
GenGUI: A Dataset for Automatic Generation of Web User Interfaces
Using ChatGPT

Mădălina Dicu1 a, Enol Garcı́a González2 b, Camelia Chira1 c and José R. Villar2 d

1Faculty of Mathematics and Computer Science, Babes, -Bolyai University,
Str. Mihail Kogălniceanu nr. 1, Cluj-Napoca 400084, Romania

2Department of Computer Science, University of Oviedo, C. Jesús Arias de Velasco, s/n, Oviedo 33005, Spain
{madalina.dicu, camelia.chira}@ubbcluj.ro, {garciaenol, villarjose}@uniovi.es

Keywords: User Interface Recognition, Dataset, Computer Vision, ChatGPT, Object Detection.

Abstract: The identification of elements in user interfaces is a problem that can generate great interest in current times
due to the significant interaction between users and machines. Digital technologies are increasingly used to
carry out almost any daily task. Computer vision can be helpful in different applications, such as accessibility,
testing, or automatic code generation, to accurately identify the elements that make up a graphical interface.
This paper focuses on one problem that affects almost any Deep Learning and computer vision problem, which
is the generation and annotation of datasets. Few contributions in the literature provide datasets to train vision
models to solve this problem. Moreover, analyzing the literature, most datasets focus on generating images of
mobile applications, all in English. In this paper, we propose GenGUI, a new dataset of desktop applications
that presents various contents, including multiple languages. Furthermore, this contribution will train different
versions of YOLO models using GenGUI to test their quality with reasonably good results.

1 INTRODUCTION

The great technological advances of the last years
have made us increasingly dependent on digital de-
vices such as computers or smartphones to carry out
multiple daily tasks efficiently. The increased use of
digital tools has led to the development of a new prob-
lem in recent years: detecting elements in graphical
interfaces. Automating the detection of elements in
the graphical interfaces of daily applications is es-
sential for developing and using digital tools. Some
examples where this problem is relevant are the test-
ing of user interfaces (Bielik et al., 2018; Qian et al.,
2020; White et al., 2019; Yeh et al., 2009), the analy-
sis and improvement of the accessibility (Zhang et al.,
2021; Miñón et al., 2013; Xiao et al., 2024), the auto-
generation of code for interfaces from images (Chen
et al., 2018; Moran et al., 2020; Nguyen and Csallner,
2015), and the search for content within user inter-
faces (Deka et al., 2017; Reiss, 2014).

The problem of element detection in user inter-
faces poses a situation in which, starting from an im-

a https://orcid.org/0009-0001-3877-527X
b https://orcid.org/0000-0001-7125-9421
c https://orcid.org/0000-0002-1949-1298
d https://orcid.org/0000-0001-6024-9527

age of a user interface, it is necessary to detail the
elements that compose it, including the position, size,
and type of each element present in the user interface.
It is, therefore, a problem in the field of computer vi-
sion. To develop a good model that works well in
detecting user interfaces, it is essential to have a large
and varied dataset to train the models. However, the
datasets currently available in the literature are insuf-
ficient, as they contain only a limited number of im-
ages. For example, see datasets (Bunian et al., 2021)
and (Dicu et al., 2024a). Moreover, these present lim-
itations in the variety of elements and languages.

The current work aims to present a novel way
to generate user interfaces using ChatGPT (OpenAI,
2024) automatically. The goal is to build a large
dataset, named GenGUI, with many user interfaces
and a wide variety of elements and languages to
develop a good computer vision model capable of
successfully recognizing elements in user interfaces.
With this use of ChatGPT, we have artificially gener-
ated a dataset composed of 250 websites, of which
more than 20,000 elements can be annotated. To
conclude the paper, different versions of the YOLO
model have been evaluated to identify these elements,
obtaining good results with YOLOv9.

Dicu, M., González, E. G., Chira, C. and Villar, J. R.
GenGUI: A Dataset for Automatic Generation of Web User Interfaces Using ChatGPT.
DOI: 10.5220/0013177200003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 707-714
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

707



The paper is organized as follows: Section 2 re-
views existing datasets and their characteristics. Sec-
tion 3 introduces our approach for automatically gen-
erating web user interfaces using ChatGPT. Section
4 describes the labeling process and dataset features.
Section 5 presents the experimental analysis of com-
puter vision models trained on the dataset. Finally,
Section 6 summarizes the findings and outlines future
work.

