
Fine Tuning LLMs vs Non-Generative Machine Learning Models: A
Comparative Study of Malware Detection

Gheorghe Balan1,2, Ciprian-Alin Simion1,2 and Dragoş Teodor Gavriluţ1,2
1”Al.I. Cuza” University, Faculty of Computer Science, Iasi, Romania

2Bitdefender Laboratory, Iasi, Romania
{asimion, gbalan, dgavrilut}@bitdefender.com

Keywords: Fine Tuning LLMs, Neural Network, API Sequence, Malware Detection.

Abstract: The emergence of Generative AI has provided various scenarios where Large Language Models can be used
to replace older technologies. Cyber-security industry has been an early adopter of these technologies, but in
particular for scenarios that involved security operation centers, support or cyber attack visibility. This paper
aims to compare how well Large Language Models behave against traditional machine learning models for
malware detection wrt. various constrains that apply to a security product such as inference time, memory
footprint, detection and false positive rate. In this paper we have fine tuned 3 open source models (LLama2-
13B, Mistral, Mixtral) and compared them with 18 classical machine learning models (feed forward neural
networks, SVMs, etc) using more than 135,000 benign and malicious binary samples. The goal was to identify
scenarios/cases where large language models are suited for the task of malware detection.

1 INTRODUCTION

The rise of Generative AI has opened multiple pos-
sibilities in terms of automation that allowed cyber-
security vendors to use Large Language Models for
tasks like:

• support

• attack visibility and explainability

• security operation centers
In most cases, these models are used as a second opin-
ion in security operation centers or to validate detec-
tions given by other technologies.

However, since this type of models rely on vast
datasets for their training, they have the potential to
be used in other security-related scenarios. One thing
that needs to be taken into consideration is that these
models rely on various forms of natural language and
as such they are more likely to provide a proper result
for data presented in the same way.

In terms of malware identification, this could be
obtained using a list of API calls (as they would re-
flect the behavior of a malware). This input could also
be obtained from technologies that already exist in a
cyber-security technology stacks such as sandboxes
or emulators.

On the other hand, there are several constraints
that various technologies in a security suite have (such

as performance, detection rate (i.e. recall), inference
time, etc). It is also important to notice that the tem-
perature hyper-parameter (specific to LLMs) might
not be that useful in a situation where a determin-
istic result is required (for example in cases where
detection validation or various QA1 processes are re-
quired).

Another relevant aspect is that while LLMs started
as cloud services, there are several models2 that can
be tested locally. This potentially reduces the ser-
vice cost and various privacy issues that came with
a cloud-based model.

With this in mind, this paper attempts to evaluate
if such out-of-the-box models and a fine-tuned ver-
sion of them can actually be used for malware detec-
tion and in what capacity.

The evaluation is done taken into consideration
various constraints and limitations of current detec-
tion technology stacks. We focused on API calls as
they describe the way a program works (and assuming
various description were part of the training dataset,
using them might provide a model with enough infor-
mation to infer the maliciousness quality of a file).

It is also important to evaluate if these large lan-
guage models are comparable with existing machine

1quality assurance
2https://huggingface.co/models

Balan, G., Simion, C.-A. and Gavriluţ, D. T.
Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection.
DOI: 10.5220/0013177300003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 715-725
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

715

learning technologies. From this perspective we elab-
orated an experiment where multiple non-generative
machine learning models are evaluated against 3 large
language models over a sample set of malicious and
benign files that were executed in an emulator so
that the ordered list of API calls could have been ex-
tracted.

The comparison takes into consideration various
metrics such as the detection rate (i.e. recall), false
positive rate, inference time and memory footprint.

The rest of the paper is organized as follows: Sec-
tion 2 presents similar research, Section 3 explains
the problem we are tackling in this paper, Section 4
and Section 5 present our experiment, Section 6 dis-
cusses the results of our experiment and finally Sec-
tion 7 draws some conclusions.

2 RELATED WORK

As with all other fields, cyber-security researchers
got very excited when seeing LLMs’ capabilities and
tried to use them as creatively as possible. Even if
there are a lot of papers discussing the use of LLMs in
an offensive manner (Charan et al., 2023), (Karanjai,
2022), (Botacin, 2023), (Pa Pa et al., 2023) we will
intentionally leave them out as this paper focuses on
using them to test their malicious behaviour detection
power.

The authors of (Motlagh et al., 2024) have gath-
ered multiple papers that focus on protecting, defend-
ing, detecting, but also on adversarial uses of LLMs.
A very interesting analysis they have done is count-
ing the number of papers published by the function
presented. Their research shows that by the time of
their publishing there were at least 30 papers that were
focused on offensive functions like Reconnaissance,
Initial Access, Execution, Defense Evasion or Cre-
dential Access. All of these are MITRE ATT&CK
techniques3.

On the other hand, the papers that focus on de-
fensive techniques are spread across directions like
Identify, Protect, Detect, Respond and Recover, as the
authors (Motlagh et al., 2024) show they have found
over 30 papers that delve in the techniques aforemen-
tioned as well.

