large datasets. How-
ever, we chose to use Langchain for our applications
as it provides out of the box implementations of
features such as managed chat history which makes
setting up chatbots easier.

To better integrate our RagBot system into the
automatic evaluation process, we developed a wrap-

Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs

699



ping API. This API allows for document retrieval and
answer generation. As outlined in Section III, we
utilized Fastchat as the runtime environment for our
models. Fastchat offers an OpenAI-compatible API,
which we access via Langchain. To expose the func-
tionality written with Langchain as a REST API, we
used the Flask framework(Pallets Projects, 2010).

The /documents endpoint of the API supports both
GET and POST methods. The GET method returns
documents matching a given search query, while the
POST method performs document retrieval using vec-
tor search within a specified context window. The
/llm answer endpoint supports POST requests, gen-
erating answers using the LLM based on the provided
query.

Both the Streamlit-based frontend and the RagBot
API share the same underlying models and implemen-
tation. However, they differ in response delivery: the
frontend UI streams tokens to the user as they are gen-
erated, while the API returns the entire generated an-
swer in a single response after processing is complete.
The latter approach, while leading to response times
of several seconds, however is suitable for evaluation
systems like Promptfoo, which usually handles large
batch runs.

6 USE CASES

We examined two use cases. As a first test of
our architecture and model choices, we built a con-
versational agent for the ”Marktstammdatenregister”
(MaStR)(Bundesnetzagentur, 2019).
The Marktstammdatenregister is a comprehensive,
centralized database in Germany, managed by the
Federal Network Agency (”Bundesnetzagentur”).
It records detailed information about all energy-
producing units, including renewable and conven-
tional sources, and selected energy-consuming units
(in terms of the MaStR every device, which can or
must be registered, such as a PV-system or a battery,
is called a unit). The registry aims to improve market
transparency, facilitate the planning of energy infras-
tructure, and support regulatory and policy-making
processes. It ensures compliance with EU regula-
tions by providing a reliable and consistent dataset
for market participants and authorities. The imple-
mented conversational agent demonstrated the capa-
bility to provide comprehensive responses. These re-
sponses cover all customer-relevant requests pertain-
ing to processes facilitated by the Marktstammdaten-
register. Although the use case was initially dedicated
to end user support, it serves well as a coaching as-
sistant for new service operators responsible for the

MaStR customer support. In the remainder, this use
case is referred to as ”MaStR”.

The second and more comprehensive use case is
an employee coaching assistant for a big German net-
work operator, where several hundred of employees
as well as outsourced personnel are responsible to
provide first, second and third level support for Ger-
man energy customers. Customer service is deliv-
ered via multiple channels such as phone calls, email,
mail, chat conversations, and more. The employee
turnover rate is at 20 to 30 percent per year, so about
one quarter of employees must be on-boarded year by
year. On-boarding contains and is structured by the
network operators processes, e.g., change of operator,
master data change, calculation of advance payment
and others. In the following, this use case is referred
to as ”Network Operator”.

7 DATA

The dataset for the use case MaStR comprises 27
documents, and in addition one FAQ document, all
of which provide assistance and manuals for MaStR
users in various situations, such as the user sign up,
registration of installations, or master data manage-
ment of units. These documents are predominantly
step-by-step guides and manuals, such as registra-
tion aids. Challenges arose primarily from content
and revision tables, which were frequently included in
the generated responses. Additional challenges came
from screenshot-based guides or documents heavily
comprised of images, which are not adequately pro-
cessed by a language model. Consequently, manual
preprocessing involved the removal of content and
revision tables, as well as documents predominantly
composed of images.

The data provided for the use case Network Oper-
ator was the process documentations of the researched
network operator processes, of which 19 were inves-
tigated. The process descriptions are mostly stored in
the organisation’s Confluence-based wiki. However
additional documentation in separate files or even
as part of Emails or other sources may exist. The
respective documents were exported from the com-
panie’s wiki as PDF documents and had an overall
size of 34MB. The documents contain typical features
of process documentations such as headers and foot-
ers with logos, tabular content summaries, outlines,
and tabular version histories. All of them are ambigu-
ous inputs for the embedding model as well as the
LLM. On the one hand these parts are mostly redun-
dant and thus disturbing for the model. On the other
hand they contain important data for the document re-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

700



trieval step. For our POC these inputs were removed
manually. Besides the mentioned overhead informa-
tion the process documents contained lots of screen-
shots. For the generation of the embeddings we omit-
ted these screenshots, however in the final answer of
the assistant the screenshots where included. All texts
were written in German language.