2 EXISTING DATASETS

When searching the literature, we found that there are
not many published works that present datasets to ad-
dress the problem of element detection in user inter-
faces. We can mainly find several contributions that
are the most relevant and used by other authors.

One of the most widely used datasets is RICO
(Deka et al., 2017), which contains over 72,000
screenshots of Android mobile applications. It iden-
tifies a broad range of interface elements, making it a
foundational resource for UI element detection. How-
ever, RICO has a major drawback: all the screenshots
are configured in English, which limits the dataset’s
generalizability to multilingual contexts. Building on
RICO, the Enrico dataset (Leiva et al., 2020) refines
the labeing of 10,000 images to improve annotation
quality. Despite this enhancement, Enrico inherits
RICO’s limitations in terms of scope and diversity.

To expand beyond RICO’s focus, the VINS
dataset (Bunian et al., 2021) includes images from
Android and iOS applications. While this improves
device variety, VINS is significantly smaller, contain-
ing only 4,543 images and covering fewer element
types. Like its predecessors, VINS also includes only
English-language interfaces, limiting its use in mul-
tilingual environments where UI layouts often vary
with language.

A different approach is introduced by the UICVD
dataset (Dicu et al., 2024b), which shifts focus from
mobile applications to websites. This dataset consists
of images from 121 websites, marking a move to-
wards web-based interfaces. While UICVD provides
valuable insights into website UI elements, it shares
the same limitations as RICO, Enrico, and VINS—all
the content is exclusively in English. Table 1 summa-
rizes the most relevant characteristics studied in these
datasets.

While these datasets are valuable, they exhibit
several limitations that reduce their applicability in
broader contexts. First, they primarily focus on
mobile applications, neglecting desktop applications,
which are typically more complex and feature ad-

vanced UI elements such as multi-window interac-
tions and toolbars. Second, the exclusive use of
English in these datasets limits their generalizability
to multilingual environments. In multilingual con-
texts, interface layouts and element structures can
vary significantly based on the language, further lim-
iting the effectiveness of models trained on English-
only datasets.

To address these gaps, our work proposes the cre-
ation of a new dataset that focuses on desktop appli-
cations and incorporates diverse languages. This ex-
pansion is crucial for improving the robustness of UI
element detection models, ensuring they can perform
effectively in more varied, real-world scenarios. By
covering these previously neglected areas, our dataset
will offer a more comprehensive resource for training
and evaluating models in user interface recognition.

3 AUTOMATIC GENERATION OF
WEB USER INTERFACES

The primary goal of this work is the automatic gener-
ation of user interfaces. The dataset generation pro-
cess consists of two main phases. In the first phase,
ChatGPT is used to automatically generate the source
code for multiple user interfaces. In the second phase,
each generated interface is opened, and a screenshot
is captured for further use.

The most relevant part of the first part is the gener-
ation of the source code of the user interfaces. For this
first part, ChatGPT was used with the GPT-4o model
(OpenAI, 2024) to generate the code for the GenGUI
dataset. The decision to generate code using Chat-
GPT (specifically, the GPT-4o model) instead of rely-
ing on pre-existing web templates was driven by sev-
eral factors. One of the primary reasons is that while
many publicly available templates may appear visu-
ally similar, the underlying code structures can vary
significantly. This inconsistency in code structure can
create issues when trying to build a unified dataset for
UI element detection. After analyzing multiple web
templates, we observed variations in the way HTML,
CSS, and JavaScript were implemented, which could
complicate efforts to create a cohesive dataset suit-
able for training machine learning models. By using
ChatGPT to generate the code, we ensured that the
structure remained consistent across all generated in-
terfaces, adhering to our exact requirements in terms
of layout, functionality, and visual diversity. Further-
more, generating the code ourselves eliminated con-
cerns over licensing issues and provided the flexibility
to tailor designs to our specific needs, including mul-
tilingual support and custom UI components.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

708



Table 1: Summary of the characteristics of the similar datasets studied.