One great application of LLMs is with web con-
tent filtering as shown in (Vörös et al., 2023). In
this paper the authors show how they achieved bet-
ter results (up to 9% increase in accuracy) using
LLMs when compared to standard deep learning algo-
rithms. In addition, they showed how they fine-tuned

3https://attack.mitre.org/matrices/enterprise/

a large language model using only 10000 samples and
achieved better performance than the current state-of-
the-art solutions that was trained on 10 million sam-
ples. One of the biggest problems with this kind of
algorithms is even in their name: they are large, some-
times too large to make them usable in a practical sce-
nario. Probably the most impressive result of this pa-
per (Vörös et al., 2023) is that using a smaller model
(175 times smaller) they attained performance levels
comparable to the original LLM (770 million param-
eters). Some of the models they used are BERT (De-
vlin et al., 2019), eXpose or GPT-3 Babbage.

A lot of malware, especially zero-day threats,
leverage the use of exploits in legitimate software.
These exploits end up in these programs most of-
ten by mistake. This paper (Omar, 2023) proposes a
new framework named VulDetect tasked with detect-
ing vulnerable code. The framework utilizes GPT-2,
BERT and LSTM to detect vulnerabilities in C, C++
and Java code by employing Knowledge Distillation
in a teacher-student configuration. The results were
compared with VulDeBERT (Kim et al., 2022) and
LSTM, all trained and tested on four datasets of vul-
nerable code SARD (Zhou and Verma, 2022), SeVC
(Shoeybi et al., 2020), Devign (Zhou et al., 2019)
and D2A (Zheng et al., 2021). Their best perform-
ing model was the one based on GPT-2 with 93.59%
accuracy when tested against SARD dataset.

Another interesting research done by Rahali et. al.
proposes a malware detecting framework named Mal-
BERT (Rahali and Akhloufi, 2021). In their experi-
ments they used a dataset of Android APK files that
they downloaded and processed by extracting the An-
droidManifest.xml and removing unnecessary infor-
mation from it. They started from over 13 million files
(APKs) from the Androzoo public dataset and, after
processing, ended up with 12K benign samples and
10K malware samples. The authors pursued two en-
deavours, binary classification (malware/benign) and
multi-classification(ex. spyware, dropper, clicker,
etc.). When compared with LSTM, XLNet (Yang
et al., 2020a), RoBERTa (Liu et al., 2019) and Distil-
BERT (Sanh et al., 2020), the best performing model
was BERT (Devlin et al., 2019), in both binary clas-
sification and multi classification. On the first task,
BERT achieved an accuracy of 97% with the next
model, XLNet, at 95%. On the multi classification
task, BERT attained an accuracy of 91% with the next
model, LSTM, at 85%.

When it comes to analysing malware samples one
of the most used formats is Application Programming
Interface (API) sequences. The SLAM (Chen et al.,
2020) (Sliding Local Attention Mechanism) frame-
work takes advantage of just that, and more. After the

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

716

authors get a handle on the API sequences for their
samples, they also categorize them by behaviour in
17 categories. After that, they construct these 2 di-
mensional input vectors containing the API sequence
(numbers) and the category index sequence. The re-
searchers argue that by doing so, the sample embeds
a stronger correlation between semantics and struc-
tural information. The dataset contained 110K be-
nign samples and 27K malware samples. Each sample
was truncated at 2000 APIs or padded with 0’s at the
end of the sequence to match that size. The proposed
framework involved five steps:

• Splitting the input vector

• Initializing the local attention window from the
split

• Running the Convolutional Neural Network train-
ing step

• Concatenating the results

• Applying Softmax on the concatenation

Finally, they used Random Forest (RF), Attention
CNN LTSM (ACLM) (shiqi, 2019) and a two-stream
CNN-Attention model (TCAM) (Yang et al., 2020b)
to compare SLAM to. After a 10 fold cross valida-
tion, their research shows that the SLAM framework
attained an average accuracy of 97% with the next
model being TCAM with 92%.

3 MALWARE DETECTION
CHALLENGES

Cyber-security has always been depicted by the cat-
and-a-mouse game between security products and
malware writers where each one reacts to the changes
added by the other. The advancement in machine
learning field in the last decade indicated a poten-
tial edge for the security vendors as complex neural
networks architecture could be harder to bypass by a
malware. However, even if in theory this seems to be
correct, the same advancement in GANs (Generative
Adversarial Networks) balanced the field.

We evaluate a machine learning model using two
metrics (related to cyber-security):

• proactivity - the ability to detect new malware
samples that are discovered long after the model
was trained.

• genericity - the ability to detect new samples that
have nothing or very little in common with the
samples used in the training set.

Those two metrics are always strongly linked to
the input data. This means that on one hand, using

a relevant feature set (for example behavior informa-
tion) could potentially create a model that is harder
to evade. On the other hand, knowing certain limi-
tations might allow you to find exactly what kind of
things you need to change to a malware sample to
avoid detection. With this in mind, let’s enumerate
certain constraints that are required for a model to be
used in practice:

• inference speed
• false positive rate
• detection rate
• memory footprint
• model update size

Some of these constraints are correlated with the
way a model is being used, as follows:

• using a model for real-time protection4 implies
that a model must be fast (in terms of inference)
since access to the scanned object is locked un-
til the verdict from the model is received. Usu-
ally this implies smaller models. It also implies a
lower (close to 0) false positive rate as blocking
a clean object might have a serious impact (e.g.,
blocking the access to a system file might block
the entire endpoint).

• a on-premise model requires a small memory
footprint (as one need to be certain that model
runs on multiple architectures with limited re-
sources in some cases). This also implies a re-
duced update size.