8 EXPERIMENTS

The procedure for conducting our experiments dif-
fered between our two use cases MaStR and Network
Operator. For the MaStR use case the experiments
were done manually, whereas we did both manual and
automatic experiments for the Network Operator use
case. For both use cases we needed a ground-truth,
something that we could compare the results of our
experiments with. The following describes what we
did on a per use case basis.

For our first use case, MaStR, various experimen-
tal configurations were tested to determine the accu-
racy and reliability of the models. As the ground truth
for this use case we used a document containing 90
frequently asked questions (FAQs) and their corre-
sponding answers that were checked by domain ex-
perts and confirmed to be correct. They were used to
compare different configurations of the model to ob-
serve consistency of improvements. An experiment
run posted all 90 questions to the model and the re-
sults were compared to the given answers of the FAQ.
We used a binary rating scale where 0 denotes failure
(the answer didn’t suffice) and 1 denotes pass (the an-
swer mostly reflects the information of the given an-
swer). The result rating of a run was calculated by av-
eraging the binary results of all questions, leading to a
value between 0 and 1. Testing different temperature
setting for the modell led to the following results. A
temperature of 0.5 yielded an average rating of 0.64,
compared to 0.57 at a temperature of 0.1. Thus, a
temperature of 0.5 yielded most satisfactory results in
our setting fostering the decision to further utilize a
temperature setting of 0.5 for our experiments to de-
termine the stability of generating good responses.

For the second use case, Network Operator, our
objectives were twofold. First, we wanted to assess
the quality of the retrieval step of our RAG system.
That means we needed to test for its precision and re-
call concerning the documents, or document chunks
to be precise, retrieved from our vector database as
those formed the context from which the LLM gener-
ated its answers. The second objective was to test for
the quality of the generated answers. This test was es-
sential to evaluate whether the LLM would be able to

formulate a correct and coherent answer based on the
retrieved context given to it in the preceding step. For
both of these experiments we used the same document
as the ground truth. This document was a catalog con-
taining:

1. 1000 assumed questions from network operator
trainees,

2. the names of the documents containing the neces-
sary information for answering these questions, as
well as

3. a preformulated correct answer for that given
question.

The evaluation for both objectives was based on au-
tomatic validation using Promptfoo(Webster, 2024).
Leveraging Promptfoo we checked for precision and
recall in the retrieval step by first feeding the expected
documents from the aforementioned catalog for each
question to it. It then queried the sytem with the sam-
ple questions and matched the retrieved documents
against the expected ones and finally calculated the
precision and recall scores.

For the evaluation of the generated answers by the
LLM we needed to implement some custom logic that
promptfoo used for its checks. To check whether or
not generated answers matched our known-good an-
swers from the catalog we could have used a simple
string matching (containing steps like trimming and
making both texts lower case etc.) but this would have
meant that both answers (known-good and generated)
would have had to be exactly the same, to the letter.
Instead we decided to check for similarity between
the two answers. Accordingly, we had our embedding
model generate embeddings for each known-good an-
swer as well as each generated answer and calculated
cosine similarity of the embeddings to see how sim-
ilar the generated answer was to the corresponding
known-good answer.

9 RESULTS

After describing our system, the used data and the
performed experiments, the results will be described
along the four initially introduced dimensions.
Performance. We determined the overall perfor-
mance of our system by measuring the response times
from submitting a query to the moment the final re-
spone was returned. This measuring happened in
promptfoo which used our systems API. Response
times of our system ranged from 3.8 s to 43.5 s with a
mean response time of 8.7 s (all values rounded to one
decimal place). The measured times are also shown in
Figure 2.

Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs

701



5

10

15

20

25

30

35

40

45

re
sp

on
se

tim
e 

in
 s

ec
on

ds

min: 3.8

q1: 6.6
median: 8.0
mean: 8.7
q3: 10.2

max: 15.3

Figure 2: Response times during generation step (500 sam-
ples).