Dataset Number of images Number of classes Language Device Reference
RICO ∼72000 23 English Android (Deka et al., 2017)
UICVD 121 16 English PC / Websites (Dicu et al., 2024b)
VINS 4543 12 English Android+iOS (Bunian et al., 2021)
Enrico 10000 23 English Android (Leiva et al., 2020)

The conversation with this automatic generation
model always started with the prompt: “Use Boot-
strap to create a web page for a fictitious company.
The company intends to use it A. Make sure the web-
site includes a navigation bar B. You can include
some of the following elements on the site: Icons, Text
Fields, Buttons, Images, Table, Containers, Section
Title, Search bar, Checkboxes, Dropdown, Radio but-
tons, Text areas, Forms, Graphs. Support as many in-
terface elements as possible with icons from the Font
Awesome library. Make the page content in C. Re-
place placeholder images with real images. In the
output include only the HTML code, you don’t need
to explain anything”.

The prompt to initiate the conversation has a series
of gaps –A, B, and C–, which will be filled with differ-
ent content to generate varied user interfaces. Table 2
shows the different values that have been used to fill
in the prompt gaps. Once a chat conversation with the
generation model is started, the statements “Generate
me another site with the same characteristics, but a
different look and feel”, “Generate another site that
looks different” and “Generate another different web-
site” are used to request the source code of more web
sites, until ten web sites with similar characteristics,
but different look and feel, are obtained.

In terms of content structure, GPT-4o occasionally
favored content-heavy pages, which might not always
be desirable for certain applications. To overcome
this, we refined the prompts further to generate web
pages with varied densities of content, ranging from
simple, clean layouts to more complex, information-
rich interfaces. This iterative process of adjusting the
prompts and reviewing the generated code allowed us
to arrive at a balanced approach for diversity in UI
designs.

Once the source code of the user interfaces was
generated, a manual inspection was performed to
check that there were no interfaces with errors or that
were very similar. In the generated websites, few in-
terfaces presented this problem, but a small number
of interfaces were eliminated to avoid contaminating
the dataset. In addition, during this manual inspec-
tion, the images and graphics included in the websites
were replaced with images and graphics generated by
Bing Image Creator and MS Excel, as some websites
had been generated with a gray image to mark the

site where an image should be included. Bing Im-
age Creator was used for the more decorative images
with prompts such as “Generate me an image of a
real person”, “Generate me an image of an office” or
“Generate me an image of a marketplace”. MS Excel
was used for more business-oriented sites. In Excel,
a matrix of random numbers was generated and many
different types of graphs were drawn with those num-
bers.

Once the source code of the websites was avail-
able and the manual inspection had been done to elim-
inate errors and replace images, we moved on to the
second phase of the generation of the user interfaces
for the GenGUI dataset, which consists of opening the
web interfaces and taking a screenshot of them, since
the dataset will be composed of images, not code.
As the user interfaces were developed as web inter-
faces, Firefox (Mozilla Foundation, 2024) and Sele-
nium (SeleniumHQ, 2024) were used for this part.
Selenium is a web testing framework that allows the
control of the Firefox web browser to be automated.
This phase consisted of opening a website in Fire-
fox, extracting a screenshot of the complete site us-
ing Selenium, and moving on to do the same with the
following image until the complete dataset was pro-
cessed.

4 DATASET CREATION

As described in the previous section, the process
of generating user interfaces was automated using a
GPT-4o model and the Bootstrap framework. Screen-
shots of these interfaces were then used to create
a dataset aimed at training computer vision models.
The dataset creation involved several stages: auto-
matic interface generation, the elimination of inappro-
priate or redundant images, and finally, manual anno-
tation of the individual elements. In this section, we
detail the annotation process, the criteria used for la-
beling, and the final structure of the dataset.

4.1 Element Annotation

To ensure a high-quality dataset, every image from
the generated interfaces was manually annotated. Al-
though we had access to the HTML code of these in-

GenGUI: A Dataset for Automatic Generation of Web User Interfaces Using ChatGPT

709



Table 2: Different options to fill in the gaps in the prompt used to start a conversation with ChatGPT. The different options
are separated by the / character.

A Promote the company and publicize its services / Promote a product / Manage the company internally /
as an intranet for employees to carry out tasks such as consulting payroll and requesting days off.

B Horizontal / Lateral
C English / Spanish / Romanian / German / French / Italian / Dutch / Swedish / Norwegian / Portuguese

terfaces, we opted for manual annotation because the
HTML structure does not always accurately reflect
how elements are visually displayed on the screen.
Specifically, the visual layout can be influenced by
CSS styles and JavaScript and dynamic or hidden el-
ements can complicate the automatic annotation pro-
cess.