• in contrast, a cloud model is not limited by size or
hardware architectures. However, using a cloud
model implies you can not scan all accessed ob-
jects as one needs to take into consideration the
time needed to connect to the cloud. This means
that a cloud model is not always a good choice for
real-time protection - where all accessed objects
have to be scanned.

The more a product relies on real-time protection,
the more attacks are being stopped before they hap-
pen, but models have to be small to achieve a good
inference time as well as small memory footprint and
reduced update size. This is specific to the anti-
malware protection component of a security product.
However, using larger models implies scanning ob-
jects asynchronously and as such lose the protective
capabilities. At the same time, using a cloud model
is not limited by memory size, architecture or update

4block access to an object until its scan is complete and
delete the object afterwards if it is deemed malicious

Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection

717

requirements and can be harder to evade. This is usu-
ally the case with security analytics components such
as EDR5 or XDR6.

With this in mind, we are attempting to validate if
large language models can be used in any of the pre-
viously described scenarios. Due to their complex ar-
chitecture we expect them to be more resilient on eva-
sion techniques and as such provide a better proactiv-
ity and genericity in terms of identifying new threats.
At the same time, all of the above restrictions must be
preserved leading to the question whether these mod-
els can be truly used for threat identification and if so,
in what capacity?

4 DATABASES

LLMs inference time for each sample is relatively
long for a real-world scenario where a decision should
be taken as fast as possible. Therefore it is more
suitable to use them as an additional decision layer,
where the previous layer(s) will likely filter out com-
mon benign files (for speed improvements). With this
in mind, we wanted to mimic such a training envi-
ronment where the number of benign samples to be
processed is lower than the one of malicious samples.
Hence, our initial-api-sequences-database consists of
sequences of APIs extracted from 136,383 samples
(58,472 benign and 77,911 malicious). This initial
file database was split in two smaller file-databases
(training-api-sequences-database - 38,472 benign /
57,911 malicious and testing-api-sequences-database
- the remaining 20,000 for each class).

The APIs were extracted using a proprietary em-
ulator provided by a security company. The average
number of APIs extracted for clean samples is 276
while for malicious samples is 1392. As an obser-
vation, malicious files yielded more APIs during the
emulation phase.

Moreover, differences between benign and mali-
cious files can also be observed by looking at the top
ten APIs extracted for each class (Table 1 and Table
2).

Two particular APIs stood out in the malicious
dataset, kernel32 ReadFile and kernerl32 SleepEX.
This is due to how malicious files are often imple-
mented. Usually an attacker tends to evade automated
analysis by implementing long sleep (now an obso-
lete technique) and multiple read operations in order
to gather data from running environment (used mostly
by Ransomware, Password / Data Stealers).

5Endpoint Detection and Response
6Extended Detection and Response

Table 1: Top ten APIs seen in benign train dataset.

API Count
1 kernel32 FlsGetValue 2015725
2 kernel32 HeapFree 1177867
3 kernel32 GetProcAddress 1121622
4 kernel32 TlsGetValue 773809
5 kernel32 SetLastError 630800
6 kernel32 WriteFile 350663
7 kernel32 MultiByteToWideChar 215998
8 kernel32 ReadFile 199316
9 kernel32 WideCharToMultiByte 188462
10 kernel32 lstrcmpiW 185232

Table 2: Top ten APIs seen in malicious train dataset.

API Count
1 kernel32 TlsGetValue 4848697
2 kernel32 lstrcpynA 4200079
3 kernel32 FlsGetValue 3155210
4 kernel32 GetProcAddress 3030600
5 kernel32 SleepEx 2492721
6 msvbvm60 vbaFreeVar 2239934
7 kernel32 ReadFile 2126757
8 kernel32 HeapFree 1956913
9 oleaut32 SysFreeString 1857905
10 kernel32 WriteFile 1444253

Our databases were next used as follows:

• step1 - obtained a new database training-llm-vt-
detecting-engines-count by acquiring the number
of VirusTotal engines7 detecting each sample in
training-api-sequences-database; for each sam-
ple we also stored the sequence of API Calls; this
database will be used to fine tune LLMs

• step2 - testing-api-sequences-database - the se-
quences were fed to fine tuned LLM models and
the results were saved (llm-results-database)

• step3 - applied a feature selection algorithm over
the training-api-sequences-database and created
a new database (training-api-sequences-feature-
database) which contained for each sample only
binary values (1 if the selected feature is found in
the API sequence list, 0 otherwise)

• step4 - trained and tested several machine learn-
ing models; testing the resulted models on testing-
api-sequences-database; stored obtained results
in ml-models-results-database

• step5 - compared the obtained results (ml-models-
results-database, llm-results-database)

7https://www.virustotal.com/gui/home/search

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

718

5 EXPERIMENT SETUP

We divided our experiment in two larger parts:
the first part, where we fine tune and evaluate
3 open source Large Language Models (LLama2-
13b, Mistral-7b-v03 and Mixtral-8x7b-v.01) and one
where we looked into non-generative machine learn-
ing models that can be used for malware detection.
In both cases we evaluated the detection rate (recall),
false positive rate and inference time. For both fine-
tuned LLMs / ML models, we use the same database,
training-api-sequences-database, to fine-tune / train
and testing-api-sequences-database to test the ob-
tained LLMs / ML models.

The experiment was conducted on a virtual ma-
chine with 4 RTX 4090TI GPUs, 128 Gi RAM, 8
vCPU, and 512Gi storage.