The majority of the measured times (75%) were
lower than 10.2 s. It is worth noting that for the
sake of conducting the correctness tests of our system,
it was unnecessary to stream the LLM’s responses.
However, in our UI, the responses were streamed to
the user. This reduced the perceived response times
significantly in each case, as the users could imme-
diately see the system’s responses as they were being
generated.

We also discussed taking measurements for the
time it takes the embedding model to create embed-
dings but quickly found that those times were in the
milliseconds and therefore insignificant. Especially
during the generation of our vector database steps
like reading in the pdf documents took considerably
longer than the generation of embeddings which made
measuring the latter irrelevant. Additionally, generat-
ing the vector database happens only whenever our
knowledge base changes which is a.) rare and b.)
plannable and can therefore be done during times of
low usage leading to low impact on our users. Whilst
each query a user submits has to be embedded as well,
this too only takes a few milliseconds and does not
noticeably impact the user experience.
Correctness: In the case of the Marktstammdaten-
register (MaStR) the correctness was measured man-
ually by having domain experts compare the LLM-
generated answers to known-good answers in an FAQ
document as mentioned in section 8.

Higher temperatures often led to more off-topic
responses hence lowering the rating. During the ex-
periment critiques of the FAQs emerged, as they were
not always unambiguous. This pattern was also found
in the second examined use case underlining that
gathering sufficient and correct input data is crucial
for provisioning of AI agents.

For the Network Operator case we took measures
for the retrieval and the generation steps of the RAG
system. For the retrieval we measured:

1. precision of the retrieval of documents (#correctly
retrieved documents / #all retrieved documents)

2. recall of the retrieved documents (#correctly re-
trieved documents / #correctly retrieved docu-
ments + #incorrectly not retrieved documents)

To calculate the precision of our RAG system, we
needed a ground truth baseline to which we could
compare the system’s answers. As mentioned in sec-
tion 8, we used a catalog for this containing a sam-
ple set of questions, the documents that should be re-
trieved for a given question, as well as a known-good
answer for each question. Using a randomly chosen
subset of 500 samples from the original catalog, our
system reaches a 90.8% precision rate during for re-
trieval step of the RAG-System.

As for the generated answers, when running our
tests for semantic similarity between them and our
known-good answers, we received test pass rates from
∼ 21.6% to ∼ 40.2% depending on how large we
chose the context window size (the amount of text
added before and after each retrieved chunk). How-
ever, despite these test results, manual revision of the
generated answers often showed that even the answers
that failed the similarity tests still contained large
parts of the correct answer and only seemed to fail
the tests due to additional LLM-output that followed
the actual answer.

We compiled a short list of example questions, the
corresponding known-good answers, as well as the
answer generated by the LLM for that question. This
is shown below, in Table 4.

It is clear from the data that increasing the number
of chunks as well as the context window around those
chunks positively impacted answer quality. Both
means increase the context that the LLM can work
with to generate its answers. The upper limit for the
size of the context window is given by the size of each
document that the retrieved chunk belongs to. How-
ever, while it may seem reasonable to continue in-
creasing the context window around each chunk one
has to consider that this may also lead to an increase
of information given to the LLM that is irrelevant to
answering the original question.

In general, the upper limit of the size of the con-
text given to the LLM is constrained by the respective
models context window, which, in our case, was 4000
Tokens. Exceeding this context window will result
in truncation and therefore the LLM will not take all
the information into account. However, context win-
dows of LLMs have shown to be increasing in size
with each new generation of models so this may not
be a restraining factor in the future anymore.
Integration: To integrate our system in our users ev-
eryday workflows we designed the RAG system as

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

702



Table 3: Performance results.

model avg speed / test run
jphme/Llama-2-13b-chat-german 11,86 s

meta-llama/Meta-Llama-3.1-8B-Instruct 8.7

a chatbot running on a simple, minimalistic website.
This website can be opened in an additional browser
window or tab on the desktop of the employee so it
integrates seamlessly with the software they are run-
ning anyway. In addition integrating the RAG sys-
tem into different legacy systems is ensured as we are
leveraging standard technologies like Langchain and
established interfaces such as the OpenAI API.
Locality: The whole RAG system is deployed on ma-
chines in the local data center of regiocom. There-
fore a significant investment in the AI accelerator card
was necessary. However, as current research indicates
the availability of much smaller models, both for em-
bedding as well as language generation, future invest-
ments may be much lower.