We chose manual annotation to guarantee accu-
racy, particularly because a study conducted by (Dicu
et al., 2024a) demonstrated that manual annotations
yield better results for training visual detection mod-
els, especially when dealing with complex elements
like icons. This approach also provides a solid foun-
dation for potential automation in the future. Addi-
tionally, manual annotation allowed us to correct er-
rors and establish clear criteria for labeling. Each vi-
sual element was identified and labeled according to
a well-defined classification, covering both visual and
functional aspects.

Figure 1 presents an example from the dataset,
showing both the raw interface image and its anno-
tated version, where each visual element is correctly
labeled.

4.2 Annotation Criteria

To establish a coherent and unified annotation process
for the GenGUI dataset, we developed a set of spe-
cific criteria. These criteria focused on the following
aspects:

• Accuracy in Label Positioning. We aimed to
place labels as close as possible to the correspond-
ing visual elements, ensuring that they were delin-
eated and did not interfere with other elements in
the interface.

• Granularity. We sought to distinguish elements
not only based on their visual characteristics but
also their functionality.

• Functional Context. Some elements may serve
multiple roles. For example, each button was
labeled accordingly, but internal elements, such
as text or icons within the button, were anno-
tated separately. This allows vision models to dis-
tinguish between the different visual components
within a single functional element.

We used LabelStudio (Tkachenko et al., 2022), an
open-source data annotation platform, which allowed
us to perform manual labeling in line with the estab-
lished criteria.

4.3 Dataset Structure

The final dataset consists of 250 PNG images with
variable resolutions. The width of all images is fixed
at 1920 pixels, while the height ranges from 533 to
3285 pixels. This variation in height enabled us to
better simulate real-world scenarios, where user inter-
faces can have different dimensions depending on the
content. We eliminated certain images that either con-
tained errors during generation or featured elements
that were difficult to annotate, ensuring a high-quality
dataset. Although this process resulted in an unequal
number of images per language, we considered this
necessary to achieve relevant experimental results.

After the elimination process, the dataset contains
a total of 250 images and 20,484 annotations, dis-
tributed across 13 main classes and 29 subclasses, as
detailed in Table 3:

We chose these classes and subclasses to reflect
the diversity and complexity of graphical components
found in user interfaces. The dataset includes essen-
tial elements such as images, text, buttons, and icons,
as well as more complex components like input fields,
menus, and tables. This classification allows for a
greater level of granularity in detecting and classify-
ing elements, ensuring that the dataset can be used for
a wide range of computer vision applications.

The decision to divide elements into classes and
subclasses was driven by the need to cover as many
scenarios as possible in modern graphical interfaces.
For instance, text appears in various forms and
functions—from titles to text buttons or menu sec-
tions—which is why we introduced several subclasses
to capture these variations. Similarly, we differenti-
ated icons from other visual elements to offer more
precision in the annotation process.

5 EXPERIMENTS AND RESULTS

To validate the quality and utility of the created
dataset, we conducted a series of experiments using

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

710



(a) Image 29 from dataset (b) The annotated Image 29 from dataset

Figure 1: Example from the dataset: the first image shows the raw user interface, while the second image illustrates the same
interface with manually annotated elements.

two of the most advanced object detection models,
YOLOv8 (Jocher et al., 2023) and YOLOv9 (Wang
et al., 2024) . The purpose of these experiments was
to observe how these models perform on the 13 main
classes in our dataset, providing a concrete evaluation
of their effectiveness in detecting graphical user inter-
face elements. Additionally, these experiments will
help identify potential limitations and areas for im-
provement in future expansions of the dataset.

5.1 You Only Look Once (YOLO)
Models

The YOLO (You Only Look Once) architecture (Red-
mon et al., 2016) has transformed object detection by
combining speed and accuracy in a single-stage pro-
cess. By dividing the input image into a grid and pre-
dicting bounding boxes and class probabilities simul-
taneously, YOLO enables real-time detection, making
it a widely used approach for a variety of applications.

YOLOv8 (Jocher et al., 2023) improves on earlier
versions by enhancing accuracy with the C2f mod-
ule, particularly for detecting small or overlapping ob-
jects. Its anchor-free design and decoupled head op-
timize detection, classification, and regression tasks,
ensuring precision without compromising speed.

YOLOv9 (Wang et al., 2024) extends these ad-
vancements by incorporating attention mechanisms
and Feature Pyramid Networks (FPN) for better de-
tection across various object sizes. It also uses a hy-
brid training strategy, combining supervised and un-
supervised learning, which improves performance on
datasets with limited labeled data.