5.1 Fine Tuning LLMs

The Large Language Models used in this experiment
were: LLama2-13b (Rozière et al., 2024), Mistral
(Jiang et al., 2023), Mixtral (Jiang et al., 2024). Each
of these models were pulled from the HuggingFace8

repository and deployed locally.
To interact with these models we first constructed

the prompts. After some empirical tests with differ-
ent forms of prompts where we requested qualifiers,
simple binary verdicts or even class attribution confi-
dence percentages, we settled with asking for a num-
ber on a scale from 0 to 9 where 0 is unlikely malware
and 9 likely malware. We constructed the prompt by
concatenating 3 parts.

The first part, the prefix, was this: ”Given the fol-
lowing API call sequence: ”. The second part, the
api seq, was obtained for every sample’s sequence
by taking each API call name and stripping its class
name, resulting only in the function name. We
stripped them of the class name for two reasons: min-
imizing the size of the prompts and having as little
repetitive strings as possible in the prompt. After ob-
taining all the function names(acledit EditAuditInfo
−→ EditAuditInfo), we then added them into a se-
quence separated by a commas, whilst maintaining
their original order. Lastly, we added the suffix, where
we asked the models to respond with a digit: ”On a
scale from 0 to 9 where 0 is very unlikely and 9 is very
likely, how likely is it that this sequence belongs to a
malware file? respond with a single digit. Don’t pro-
vide additional information, just the digit. Even if you
are not sure, just provide a digit.”.

Even if the number of available VirusTotal engines

8https://huggingface.co/

is 1019 we found out that in our database training-
llm-vt-detecting-engines-count the maximum number
of detecting engines is 73. Moreover, we have to
consider that from time to time an antivirus engine
might generate false positives, therefore a clean file
might get detected by a small number of engines.
On the other hand, some newly malicious files are
firstly detected by few antivirus engines. Hence, in
order to down-scale these scores to [0, 9] and keep a
balanced approach, we used the following formula:
max(min(int(vt detecting engines count/7.5),9),0)
(Table 3)

Table 3: Train score distribution.

Score Count Score Count
0 39009 5 7183
1 1371 6 12961
2 1978 7 17879
3 2972 8 7578
4 5291 9 161

The score was appended to the prompt as the ex-
pected answer (”Answer: {digit}”). Due to train-
ing environment constraints we decided to fine tune
on maximum 4096 tokens; Hence, the length of API
sequences was limited in order to fit this restriction,
keeping only the first aprox. 4000 APIs.

The fine tuning process was implemented in
Python and made use of transformers, LoraConfig
and peft HuggingFace Python modules.

• Each of the LLM models were loaded in 4bit,
with double quant, quant type to ”nf4” and com-
pute type to bfloat16, being mapped on all 4
GPUs.

• From the tokenizer perspective, for each prompt
we added the bos and eos tokens and a padding
(with eos) to the right to ensure the fixed tokens
length of 4096. This is necessary to ensure a
smooth fine tuning process.

• For LoraConfig we decided to set bias to all
as we are working with sequences of APIs and
each token might be important. Rank was set to
32, Alpha Parameter to 64, dropout to 0.05 and
task type ”CAUSAL LM”. For llama2 and mis-
tral we set the target modules to q proj, k proj,
v proj, o proj, gate proj, up proj, down proj,
lm head. For mixtral, we replaced gate proj,
up proj, down proj with w1, w2 and w3.

• For TrainingArguments we used a train batch
size of 3 with 2 steps gradient accumulation,
a small learning rate of 2.5e-5, bf16, and

9https://virustotal.readme.io/docs/list-file-engines

Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection

719

”paged adamw 8bit” as suggested in Hugging-
Face docs10. The number of steps was set to 3750.

The times needed to fine-tune the models are the
following: Llama2-13b - 62h 14m, Mistral-7b - 35h
28m, Mixtral-8x7b - 46h 50m.

5.2 Testing Fine Tuned LLMs

In the testing phase we used the same prompt archi-
tecture, this time applied on testing-api-sequences-
database. For each call to the LLMs we gathered
the response and the duration of the call. We then
needed to parse the textual response so we could ex-
tract a numerical verdict. We did so in two steps.
The first step was to apply a regular expressions on
the response received, ”Answer (\d{1})”. If no valid
match was found, we then moved to the second step
were we applied two more generic regular expres-
sions: ”(\d{1})”, ”([0|1|2|3|4|5|6|7|8|9]{1})”. If we
still did not get any matches, we moved on consid-
ering that this response was unusable and discarded
it.

At this point, we had a relation between a sample,
a model, a numerical verdict and the time needed to
evaluate all the samples. With all these, we calculated
false positive rate, detection rate (i.e. recall) and av-
erage response time for every model.

In an effort to improve the LLM results we also
compounded their individual results in three voting
mechanisms:

1. Average - in this approach we choose the result to
be the average value of all 3 models

2. Based on majority - in this system we went
through all samples and checked all 3 models for
their numerical verdict on the 0 to 9 scale. In the
case of two or three models with the same numer-
ical verdict we would select that. This decision
would help limit the impact these models would
have in a real life scenario.

3. Based on Veto Mechanism - in this approach we
looked for at least one model’s numerical verdict
to be in the interval (0-t for clean or t-9 for mal-
ware, the t is the threshold value).

Like for the individual models, we also computed
the results of the voting systems with respect to 8 se-
lected threshold values.