We conclude that leveraging locally running em-
bedding models for information retrieval as well as
large language models for summarization and an-
swer generation is a suitable means for individual em-
ployee coaching and can help relieve the burden on
network operators.

10 FUTURE WORK

For the first three of our four main dimensions, there
are several tasks for future development. The require-
ment of Locality is fulfilled with the current architec-
ture, and for the moment no future work needs to be
identified.
Performance. There are several areas for potential
improvement in system performance:

• Alternative Runtime Environments: While our
current implementation uses FastChat as the run-
time environment, exploring other options such as
Ollama or LoraX could potentially yield perfor-
mance benefits. A comparative analysis of differ-
ent runtime environments could help identify the
most efficient solution for our use case.

• Load Testing: To ensure the system can handle
real-world demands, it’s crucial to conduct com-
prehensive load tests simulating scenarios with
hundreds or thousands of concurrent users. This
will help identify potential bottlenecks and opti-
mize the system’s ability to scale under high load
conditions.

• Response Time Optimization: Although our cur-
rent best mean response time of 8.7 seconds with

the Llama3.1-8B-Instruct model (as shown in Fig-
ure 2) is acceptable for many use cases, there’s
room for improvement. Investigating ways to
reduce latency, as the retrieval process is fast
enough in our case exploring more efficient mod-
els or model quantization could enhance the user
experience, especially for time-sensitive queries.

By addressing these performance-related aspects,
we aim to create a more responsive, scalable, and ef-
ficient system capable of meeting the demands of a
large-scale deployment in a network operator environ-
ment.
Correctness. To improve the accuracy and reliability
of our system, we have identified the following key
areas for future work:

• Enhanced Chunking Strategies: Our current
chunking method for document processing can be
refined. Developing more sophisticated chunking
algorithms that better preserve context and seman-
tic coherence could lead to improved retrieval ac-
curacy. This might involve experimenting with
various chunking sizes, overlapping chunks, or
semantic-based chunking methods.

• Improved Data Preprocessing: The quality of our
input data significantly impacts the system’s per-
formance. Future work should focus on devel-
oping more robust preprocessing pipelines. This
could include better handling of tables, headers,
footers, and image captions, as well as improved
methods for extracting relevant information from
complex document structures.

• Expansion of Expert Evaluation Datasets: To
more rigorously assess our system’s correctness,
we need to expand our collection of expert-
curated evaluation datasets. This involves:

– Collaborating with domain experts to create
a larger, more diverse set of question-answer
pairs.

– Developing more comprehensive test scenarios
that cover a wider range of use cases and edge
cases.

– Regularly updating these datasets to reflect
changes in processes and regulations within the
energy sector.

• Refinement of Evaluation Metrics: While our cur-
rent evaluation methods provide valuable insights,
there’s room for improvement. Future work could
involve:

– Developing more nuanced metrics that go be-
yond simple similarity scores, possibly incor-
porating domain-specific evaluation criteria.

Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs

703



– Implementing automated systems for continu-
ous evaluation and monitoring of the system’s
correctness over time.

By focusing on these areas, we aim to significantly
enhance the correctness and reliability of our RAG
system, making it an even more valuable tool for em-
ployee coaching and support in the network operator
environment.
Integration. Workstation desktops of service cen-
ter employees usually contain significantly more than
one open window. Depending on the environment and
the complexity of the respective task, three, four or
more applications fill the screen. Thus, an integration
into one single application (e.g., an ERP System like
SAP) is likely to be incomplete. For now, the solution
to provide the assistant as a web-based application is
a bearable compromise. As the whole application is
tailored in an API-first manner, switching UIs or in-
tegrating it into another UI is possible and straight-
forward.