We selected these models for their balance of
speed and accuracy, as well as their effectiveness
in detecting small and overlapping objects—key in
graphical interfaces with buttons, icons, and text
fields. Testing on our dataset evaluates performance
and highlights areas for improvement, particularly in
class balance and diversity, providing a strong foun-
dation for future work.

5.2 Experimental Setup and Evaluation
Metrics

To objectively compare the performances of YOLOv8
and YOLOv9, we used the same parameters across
both experiments, employing the default versions of
these models without major modifications, as the
goal was to assess their general performance on our
dataset. Both models were trained for 100 epochs
with a batch size of 2, adapted to the relatively small
size of our dataset. We used SGD (Stochastic Gradi-
ent Descent) as the optimizer, with a learning rate of
0.01 and an image size of 1024x1024 pixels. The im-
age augmentations applied were the default ones pro-
vided by the YOLO framework, ensuring consistency
in performance evaluation.

The experiments were conducted on the Google
Colaboratory (Bisong and Bisong, 2019) platform,
utilizing a T4 GPU, which enabled efficient process-
ing of the dataset and training of the models over mul-
tiple epochs.

In terms of performance evaluation, we used sev-
eral key metrics. IoU (Intersection over Union), with
a fixed value of 0.5, was employed to measure the
overlap between the predicted and actual bounding

GenGUI: A Dataset for Automatic Generation of Web User Interfaces Using ChatGPT

711



Table 3: Distribution of annotations across classes and subclasses in GenGUI dataset.

Class Number of Annotations Subclass Number of Annotations

Text 8927

text 5231
sectionTitle 1227
textForNavigationBar 889
textForButton 792
textForSidebar 335
title 209
statusLabel 125
textForDropdown 119

Icon 4566

icon 4331
dropdownIcon 121
checkBox 71
radioButton 43

Container 1370 container 1370

MenuItem 1227 navigationItem 893
sideMenuItem 334

Button 1036 button 1036

InputField 771
inputField 582
dropdown 120
datePicker 69

TableColumn 754 tableColumn 754

Row 718 row 550
tableHeader 168

Menu 309 navigationBar 247
sideBar 62

WorkingArea 250 workingArea 250

Image 228 image 122
graph 106

Table 168 table 168
Footer 160 footer 160

boxes. Additionally, we calculated AP (Average Pre-
cision) for each class based on the precision-recall
curve and mAP (mean Average Precision) to provide
an overall performance measure across all classes.
The models were evaluated using a single confidence
threshold of 0.25, ensuring consistent filtering of pre-
dictions.

5.3 Results

The primary goal of the experiment is to assess the
performance of YOLOv8 and YOLOv9 by training
them on the 13 main classes of the dataset. We fo-
cused on the main classes to gain a general under-
standing of how the dataset performs in object detec-
tion and to simplify the analysis of the results.

The data was randomly split into three subsets:
80% for training, 10% for validation, and 10% for
testing. This split ensures that the models have suf-
ficient data for learning while allowing for a repre-
sentative evaluation. Table 4 presents the distribution
of images and annotations across the dataset.

Following the experiments on our dataset, we ob-
tained the performances shown in Tables 5 and 6 for

the YOLOv8 and YOLOv9 models.
The experimental results reveal a significant per-

formance gap between YOLOv9 and YOLOv8, with
YOLOv9 achieving a mAP of 57.78%, nearly dou-
ble that of YOLOv8’s 30.44%. This demonstrates
YOLOv9’s ability to process the variability and com-
plexity of our dataset more effectively.

In general, YOLOv9 performed much better
across all classes, especially in classes that require
high detection accuracy, such as Text, Icon, and But-
ton. The strong performance in these classes can be
explained by their high representation in the dataset,
with a large number of annotations providing more
learning opportunities for the models, leading to bet-
ter generalization. For example, in the Text class,
YOLOv9 achieved an impressively high AP, demon-
strating the model’s ability to handle different types
of text in graphical interfaces, such as titles or button
labels.

In contrast, both models struggled with underrep-
resented classes like Footer, Row, and WorkingArea,
where AP scores were low or nonexistent. The lim-
ited number of annotations and the contextual vari-
ability of these elements likely contributed to the

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

712



Table 4: Distribution of images and annotations across training, validation, and test sets.