10https://huggingface.co/docs/transformers/v4.29.1/en/
perf train gpu one

5.3 Non-Generative Models: Feature
Mining and Selection

In order to use the traditional, non-generative models,
we have to extract specific features from API Calls
sequences. Hence, from a feature mining perspective
a 3-steps process was implemented:

1. from training files database (training-api-
sequences-database) three boolean features types
were derived:

• traditional features - 1 if a certain API was
found in the API sequences, 0 otherwise.

• mapping features - 1 if two specific APIs was
found in the API sequence, 0 otherwise.

• sub-sequence features - 1 if a sub-sequence of
length 2 was found in the API sequence, 0 oth-
erwise.

2. next, the obtained features were sorted by using a
F2 metric score (round(5.0∗Fi[malicious])/(5.0∗
Fi[malicious]+4.0∗(total benign−Fi[benign])+
Fi[benign]) ∗ 100.0,2) - where Fi[malicious] de-
notes how many malicious files contain Fi feature,
Fi[benign] denotes how many benign files contain
Fi feature and total benign the total number of be-
nign files; round is a function to round the obtain
value at two decimals.

3. based on the previous work done by (Balan et al.,
2023) we have limited the number of features used
to validate our non-generative machine learning
models at 600. The dataset containing samples
with these 600 features will be further refered to
as training-api-sequences-feature-database).

After the first step from the described methodol-
ogy, we resulted in 2730 traditional features, 677716
mapping features and 55784 sub-sequence features of
length 2, for each file. At the end of our feature selec-
tion algorithm, the resulted database contained sam-
ples with 76 traditional features, 510 mapping fea-
tures and 14 sub-sequences features.

5.4 Non-Generative ML Models

A number of 18 Machine Learning configurations
were used to validate our approach. To implement
the models we used sklearn-python package11 and
xgboost12. For each model we used a 3-fold cross-
validation approach. We have two reasons behind this
approach:

11https://scikit-learn.org/stable/
12https://xgboost.readthedocs.io/en/stable/python/

python api.html

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

720

• We wanted to check the variance between differ-
ent results obtained from the 3 validation splits.
This would outline if the model is highly sensitive
to training data and if it is prone to over-fit. It was
also a good way to identify if potential outliers re-
side in our dataset.

• As we trained multiple models, training time was
something we also needed to take into considera-
tion. A larger fold number (e.g., 20 folds) would
have increased the training time and associated
costs.

From a time perspective, each model’s training time
was negligible (only a matter of seconds). We used a
virtual machine with 6vCPUs, 72Gi and 1 RTX 2080
Ti.

• XGBoost - XGB - as shown in many conducted
studies, XGBoost should obtain good results in
binary classification problem; the authors showed
in (Li et al., 2024) that it can be used to slightly
reduce the number of false positives; in our im-
plementation, we decided to keep the default pa-
rameters.

• Multinomial Naive Bayes (MultinomialNB) -
MNB - if we are to consider the API sequence
as a story that a sample tells us, then Multino-
mialNB might yield decent results as shown in
(Singh et al., 2019); on the other hand, from pre-
vious similar research (Balan et al., 2023) the au-
thors stated that MultinomialNB model is not per-
forming well on APIs; however, we decided to
keep it so we would have a large number of mod-
els to compare LLMs to; similarly, we kept the
default parameters as given by the python scikit-
learn package implementation.

• Logistic Regression, Support Vector Machines,
Decision Trees and Random Forest are ones of
the most tested models in the malicious software
detection problem (Senanayake et al., 2021); We
made the following variations in hyper parame-
ters:

– LogisticRegression - LR1 - max iter set to 1000
and l2 regularization.

– LogisticRegression - LR2 - max iter set to 100
and l2 regularization.

– LinearSVC - SV1 - default sklearn implemen-
tation, with C=0.0001.

– LinearSVC - SV2 - default sklearn implemen-
tation, with C=0.001.

– DecisionTreeClassifier - DTG - criterion set to
gini

– DecisionTreeClassifier - DTE - criterion set to
entropy.

– RandomForestClassifier - RF1 - n estimators
set to 30, max depth set to 9.

– RandomForestClassifier - RF2 - n estimators
set to 50, max depth set to 12.

• a BaggingClassifier - BGL - applied over a Deci-
sionTreeClassifier with gini criterion; when com-
pared to multiple linear regression model-based
classifiers, Bagging-DT scored almost the best ac-
curacy as shown in (Şahın et al., 2022).

• an AdaBoostClassifier - ADB - applied over a De-
cisionTreeClassifier with gini criterion; AdaBoost
has been widely used in malware detection prob-
lem; recent research (Al-haija et al., 2022) shows
how it can outperform state-of-the-art models.

• a VotingClassifier-Hard - VCH - (voting hard)
which has all the above defined models as estima-
tors; similar research (Bakır, 2024) yielded good
results.

• a CustomOneSideVotingClassifier-Benign - VCB
- a custom implementation of voting classifier; if
at least one classifier yields a benign prediction
then the file is classified as benign; applied on the
same models as VotingClassifier-Hard.

• a CustomOneSideVotingClassifier-Malicious
- VCM - a custom implementation of voting
classifier; if at least one classifier yields a
malicious prediction then the file is classified
as malicious; applied on the same models as
VotingClassifier-Hard.