11 CONCLUSIONS

This paper introduced a locally deployed RAG system
for employee coaching in the energy sector, focusing
on network operator processes. Our key contributions
include the following:

• Development and implementation of an on-
premise AI coaching system for the energy sector

• Evaluation of system performance across correct-
ness, performance, integration, as well as data and
runtime locality

Our findings show that local embedding models
for retrieval, combined with LLMs for answer genera-
tion, can effectively support individualized employee
coaching. The system achieved a 90.8% precision
rate for the retrieval of relevant documents from our
knowledge base. While promising, these results need
further improvement to be used in a productive envi-
ronment. The potential impact of this work extends
beyond immediate performance metrics. As AI tech-
nologies evolve, such systems could significantly en-
hance knowledge management and employee train-
ing in the energy sector. However, challenges remain
in data preprocessing, model choices and configura-
tions. In conclusion, our work represents a step to-
wards practical AI application for customer service in
the energy sector. While the results are encouraging,
further research and refinement are necessary to reach
a production-ready quality for our assistant.

ACKNOWLEDGEMENTS

This work was funded by regiocom SE, Germany.
The authors would like to express their gratitude to
regiocom for their financial support and for providing
access to the necessary data and resources that made
this research possible.

REFERENCES

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners.

Bundesnetzagentur (2019). Marktstammdatenregister.
https://www.marktstammdatenregister.de. © Bun-
desnetzagentur für Elektrizität, Gas, Telekommunika-
tion, Post und Eisenbahnen — DL-DE-BY-2.0.

Chase, H. (2022). LangChain.
Chroma (2023). Chromadb. Available at: https://www.

trychroma.com/.
Corporation, N. (2024). NVIDIA Multi-Instance GPU User

Guide. Accessed: 2024-08-16.
Fu, Z., Lam, W., Yu, Q., So, A. M.-C., Hu, S., Liu, Z., and

Collier, N. (2023). Decoder-only or encoder-decoder?
interpreting language model as a regularized encoder-
decoder. https://arxiv.org/abs/2304.04052.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-W.
(2020). Realm: Retrieval-augmented language model
pre-training.

Harries, J. P. https://huggingface.co/jphme/
Llama-2-13b-chat-german. Accessed on 2024-
08-05.

Joshi, V., He, W., sun Seo, J., and Rajendran, B. (2021). Hy-
brid in-memory computing architecture for the train-
ing of deep neural networks.

Langchain (2024). https://python.langchain.com/v0.2/docs/
integrations/vectorstores/. Accessed on 2024-08-03.

Levy, A., Shalom, B. R., and Chalamish, M. (2024). A
guide to similarity measures.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau
Yih, W., Rocktäschel, T., Riedel, S., and Kiela,
D. (2021). Retrieval-augmented generation for
knowledge-intensive nlp tasks.

Liu, J. (2022). LlamaIndex.
lm-sys (2024). FastChat: An open platform for training,

serving, and evaluating large language model based
chatbots.

Meta (2024). https://llamaimodel.com/commercial-use/.
Accessed on 2024-08-01.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

704



Meta (2024). Introducing meta llama 3: The most capable
openly available llm to date. https://ai.meta.com/blog/
meta-llama-3/. Accessed on 2024-08-01.

Mixedbread.AI (2024). mixedbread-ai/
mxbai-embed-large-v1. Accessed on 2024-09-
12.

multiNLI (2024). https://huggingface.co/datasets/nyu-mll/
multi nli. Accessed on 2024-08-020.

NVIDIA Corporation (2023a). CUDA Toolkit Documenta-
tion. Accessed: 2024-08-16.

NVIDIA Corporation (2023b). Nvidia a100 tensor core
gpu. Datasheet, NVIDIA Corporation. Accessed on
2024-07-21.

Ollama (2024). Ollama: A platform for running large
language models locally. https://github.com/ollama/
ollama. Accessed: 2024-08-16.

OpenAI (2024). Openai api. https://platform.openai.com.
Accessed: 2024-08-20.

Pakmehr, A., Aßmuth, A., Neumann, C. P., and Pirkl,
G. (2023). Security challenges for cloud or fog
computing-based ai applications.

Pallets Projects (2010). Flask: Web development, one drop
at a time. https://flask.palletsprojects.com/. Accessed:
2024-08-19.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. (2018). Improving language understanding by
generative pre-training.

Rakovac Bekeš, E. and Galzina, V. (2023). Exploring the
pedagogical use of ai-powered chatbots educational
perceptions and practices. In MIPRO 2023, pages
636–641, Opatija, Croatia. IEEE.

Streamlit (2022). Streamlit. https://github.com/streamlit/
streamlit. Accessed on 2024-08-01.