Number of Images Number of Annotations
Total Train Validation Test Total Train Validation Test
250 200 25 25 20484 16480 2082 1922

Table 5: Results of YOLOv8 and YOLOv9 models trained on the dataset (Part 1), showing the mean Average Precision (mAP)
and Average Precision (AP) per class. The models were evaluated using a confidence threshold of 0.25 and an Intersection
over Union (IoU) of 0.5.

Model mAP Button Container Footer Icon Image InputField
YOLOv8 30.44 65.71 26.84 0.00 74.68 70.13 3.27
YOLOv9 57.78 93.97 57.60 0.00 95.66 79.31 90.00

Table 6: Results of YOLOv8 and YOLOv9 models trained on the dataset (Part 2), showing the mean Average Precision (mAP)
and Average Precision (AP) per class. The models were evaluated using a confidence threshold of 0.25 and an Intersection
over Union (IoU) of 0.5.

Model Menu MenuItem Row Table TableColumn Text WorkingArea
YOLOv8 3.03 36.12 0.00 0.00 31.15 84.64 0.21
YOLOv9 9.92 86.87 0.00 63.36 77.05 96.51 0.83

weak performance, as the models lacked sufficient
data to learn their distinctive features. A particu-
larly notable example is the InputField class, where
YOLOv9 achieved strong results while YOLOv8 un-
derperformed, highlighting YOLOv9’s ability to han-
dle complex visual contexts more effectively.

These findings highlight the importance of ad-
dressing annotation imbalance and improving class
diversity to enhance detection accuracy and model
generalization. Underrepresented classes such as
Footer, Row, and WorkingArea require additional at-
tention, as their limited presence impacts the models’
ability to learn their distinct features effectively.

The current dataset represents a solid foundation
for detecting elements in desktop graphical interfaces.
However, its class imbalance reflects the natural dis-
tribution of these elements in real-world applications.
To build a more comprehensive and balanced re-
source, it will be necessary to expand the dataset with
a broader range of images and annotations, partic-
ularly for rarer elements. This effort will not only
improve detection performance for underrepresented
classes but also strengthen the models’ ability to gen-
eralize across diverse scenarios and graphical appli-
cations.

6 CONCLUSIONS AND FUTURE
WORK

This paper introduces GenGUI, a new dataset for de-
tecting elements in graphical user interfaces. Accu-
rate detection of these elements is essential for au-
tomating the visualization and processing of user in-

terfaces. Generated using the GPT-4o model and
Bootstrap framework, GenGUI includes a variety of
visual elements, such as text, buttons, icons, and input
fields. Unlike existing datasets, which focus primar-
ily on mobile interfaces and English-language con-
tent, GenGUI includes diverse desktop interfaces in
multiple languages, addressing a major gap in the lit-
erature.

Experiments with YOLOv8 and YOLOv9 demon-
strate the dataset’s effectiveness in identifying UI el-
ements, though challenges remain for underrepre-
sented classes like WorkingArea and Footer. Expand-
ing the dataset and increasing annotations for these
classes will help address these issues.

In the future, we plan to expand the dataset by
adding more diverse and complex interfaces, along
with a wider variety of graphical elements, to bet-
ter capture real-world scenarios. We also aim to de-
velop an automated labeling method based on the cur-
rent annotations, which will serve as a reliable ground
truth and help reduce the need for manual work. By
improving the dataset and streamlining the annotation
process, we hope to create a more valuable and practi-
cal resource for researchers and developers, contribut-
ing to the advancement of graphical interface element
detection and understanding.

The dataset is available at the following link:
https://github.com/MadaDicu/GENGUI

ACKNOWLEDGEMENTS

The authors, Enol Garcı́a González and José R. Vil-
lar, acknowledge support from the Spanish Ministry
of Economics (PID2020-112726RB-I00), the Spanish

GenGUI: A Dataset for Automatic Generation of Web User Interfaces Using ChatGPT

713



Research Agency (PID2023-146257OB-I00), Prin-
cipado de Asturias (SV-PA-21-AYUD/2021/50994),
the Council of Gijón, and Fundación Universidad de
Oviedo (FUO-23-008, FUO-22-450).

REFERENCES

Bielik, P., Fischer, M., and Vechev, M. (2018). Robust re-
lational layout synthesis from examples for android.
2(OOPSLA).