• Neural Networks implemented in three different
configurations

– LegacyNN - LeN - and LightNN - LiN - as de-
fined in (Balan et al., 2023)

– A ThirdNN - TNN - 2 hidden layers of 32 and
16 with ’ReLU’ activation, output layer with
’sigmoid’, ’RMSProp’ as optimizer and ’bi-
nary crossentropy’ for the loss function.

These models were used with the features resulted
after applying the feature selection method described
in the previous subsection.

6 RESULTS

6.1 Fine Tuned LLMs

After concluding with all processing we obtained
39956 usable responses for LLama2-13b, 39961 for
Mistral, 39958 for Mixtral.

Given the way we constructed our prompt, in or-
der to analyze our results, we needed a way to clearly

Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection

721

separate the malicious verdicts from the benign ones.
To do this, we chose 1,2,3,4,5,6,7,8 as thresholds. Ev-
erything equal or above the threshold was considered
as malicious and everything below was considered be-
nign. Tables 4, 5, 6, 7, 8, 9, 10 show the accuracy,
detection rate (i.e. recall) and false positive rate for
each considered threshold and each Large Language
Model.

Table 4: Llama2-13b Results.

Threshold Acc Recall FPR
1 82.25 99.06 34.54
2 82.95 98.79 32.87
3 82.85 97.82 32.1
4 82.72 94.74 29.29
5 80.69 85.53 24.13
6 76.71 71.23 17.83
7 68.9 41.82 4.06
8 54.03 8.07 0.09

Table 5: Mistral-7B Results.

Threshold Acc Recall FPR
1 91.02 99.19 17.13
2 90.87 98.87 17.12
3 90.65 98.38 17.06
4 90.27 97.57 17.02
5 89.82 96.31 16.66
6 85.32 83.94 13.3
7 70.3 41.15 0.6
8 52.75 5.42 0.0

Table 6: Mixtral-8x7B Results.

Threshold Acc Recall FPR
1 86.67 99.16 25.8
2 86.78 99.15 25.55
3 86.79 99.15 25.55
4 86.76 98.87 25.33
5 84.08 90.72 22.54
6 78.57 78.85 21.71
7 68.74 39.74 2.33
8 52.13 4.16 0.0

One noticeable observation here is that none of
the models were able to obtain a proper balance (in
terms of practical usage) between detection rate and
false positive rate. For example, Llama2-13b obtained
99.06% Recall for t=1; at the same time the false pos-
itive rate is 34.54% (making it unfeasible for practical
usage). On the other hand, a model with a low false
positive rate (0.6%) such as Mistral-7b (t=7) has only
managed to obtain a recall of 41.15% (also not good
enough for industry detection standards).

Table 7: Average Results.

Threshold Acc Recall FPR
1 80.62 99.69 38.41
2 83.53 99.57 32.47
3 88.01 99.14 23.11
4 89.52 97.64 18.58
5 89.26 90.24 11.71
6 79.02 64.69 6.68
7 64.47 29.01 0.14
8 51.11 2.12 0.0

Table 8: Majority Results.

Threshold Acc Recall FPR
1 90.5 98.81 17.8
2 90.43 98.54 17.66
3 90.15 97.8 17.48
4 89.3 95.7 17.09
5 85.61 86.93 15.72
6 81.42 77.23 14.39
7 69.1 39.12 0.97
8 52.29 4.49 0.0

When it comes to response times, Table 11 shows
the average time per request and the total time for a
model.

6.2 Non-Generative ML Models

By applying the training methodology described for
ML Models we managed to obtain (Table 12) the best
Accuracy for DTE - 96.98%. However, this is not
necessarily the model that one may choose in a real
world scenario. Depending on one’s goal, it may be
more suitable to use VCM or VCB as the best Re-
call was obtained by VCM (98.64%) and the lowest
FP Rate by VCB (1%). However, it is important to
keep in mind that both of these models (VCM, VCB)
are directly dependent on the other models and this
comes with an increase in evaluation time and total
used model bandwidth.

The worst Accuracy is obtained by MNB and hav-
ing no other strength points, it is clear that this model
is not suited for solving this problem.

6.3 Comparison

What follows is a comparison between the genera-
tive and the non-generative models’ results, compar-
ing them on each of the constraints we stated in 3:

• Inference Time - When it comes to inference
time, a non-generative model has a negligible
response time (tens of milliseconds) whilst the
LLMs response time ranged between 4 and 13

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

722

Table 9: Veto Clean Results.

Threshold Acc Recall FPR
1 92.42 98.4 13.54
2 92.27 97.85 13.29
3 91.82 96.44 12.8
4 90.54 92.73 11.65
5 85.41 79.67 8.86
6 78.03 62.41 6.39
7 64.05 28.13 0.1
8 51.11 2.12 0.0

Table 10: Veto Malicious Results.

Threshold Acc Recall FPR
1 79.94 99.69 39.77
2 80.54 99.69 38.58
3 80.63 99.69 38.4
4 81.13 99.66 37.36
5 82.02 98.72 34.66
6 80.94 92.3 30.4
7 74.39 54.62 5.87
8 55.51 11.03 0.08

seconds. As previously mentioned, in the context
of blocking opening or executing a file on an end-
point, a security product can not have a time im-
pact bigger than hundreds of milliseconds at most.
Besides the actual inference time, one must take
into account the round-trip of the HTTP call in
the case of a cloud deployment. Summarizing, in
both cases the LLMs are not suitable.