T-Systems (2024). https://
huggingface.co/T-Systems-onsite/
cross-en-de-roberta-sentence-transformer. Ac-
cessed on 2024-08-01.

Tonmoy, S. M. T. I., Zaman, S. M. M., Jain, V., Rani, A.,
Rawte, V., Chadha, A., and Das, A. (2024). A compre-
hensive survey of hallucination mitigation techniques
in large language models.

Touvron, H., Martin, L., Stone, K., et al. (2024). The llama
3 herd of models. Available at https://ai.meta.com/
research/publications/the-llama-3-herd-of-models/.

Tunstall, L., von Werra, L., and Wolf, T. (2022). Natu-
ral Language Processing with Transformers: Building
Language Applications with Hugging Face. O’Reilly
Media.

Turnbull, D., Chugh, R., and Luck, J. (2019). Learn-
ing Management Systems: An Overview, pages 1–7.
Springer International Publishing, Cham.

VagoSolutions (2024). https://huggingface.co/
VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct.
Accessed on 2024-08-01.

Webster, I. (2024). promptfoo. https://www.promptfoo.
dev/. Accessed: [2024-07-21].

Williams, A., Nangia, N., and Bowman, S. (2018). A broad-
coverage challenge corpus for sentence understanding
through inference. In Walker, M., Ji, H., and Stent,

A., editors, Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1112–1122,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yenduri, G., M, R., G, C. S., Y, S., Srivastava, G., Mad-
dikunta, P. K. R., G, D. R., Jhaveri, R. H., B, P.,
Wang, W., Vasilakos, A. V., and Gadekallu, T. R.
(2023). Generative pre-trained transformer: A com-
prehensive review on enabling technologies, potential
applications, emerging challenges, and future direc-
tions.

Towards Personal Assistants for Energy Processes Based on Locally Deployed LLMs

705



Table 4: Comparison of known-good answers to RAG generated answers.

Question known-good answer LLM generated answer

Wann erfolgt ein Betreiberwech-
sel?

Ein Betreiberwechsel kommt
dann Zustande, wenn eine Ein-
speiseanlage veräußert oder
durch Erbe/Schenkung an eine
andere Person übergeben wurde.

Ein Betreiberwechsel er-
folgt, wenn eine Einspeisean-
lage veräußert oder durch
Erbe/Schenkung an eine andere
Person übergeben wird.

Wann ist die zusätzliche
Pflege als abweichender Rech-
nungsempfänger zulässig?

Eine zusätzliche Pflege als abwe-
ichender Rechnungs- und Mah-
nempfänger ist nur bei direkten
Netzendkunden (Selbstzahlern)
und Einspeisern zulässig, sofern
dies vom Kunden gewünscht ist.

Nach den bereitgestellten In-
formationen ist eine zusätzliche
Pflege als abweichender Rech-
nungsempfänger zulässig:
1. Bei direktem Netzendkunden
(Selbstzahlern)
2. Bei Einspeisern, sofern dies
gewünscht ist.

Bitte beachte, dass diese Infor-
mationen auf den bereitgestellten
Kontext basieren und sich ändern
können, wenn sich die Situation
ändert. Wenn du weitere Fra-
gen hast, stehe ich gerne zur
Verfügung.

Was bedeutet Handlungsvoll-
macht?

Handlungsvollmacht bedeutet,
dass der Bevollmächtigte sowohl
Auskünfte erhalten darf als auch
selbst Änderungen vornehmen
lassen kann.

Handlungsvollmacht bedeutet,
dass der Bevollmächtigte sowohl
Auskünfte erhalten darf als auch
selbst Änderungen vornehmen
lassen kann.

Wie gehe ich bei einer
schriftlichen Anfrage vor, wenn
der Vorgang innerhalb von KK,
aber nicht vom aktuellen Ser-
vicepartner bearbeitet werden
kann?

Bei einer schriftlichen Anfrage
klassifizierst du diese um, so dass
diese an den Servicepartner ger-
outet wird, der den Prozess an-
schließend bearbeitet.

Bei einer schriftlichen Anfrage,
die innerhalb von KK, aber nicht
vom aktuellen Servicepartner
bearbeitet werden kann, musst
du den Vorgang umklassifizieren,
so dass diese an den korrekten
Fachbereich geroutet wird, der
den Prozess dann bearbeiten
kann.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

706