Bisong, E. and Bisong, E. (2019). Google colaboratory.
Building machine learning and deep learning models
on google cloud platform: a comprehensive guide for
beginners, pages 59–64.

Bunian, S., Li, K., Jemmali, C., Harteveld, C., Fu, Y., and
El-Nasr, M. S. (2021). Vins: Visual search for mobile
user interface design.

Chen, C., Su, T., Meng, G., Xing, Z., and Liu, Y. (2018).
From ui design image to gui skeleton: A neural ma-
chine translator to bootstrap mobile gui implementa-
tion. In 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE), pages 665–676.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., and Kumar, R. (2017). Rico:
A mobile app dataset for building data-driven design
applications. UIST ’17, page 845–854, New York,
NY, USA. Association for Computing Machinery.

Dicu, M., González, E. G., Chira, C., and Villar, J. R.
(2024a). The impact of data annotations on the per-
formance of object detection models in icon detection
for gui images. In International Conference on Hy-
brid Artificial Intelligence Systems, pages 251–262.
Springer.

Dicu, M., Sterca, A., Chira, C., and Orghidan, R. (2024b).
Uicvd: A computer vision ui dataset for training rpa
agents. In ENASE, pages 414–421.

Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by
Ultralytics. https://github.com/ultralytics/ultralytics.
Accessed: June 20, 2024.

Leiva, L. A., Hota, A., and Oulasvirta, A. (2020). Enrico: A
high-quality dataset for topic modeling of mobile UI
designs. In Proc. MobileHCI Adjunct.

Miñón, R., Moreno, L., and Abascal, J. (2013). A graph-
ical tool to create user interface models for ubiqui-
tous interaction satisfying accessibility requirements.
Univers. Access Inf. Soc., 12(4):427–439.

Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R.,
and Poshyvanyk, D. (2020). Machine learning-based
prototyping of graphical user interfaces for mobile
apps. IEEE Transactions on Software Engineering,
46(2):196–221.

Mozilla Foundation (2024). Mozilla Firefox. Web browser,
Version 118.

Nguyen, T. A. and Csallner, C. (2015). Reverse engineer-
ing mobile application user interfaces with remaui (t).
In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 248–
259.

OpenAI (2024). Chatgpt (october 2024 version). https://
openai.com/chatgpt. Large language model.

Qian, J., Shang, Z., Yan, S., Wang, Y., and Chen, L. (2020).
Roscript: a visual script driven truly non-intrusive
robotic testing system for touch screen applications.
In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, page
297–308, New York, NY, USA. Association for Com-
puting Machinery.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.

Reiss, S. P. (2014). Seeking the user interface. In Proceed-
ings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, page
103–114, New York, NY, USA. Association for Com-
puting Machinery.

SeleniumHQ (2024). Selenium WebDriver. Testing frame-
work for web applications.

Tkachenko, M., Malyuk, M., Holmanyuk, A., and Liu-
bimov, N. (2020-2022). Label Studio: Data label-
ing software. Open source software available from
https://github.com/heartexlabs/label-studio.

Wang, C.-Y., Yeh, I.-H., and Liao, H.-Y. M. (2024).
Yolov9: Learning what you want to learn using
programmable gradient information. arXiv preprint
arXiv:2402.13616.

White, T. D., Fraser, G., and Brown, G. J. (2019). Im-
proving random gui testing with image-based wid-
get detection. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, page 307–317, New York,
NY, USA. Association for Computing Machinery.

Xiao, S., Chen, Y., Song, Y., Chen, L., Sun, L., Zhen, Y.,
Chang, Y., and Zhou, T. (2024). UI semantic com-
ponent group detection: Grouping UI elements with
similar semantics in mobile graphical user interface.
Displays, 83(102679):102679.

Yeh, T., Chang, T.-H., and Miller, R. C. (2009). Sikuli:
using gui screenshots for search and automation. In
Proceedings of the 22nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’09,
page 183–192, New York, NY, USA. Association for
Computing Machinery.

Zhang, X., de Greef, L., Swearngin, A., White, S., Murray,
K., Yu, L., Shan, Q., Nichols, J., Wu, J., Fleizach, C.,
Everitt, A., and Bigham, J. P. (2021). Screen recogni-
tion: Creating accessibility metadata for mobile appli-
cations from pixels. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems,
CHI ’21, New York, NY, USA. Association for Com-
puting Machinery.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

714