• Detection Rate (Recall) - From detection rate
perspective, all LLMs configurations are scoring
higher results than traditional models; However,
their suitability for a real-life scenario is highly
dependent on an additional method to lower the
number of false positive; On the other hand, the
non-generative models achieve similar results as
the ones obtained by LLMs in terms of recall but
with a visible lower false positive rate.

• False Positive Rate - Sometimes more important
than the detection rate, is the false positive rate.
If the impact of not blocking a malicious sample
may have either small or big impact on an end-
point, the impact of blocking a clean sample can
have a devastating impact on a device. For ex-
ample, if that blocked clean file is an operating
system file, that endpoint may be rendered unus-
able. Looking at the results obtained by the LLMs
in our experiment, the false positive rate is accept-
able only for LLama2-13b with t = 8, Mixtral-
7b with t ∈ {7,8}, Mixtral-8x7b with t = 8, Av-
erage with t ∈ {7,8}, Majority with t ∈ {7,8},
Vote Malicious with t = 8 and Vote Clean with

Table 11: LLM 1 Request Average duration and Total
Duration for each Model. A=Llama2-13b, B=Mistral,
C=Mixtral.

Malicious Benign
Model 1-Avg. Total 1-Avg Total
A 5s 27h45m 6s 33h
B 6s 33h 4s 22h
C 12s 67h 12s 67h

Table 12: ML Models results sorted by ACC Desc.

Mdl Acc Recall FPR F1 F2
DTE 96.98 96.83 2.87 96.97 96.89
XGB 96.96 97.26 3.34 96.96 97.15
DTG 96.93 96.78 2.93 96.92 96.84
BGL 96.92 97.06 3.23 96.92 97.01
LeN 96.62 96.55 3.31 96.62 96.57
VCH 95.94 95.68 3.8 95.92 95.77
RF2 95.82 96.16 4.53 95.83 96.03
TNN 95.38 94.57 3.82 95.34 94.88
LiN 94.78 95.66 6.1 94.84 95.32
LR1 93.12 95.1 8.86 93.24 94.34
RF1 93.01 95.79 9.77 93.19 94.73
LR2 92.9 95.18 9.39 93.05 94.32
SV2 92.59 94.41 9.22 92.72 93.72
ADB 92 95.2 11.19 92.24 93.99
SV1 91.38 93.68 10.9 91.57 92.82
VCB 89.18 79.35 1 87.99 82.6
VCM 88.18 98.64 22.27 89.29 94.68
MNB 85.17 81.79 11.46 84.64 82.91

t ∈ {5,6,7} but in all cases the detection rate is
not.
In contrast, in the case of the non-generative mod-
els, almost all results are single digits and of these,
almost half have a false positive rate lower than
5%.

• Memory Footprint - LLMs require a lot of mem-
ory (even if quantizated). While this is not a prob-
lem if the model is executed on a server or a cloud
service where usually such resources (RAM) are
available, one can not assume that each endpoint
will have sufficient resources (in terms of mem-
ory) to allow such a model to run. As such, it
using them on low-end devices or on general on
devices where the amount of memory is unknown
does not seem feasible.

• Model Update Size - With larger size come larger
updates. While this is not a problem for a cloud
service (where you only need to update once) it is
a problem if the model is distributed locally (espe-
cially if the number of customers that are using the
models is large - e.g., millions). This means that
each time you have an update for a model each on

Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection

723

of them will have to download that update (and
there is a price for the bandwidth that in this case
will not be insignificant).

Moreover, comparing our results with similar re-
search done in (Sánchez et al., 2024), we can observe
that by fine-tuning Large Language Models, the ac-
curacy value increases. For example, using transfer
learning, they obtained an accuracy value of 58.17%
for Mistral with a context window size of 8192. Com-
pared to their result, after fine-tuning, we managed to
obtain an accuracy of 91.02% for a threshold value
1, with only 4096 tokens. However, their best-model,
BigBird, with a context size of 4096 scored an accu-
racy value of 86.67% which is close enough to the
results obtained by our models.

7 CONCLUSION

In terms of real-time protection large language mod-
els are not suited (at least for the moment) for this
task. The main disadvantages are (in order):
1. Long inference time (in these cases, the inference

process should not take more than a couple of mil-
liseconds)

2. Detection (recall) and False positive rate (in par-
ticular false positive rate should be close to 0)

3. Memory footprint (a decent model requires a lot
of memory that most consumer endpoints do not
have)

4. Cost (for scenarios where the models are stored
locally and updates are needed, the cost will in-
crease linearly with the number of customers)
With the advancement of the NPU13 and com-

bined with fine-tuning LLM models for specific de-
tection tasks most of the previous disadvantages
might be solved. For the moment non-generative
models seem to produce better results for this type of
scenarios.

However, we consider that LLMs can be success-
fully used as an additional detection layer in a threat
detection environment where the inference time and
false positive rate could be negligible; For example,
such solutions might be deployed in a SandBoxed en-
vironment where the time needed to draw a conclu-
sion is a matter of seconds/minutes. Moreover, in a
SandBoxed execution, multiple techniques to identify
benign files might be deployed in order to reduce the
FP rate.

In terms of a model for security analytics platform
(EDR, XDR or SIEM) these models can be a good

13Neural Processing Units

option, but only after fine-tuning for specific detec-
tion tasks. It should also be pointed out that even in
this case, running a model locally might not be that
easy due to memory constraints. While most of these
system have a cloud component, in scenarios where
privacy is relevant, the memory footprint might be an
issue.

REFERENCES

Al-haija, Q. A., Odeh, A. J., and Qattous, H. K. (2022).
Pdf malware detection based on optimizable decision
trees. Electronics.

Bakır, H. (2024). Votedroid: a new ensemble voting clas-
sifier for malware detection based on fine-tuned deep
learning models. Multimedia Tools and Applications.

Balan, G., Simion, C.-A., Gavrilut, D., and Luchian, H.
(2023). Feature mining and classifier selection for api
calls-based malware detection. Applied Intelligence,
53:29094–29108.

Botacin, M. (2023). Gpthreats-3: Is automatic malware
generation a threat? In 2023 IEEE Security and Pri-
vacy Workshops (SPW), pages 238–254.

Charan, P. V. S., Chunduri, H., Anand, P. M., and Shukla,
S. K. (2023). From text to mitre techniques: Exploring
the malicious use of large language models for gener-
ating cyber attack payloads.

Chen, J., Guo, S., Ma, X., Li, H., Guo, J., Chen, M., and
Pan, Z. (2020). Slam: A malware detection method
based on sliding local attention mechanism. Security
and Communication Networks, 2020:1–11.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford,
C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,
Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T.,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mis-
tral 7b.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A.,
Savary, B., Bamford, C., Chaplot, D. S., de las Casas,
D., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G.,
Lample, G., Lavaud, L. R., Saulnier, L., Lachaux, M.-
A., Stock, P., Subramanian, S., Yang, S., Antoniak, S.,
Scao, T. L., Gervet, T., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. (2024). Mixtral of experts.

Karanjai, R. (2022). Targeted phishing campaigns using
large scale language models.

Kim, S., Choi, J., Ahmed, M. E., Nepal, S., and Kim, H.
(2022). Vuldebert: A vulnerability detection system
using bert. In 2022 IEEE International Symposium
on Software Reliability Engineering Workshops (ISS-
REW), pages 69–74.

Li, Z., Zhu, H., Liu, H., Song, J., and Cheng, Q. (2024).
Comprehensive evaluation of mal-api-2019 dataset
by machine learning in malware detection. ArXiv,
abs/2403.02232.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

724

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach.

Motlagh, F. N., Hajizadeh, M., Majd, M., Najafi, P., Cheng,
F., and Meinel, C. (2024). Large language models in
cybersecurity: State-of-the-art.

Omar, M. (2023). Detecting software vulnerabilities using
language models.

Pa Pa, Y. M., Tanizaki, S., Kou, T., van Eeten, M., Yosh-
ioka, K., and Matsumoto, T. (2023). An attacker’s
dream? exploring the capabilities of chatgpt for de-
veloping malware. In Proceedings of the 16th Cyber
Security Experimentation and Test Workshop, CSET
’23, page 10–18, New York, NY, USA. Association
for Computing Machinery.

Rahali, A. and Akhloufi, M. A. (2021). Malbert: Using
transformers for cybersecurity and malicious software
detection.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez,
T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton,
J., Bhatt, M., Ferrer, C. C., Grattafiori, A., Xiong,
W., Défossez, A., Copet, J., Azhar, F., Touvron, H.,
Martin, L., Usunier, N., Scialom, T., and Synnaeve,
G. (2024). Code llama: Open foundation models for
code.

Sánchez, P. M. S., Celdr’an, A. H., Bovet, G., and Pérez,
G. M. (2024). Transfer learning in pre-trained large
language models for malware detection based on sys-
tem calls. MILCOM 2024 - 2024 IEEE Military Com-
munications Conference (MILCOM), pages 853–858.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020).
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter.

Senanayake, J. M. D., Kalutarage, H. K., and Al-Kadri,
M. O. (2021). Android mobile malware detection us-
ing machine learning: A systematic review. Electron-
ics.

shiqi, L. (2019). Android malware analysis and detection
based on attention-cnn-lstm. Journal of Computers,
pages 31–43.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. (2020). Megatron-lm: Training
multi-billion parameter language models using model
parallelism.

Singh, G., Kumar, B., Gaur, L., and Tyagi, A. (2019).
Comparison between multinomial and bernoulli naı̈ve
bayes for text classification. 2019 International Con-
ference on Automation, Computational and Technol-
ogy Management (ICACTM), pages 593–596.

Vörös, T., Bergeron, S. P., and Berlin, K. (2023). Web con-
tent filtering through knowledge distillation of large
language models.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. (2020a). Xlnet: Generalized autore-
gressive pretraining for language understanding.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. (2020b). Xlnet: Generalized autore-
gressive pretraining for language understanding.

Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E.,
Yang, B., Laredo, J., Morari, A., and Su, Z. (2021).
D2a: A dataset built for ai-based vulnerability detec-
tion methods using differential analysis.

Zhou, X. and Verma, R. M. (2022). Vulnerability detection
via multimodal learning: Datasets and analysis. In
Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, ASIA CCS
’22, page 1225–1227, New York, NY, USA. Associa-
tion for Computing Machinery.

Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. (2019). De-
vign: Effective vulnerability identification by learn-
ing comprehensive program semantics via graph neu-
ral networks.

Şahın, D. Ö., Akleylek, S., and Kılıç, E. (2022). Linreg-
droid: Detection of android malware using multiple
linear regression models-based classifiers. IEEE Ac-
cess, 10:14246–14259.

Fine Tuning LLMs vs Non-Generative Machine Learning Models: A Comparative Study of Malware Detection

725

